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ABSTRACT 
 

Protecting multimedia data from malicious computer users continues to grow in importance.  Whether preventing 
unauthorized access to digital photographs, ensuring compliance with copyright regulations, or guaranteeing the 
integrity of a video teleconference, all multimedia applications require increased security in the presence of talented 
intruders.  Specifically, as more and more files are preserved on disk the requirement to provide secure storage has 
become more important.  This paper presents a survey of techniques for securely storing multimedia data, including 
theoretical approaches, prototype systems, and existing systems ready for employment.  Due to the wide variety of 
potential solutions available, a prospective customer can easily become overwhelmed while researching an appropriate 
system for multimedia requirements.  Since added security measures inevitably result in slower system performance, 
certain storage solutions provide a better fit for particular applications along a security/performance continuum.  This 
paper provides an overview of the prominent characteristics of several systems to provide a foundation for selecting the 
most appropriate solution.  Initially, the paper establishes a set of criteria for evaluating a storage solution based on 
confidentiality, integrity, availability, and performance.  Then, using these criteria, the paper explains the relevant 
characteristics of select storage systems providing a comparison of the major differences.  Finally, the paper examines 
specific applications of storage devices in the multimedia environment. 
  

1.  INTRODUCTION 
  
With the proliferation of stored data in all environments, organizations face an increasing requirement to both 
temporarily and permanently retain information.  The storage medium for housing this information becomes a prime 
target for attack by a malicious intruder.  If an outsider can successfully penetrate the data storage, the intruder can 
potentially gain information that violates privacy, discloses valuable secrets, or prevents the access of legitimate users.  
The deleterious effects of such an attack are not quantifiable.  If the organization takes no storage security measures, the 
data store becomes a lucrative single point-of-attack for an intruder.  The avoidance of this obviously unfavorable 
condition has generated a detailed field of computer research.  The research community has actively pursued options for 
securing stored information, and has consequently developed many potential schemes for ensuring information 
confidentiality, integrity, and availability without substantially degrading performance.  
 
A major problem associated with storing large amounts of data is how to properly weigh the costs and benefits 
associated with security measures.  The most secure systems are so because of the increased measures to protect the 
data, but each additional measure comes with a cost in terms of both convenience and processing time.  In order to 
effectively select the best security scheme, users must have an understanding of the primary security features available 
in the storage security community and then be able to quantifiably compare the systems.  Developing an understanding 
of these aspects will help to motivate the direction for future research and assist the selection of the appropriate storage 
solution for a set of specific requirements.   A single organization may even benefit by employing different storage 
techniques for differing forms of multimedia data.  Certain types of information imply stricter control of privacy, 
whereas others are deadline driven and cannot afford the additional performance cost of added security.  Streaming 
video, for instance, cannot suffer a significant performance penalty without severely affecting the viewing condition.   
 
The remainder of the paper is organized as follows.  Section 2 provides a standardized set of criteria to evaluate secure 
storage systems.  Section 3 provides a survey of eight storage systems.  Section 4 provides a classification and 
comparison of the surveyed systems.  Section 5 contains applications to multimedia and Section 6 concludes. 



 

 
2. CRITERIA FOR EVALUATION 

 
This section establishes a common set of criteria for evaluating a storage security system.  There are many different 
ways to approach storage systems but for the purposes of establishing a common reference, confidentiality, integrity, 
availability, and performance have been selected.   While this paper does not approach any criteria in exhaustive detail, 
it is necessary to describe the evaluation criteria prior to assessing the individual systems.  Confidentiality, integrity, and 
availability are commonly referred to in the computer security arena, and performance was added to ensure systems 
achieve an appropriate balance between security and processing ability.  Prior to discussing each aspect in more detail, 
it is important to understand that none of these attributes is mutually exclusive, and, in fact, to have a secure system all 
attributes must be satisfied. 
 
2.1 Confidentiality 
 
From a security perspective, ensuring confidentiality implies that no one has access to data unless specifically 
authorized.   Different systems control this authorization process in various ways.  The first step in authorizing access to 
information is to properly identify users via authentication.  The storage system must define the means for a user to be 
properly identified prior to gaining access, and then having appropriately identified a user, the system must allow access 
to only specified data associated with that user.  Proper authorization to access the storage system does not imply access 
to the entire system; in fact, the contrasting principle of least privilege is generally applied.  Data owners must, 
however, have a method for allowing others to access information when appropriate via a delegation of authorization 
scheme. 
 
To prevent unauthorized access to information, confidentiality also implies that the system must encrypt data and, 
therefore, requires either users or servers to apply cryptographic keys.  Determining how the keys are managed has had 
a significant impact on the overall design – whether distributed by a centralized group server or by individual file 
owners, the effects of key management on performance and user convenience must be analyzed.  Cryptographic 
operations are often the most computationally expensive aspect of accessing securely stored data so deciding where and 
how the cryptographic keys are applied is necessary. 
 
An additional critical discussion concerning key management involves how keys are revoked.  Once the system 
determines to revoke a particular user’s access, the user’s keys must no longer work within the system, or at a minimum 
not allow access to future versions of the files.  The cost associated with revoking a user manifests itself in the re-
encryption effort required to secure confidentiality.  It is not possible to physically revoke a user’s keys to prevent that 
user’s ability to perform operations since copies could have been produced, so the system must render all keys of a 
revoked user obsolete and re-encrypt all of the data with a new key.  A resulting argument then turns, once again, to a 
tradeoff between security and performance.  There are two primary methods for securing the data after key revocation: 
lazy revocation and aggressive revocation.  When using lazy revocation the system does not re-encrypt the data that the 
revoked user previously had authorization to access until the next valid user attempts to access the file.  This essentially 
defrays the cost over time, but it leaves data vulnerable to the revoked user for an unspecified period of time.  By 
contrast, aggressive revocation immediately re-encrypts all files that the revoked user could potentially access.  Once re-
encrypted, new keys must be distributed to all personnel who are affected by the changed encryption (adding additional 
weight to the key distribution scheme); clearly this option requires time.  Lazy re-encryption sacrifices a measure of 
security to save time while aggressive revocation sacrifices time to improve security. 
 
2.2 Integrity 
 
Integrity is a broadly based topic that includes maintaining data consistency in the face of both accidental and malicious 
attacks on data.  For the purposes of this paper, the scope of the integrity analysis is limited to the methods used to 
prevent malicious alteration or destruction of information.  The resulting expectation is that when a user accesses stored 
information, no data has been subjected to unauthorized modification.  Many systems enforce integrity by ensuring that 
data comes from the expected source.  For stored data, the discussion of integrity implies that files have not been 
changed on the disk. 
 



 

Integrity enforcement procedures fall into two categories: data modification prevention and data modification detection.  
Similar to confidentiality, modification prevention requires users to receive authorization prior to changing files and 
requires that files are only changed in an approved manner.  Integrity differs from confidentiality in that confidentiality 
is only worried about whether or not data has been compromised, whereas integrity includes ensuring the correctness of 
the data.  Detection schemes generally assume that attacks are inevitable and that there must be suitable ways to assess 
any damage done, recover from the damage, and apply lessons learned to future prevention mechanisms. 
 
2.3 Availability 
 
The paper considers availability in terms of time, space, and representation.  Information needs to be available to an 
authorized user within an acceptable time period, without monopolizing the available storage space, and in an 
understandable representation.  A system can not allow an adversary to prevent authorized access to information via a 
denial-of-service attack.  It is important to note that the goals of availability conflict to a degree with those of 
confidentiality, because ensuring confidentiality often requires increased time to access data or offering access only 
within a limited environment.  The two characteristics, however, must be considered within the security domain. 
 
2.4 Performance 
 
The level of security and the system performance often conflict.  In order to provide the requisite layers of security to 
avoid harmful attacks, the system performance suffers.  The two goals of an efficient system and a secure environment 
intrinsically conflict.  Each additional security measure requires computationally expensive processing that detracts 
from the system’s ability to perform other operations; all security measures are overhead for the system.  Each of the 
evaluated storage techniques attempts to minimize the performance cost associated with the particular measures of the 
system.  The most dominant performance cost is associated with encryption due to its computationally expensive nature.  
The two fundamentally different approaches to storage security, encrypt-on-wire and encrypt-on-disk, place the burden 
of encryption on different aspects of the system.  Riedel et al [1] provide a detailed explanation of the tradeoffs between 
the two.  
 

3. SURVEY 
 
The following survey briefly describes five storage security approaches using confidentiality, integrity, availability, and 
performance as a framework.  Sections 3.1 and 3.2 refer to encrypt-on-wire systems that store data in clear text and 
encrypt upon transmitting the data across the network.  Sections 3.3 through 3.5 refer to encrypt-on-disk systems that 
store data encrypted and require no additional encryption prior to transmission. 
 
3.1 NASD – Network Attached Secure Disks   
 
In traditional distributed file systems, a client must make a request for file access via the file server.  The server then 
must verify the client’s authorization and distribute the file if the appropriate criteria are met.  Since the server must 
interact with every file access request for every client, the server can quickly become a bottleneck.  NASD’s primary 
goal is to relieve the server bottleneck by interacting with a user one time providing a “capability key.”   With the 
capability key the user can access the appropriate disk(s) directly without any further server interaction.  The disks 
themselves must be “ intelligent”  such that they possess enough internal ability to process the capability key and handle 
file access requests directly [2, 3]. 

 
Confidentiality.  There are two servers in the NASD design, one to provide authentication and the actual file server.   
NASD does not specify the authentication scheme and recommends using any existing third party method similar to 
Kerberos.  Upon receipt of authentication, a user sends a request to the file server.  The server verifies the authenticity 
of the request and then provides the user with a capability key that corresponds to the user’s rights for file access.  After 
obtaining the capability key, a user can communicate directly with the data disk for all future access requests during a 
given session. 
 
The capability object is the critical aspect pertaining to both the confidentiality and integrity of the system.  A file 
manager agreeing to a client's access request privately sends a capability token and a capability key to the client; 



 

together these form a capability object.  The token contains the access rights being granted for the request and the key is 
a message authentication code (MAC) consisting of the capabilities and a secret key shared between the file server and 
the actual disk drive.  Clients can then make a direct request to a NASD drive by providing the capability object.  Using 
its internal processor, the drive then uses the secret key that it shares with the file server to interpret the capability token 
to verify the user’s access rights and service the request.  Since the MAC can only be interpreted using the drive/server 
shared secret key, any modifications to the arguments or false arguments will result in a denied request. 
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Figure 1 NASD 

 
Integrity.  The novel concept associated with NASD is placing part of the data integrity requirement on the disks 
themselves.  The “intelligent” disks interpret the capabilities objects, encrypt data, and transmit results to clients.  To 
ensure integrity on the client end, the disk uses the same hash MAC combination that allowed it to authorize a client 
access to encrypt and send the data to the client.  The client can then verify the integrity of the transmission during the 
decryption process. 
 
Availability.  The fact that NASD allows direct access to the disk promotes scalability; the system throughput scales 
linearly with the number of clients and disks.  However, since the file server must be trusted to initially provide 
capability keys, the server presents a single point of attack.  If the server becomes compromised there is no way to 
prevent a denial of service attack. 
 
Performance.  A motivating factor for using NASD is the ability to scale bandwidth linearly with the number of disks in 
the system; however, these benefits are partially offset by the cost of cryptography.  A large performance problem 
associated with NASD is the dual cost of cryptographic operations incurred because it is an encrypt-on-wire scheme.  
Every data transmission must be encrypted prior to being sent and then decrypted at its destination.  In an attempt to 
reduce the performance penalty, NASD uses a “hash and MAC” cryptographic approach instead of a standard MAC.  In 
a traditional MAC algorithm, a client’s secret key is used throughout the computation.  In contrast, hash and MAC uses 
the raw data from the file to pre-compute a series of message digests that are generic for the given file.  Hash and MAC 
then applies a client’s secret key to the message digests only as a client requests a file.  The result is that the secret key 
is only required for a small subset of the overall computation, thus significantly decreasing latency associated with on-
the-fly cryptography.  Experiments demonstrated that the latency for using cryptographic operations was bounded by a 
20% increase in the time to service a request when compared to a request with no cryptography [2]. 
 
3.2 Self Secur ing Storage (S4) 
 
S4 is a self-securing storage medium that introduces a new aspect to storage security: the disks do not trust even the host 
machine operating system.  S4 treats all requests as suspect.  The driving security motivation for the system has been to 
negate the effects of a clever intruder who is able to successfully penetrate the operating system and disguise any 
adversarial efforts.  The disks themselves in S4 require a small set of fundamental operations for managing a file system 
and therefore have an embedded instruction set for internally versioning and auditing all data and metadata.  S4 uses a 



 

daemon on the client machine to service file access requests as remote procedure calls and then translate them into S4-
specific requests to make the system transparent to users.  [4, 5, 6, 7].   
 
Confidentiality.  S4 does not provide any method for authentication, but rather assumes that the self-securing disks will 
be used in conjunction with a file server that uses one of many standard authentication protocols.  All access requests 
properly sent to S4 will be serviced without any additional verification. 
 
Integrity.  An underlying theme for the design of S4 is that confidentiality will eventually become breached in any 
system.   S4 uses a comprehensive versioning protocol that creates a new version of every modified block and creates a 
journal entry of metadata attributes for every file access performed within a detection window.  The period of the 
detection window is largely defined by the amount of space available for keeping the overhead of multiple versions and 
has proven to be approximately two weeks in research [7].  Considerable research has resulted in a combination of a 
journal-based structure and multi-version B-trees to efficiently keep all of the requisite information in a space efficient 
manner.  If at any time during the detection window an intrusion occurs, the system can guarantee the integrity of all 
data up to the point of the intrusion.  Additionally, after verifying the access logs for individual files, files can be safely 
recovered if no anomalies exist.  Files that have questionable accesses in the post-intrusion period may result in lost 
data, but the user can still be guaranteed not to receive the tainted file.  This is a critical aspect of S4, other systems may 
allow a user to unknowingly access a file modified during an intrusion, but S4 will prevent such an integrity violation.  
The system administrator establishes the detection window, and once set, no user can prevent any access to data from 
being versioned.  This precludes an intruder from altering a file in an undetectable fashion.   
 
Availability.  Through comprehensive versioning, self-securing storage inherently ensures data is available to users.  
Immediately after the system administrator detects an intrusion, all of the files can be reliably restored to the last access 
prior to the intrusion.  Legitimate changes made after the intrusion but prior to its detection may result in lost data, but 
the lost data can be minimized.  S4 includes a storage based intrusion detection scheme that can analyze file 
modifications for suspicious behavior [22].  If, for instance, an intruder attempts to change the contents of a password 
file which the administrator is “watching,” the intrusion can be detected immediately.  By minimizing the deleterious 
effects of an intrusion, the system naturally increases data availability. 
 
Performance.  Considering the costs of maintaining versions for every file access, the designers searched for both space 
and time efficient means for achieving comprehensive versioning.  They use journal-based metadata and multi-version 
b-trees to meet their objectives.  The system has proven to operate at a comparable speed with traditional NFS for 
current-file lookup.  For back-in-time access, the lookup time is dependent on the number of versions which must be 
traversed.  However, this can be bounded by a system administrator’s determination to checkpoint the file system. 
   
3.3  SFS-RO – Secure File System – Read Only 
 
SFS-RO relies on self-certifying path names to provide high availability to read-only data in a distributed environment.  
SFS-RO uses some of the concepts from its SFS predecessor, but strives for better performance by providing read-only 
data that does not require any server-based cryptographic operations.  The concept is to preserve data integrity while 
producing multiple copies of read-only material; traditionally such copying resulted in a degradation of security [8, 9]. 
  
Confidentiality.  SFS-RO relies on a mutual authentication protocol between the users and the server, performed via 
self-certifying pathnames that have the public key for a file embedded in them.  The creator of the file has the ability to 
assign the key, offering a wide range of cryptographic options.  To properly encrypt files, an administrator bundles the 
contents of the file system into a database that is signed with a digital signature containing the private portion of an 
asymmetric key.  Once signed, the database can be replicated and distributed to many untrusted machines without the 
threat of compromise.  In order to access the files, a user must provide the location of the storage server (either a DNS 
hostname or IP address) and a HostID.  The HostID is a cryptographic hash of the server location and the public portion 
of the asymmetric key with which the file creator encrypted the database.  The database creator must provide the public 
key to all potential users separate from the SFS-RO system.   

 
Once granted permission to the files via the mutual authentication, the users can then access files by providing the 
appropriate handle, comprised of a cryptographic hash of the file’s blocks.  Groups of handles are recursively hashed 



 

and stored in hash trees such that the handle to the root inode provides the ability to verify the content of individual file 
blocks, reducing the number of handles required throughout the system.  Knowing the handle of the root inode provides 
a client with the ability to verify the contents of a given file by recursively checking the hashes.   
 
Integrity.  SFS-RO relies on three critical elements:  the SFS database generator, the SFS read-only server daemon, and 
the client.  Traditional directories are converted to a database and digitally signed in a secure client environment.  This 
database is then distributed to any number of servers that all run the SFS-RO server daemon.  The server daemon simply 
receives requests from clients to look up and return data.  The SFS client runs on a client machine and is a conduit 
between a standard file system protocol (like NFS) and the server.  Upon receipt of a file transmission, it converts the 
SFS-RO database “chunks” into traditional inodes and blocks that a typical file system would expect to see.  
Additionally the client must posses a private key to verify the digital signature on data passed from the untrusted server.  
This verification process ensures data integrity. 
 
SFS-RO also uses a timestamp protocol to help detect integrity violations.  When a user creates a database, the time is 
recorded.  Additionally, the creator must establish a no-later-than time to resign the database so that the time has an 
upper and lower bound.  Users of the files maintain a record of the current timestamp which they compare against all 
data that they receive to prevent a rollback attack. 
 
Availability.  One of the primary goals of SFS-RO is to extend access to read only data in a global environment.  To 
accomplish this, a file system creator can copy the securely generated database onto any server that is running the SFS-
RO daemon.  The result is a system that scales to the number of servers multiplied by the number of connections per 
server.  Since the system is designed for multiple copies of read-only material to be distributed among multiple 
machines, it is logical to deduce that destruction of one server will not affect the availability of the file. 
 
Performance.  All cryptographic operations are performed on client machines; the creator establishes the database in a 
secure non-networked environment and users receive encrypted data which they must decrypt on their client machines.  
The cryptographic operations proved to be the most costly aspect in comparison to traditional NFS.  For small files, 
SFS-RO was twice as slow as NFS with the primary additional cost due to timestamp verification (to ensure integrity).  
SFS-RO incurs additional latency when compared to NFS because NFS is run in the kernel while SFS-RO must rely on 
system calls.  In larger files where the proportion of system calls to data passed is smaller, the slow down was 
approximately 30% which, while much improved over small files, is still a considerable performance penalty.  SFS-RO 
began to perform favorably with very large files (40MB), proving 4% faster than NFS.   
 
3.4 PLUTUS   
 
PLUTUS is a lockbox scheme that provides highly scalable key management while providing file owners with direct 
control over authorizing access to their files.  All data is encrypted on the disk with the cryptographic and key 
management operations performed by the clients to alleviate server cryptographic overhead.   Users can customize 
security policies and authentication mechanisms for their own files using the client-based key distribution scheme.  This 
places the responsibility for key management on the user, forcing the file owner to ensure proper secure distribution of 
keys to those they wish to authorize access.  A prospective user must contact the owner in order to get the appropriate 
key [10].  Riedel et al [1] argue that this task can be performed with an acceptable cost to user convenience. 
 
Confidentiality.  To provide the liberty of owner customization while ensuring confidentiality, PLUTUS relies on an 
intricate lockbox scheme with multiple levels of keys.  At the data level, PLUTUS uses a block structure to encrypt each 
individual block with a unique symmetric key.  These block keys are then encrypted within a lockbox accessed via a 
file-lockbox key common to all files within a filegroup.  The filegroup owner creates the file-lockbox key when the file 
is created and then distributes it to all users.  PLUTUS uses an asymmetric file-verify key or a file-sign key protocol to 
differentiate between readers and writers respectively (see Figure 3).  These keys are used to sign or verify a 
cryptographic hash of the file block contents to provide integrity.  Upon requesting a file, the server passes the 
encrypted lockbox and encrypted block contents to the user.  The user then “unlocks” the lockbox with the file lockbox 
key and decrypts each block with its respective file block key. 
 



 

The proliferation of keys and the use of filegroups in PLUTUS complicate the key revocation scheme.  When multiple 
files across the file system (related only by access rights, not like a traditional directory) are encrypted with the same 
key, key revocation could cause mass re-encryption and key management problems.  However, the designers have 
implemented a clever key rotation scheme that minimizes the effects.  PLUTUS uses lazy revocation such that a 
revoked user can still read files that were accessible at the time of revocation.  A problem arises due to the use of 
filegroups because upon re-encrypting a file, different files within the same group will require different keys.  Since a 
primary motivation for using filegroups in the first place was to minimize the number of keys, Kallahalla et al [10] 
designed a rotation scheme that ensures that the new encryption key is related to the keys for all files in the filegroup.  
The system performs the re-encryption with the latest filegroup keys, but all valid users can generate previous versions 
from the latest key.  The result is that all valid users can “regenerate” the proper key for a given file if they have the 
latest filegroup key.  The new filegroup key is only disseminated to currently valid users such that revoked users. 
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Figure 2 PLUTUS Key System 

 
Integrity.  PLUTUS does not trust the file server and cannot, therefore, rely on it to distinguish between writers and 
readers.  Instead it uses two types of keys, file-sign keys and file-verify keys, to make the respective determination.  
Upon attempting to read or write, the user verifies the digital signature and hashed contents of the file with these keys.  
If the user obtains unexpected results, the user can determine that the file has been illegally modified.   
 
Availability.  The entire design of PLUTUS is intended to provide scalability.  Placing the key management 
responsibility on the clients instead of on a trusted server prevents a server bottleneck due to computationally expensive 
cryptographic operations.  PLUTUS relies heavily on filegroups to limit the number of cryptographic keys.  Filegroups 
consist of all files with identical sharing attributes and can, therefore, be protected using the same key.  This allows 
users with filegroup privileges to access a file within the group even if the owner is not on-line, avoiding the 
requirement for a user to contact the owner directly to get the key with every file access.  The filegroup concept does 
not rely on a hierarchical structure so that the grouping is strictly a product of the associated files’ permission attributes. 
 
PLUTUS does provide much greater scalability and a clever key rotation process to minimize key management 
responsibilities associated with key revocation, but the system still requires the file’s owner to provide a copy of the 
file’s symmetric key to each user.  Filegroups help to minimize the file owner-user communication, but they do not 
eliminate the original responsibility for the owner to distribute the keys. 
 
Performance.  The designers of PLUTUS used OpenAFS to construct their system.  The performance of the file system 
itself is comparable to the unmodified OpenAFS system, because the server does not have to perform any extraneous 
operations during file access.  However the cost to the client system where cryptographic operations are performed 
demonstrated to be 1.4 times slower than SFS.  The authors present a credible argument to justify this decrease in 
performance, because they used worst-case scenarios to derive their figures.  This comparison only takes into account a 
single file read and write combination, ignoring the design enhancement offered by PLUTUS.  PLUTUS is designed for 



 

scalability and to relieve server bottleneck which may arise with multiple file access requests in standard SFS.  
Kallahalla et al [10] reason that the average latency for protracted use would favor the use of PLUTUS. 
 
3.5 SiRiUS – Secur ing Remote Untrusted Storage   
 
SiRiUS is designed to provide its own cryptographic read-write file access on top of any existing untrusted networked 
file system (NFS, CIFS, Yahoo, etc.).  Via a software daemon, the system intercepts all file access system calls and 
converts them accordingly.  The concept is to be able to establish a secure file sharing environment without significantly 
modifying the performance of an existing network storage medium.  SiRiUS can provide security to an existing system 
without requiring any hardware modifications; the developers view the system as a “stop-gap” measure to provide 
additional security to existing systems.  Often times, organizations cannot afford to upgrade their current systems and 
must continue to operate with limited security until which time the option to upgrade security measures becomes 
available; SiRiUS can provide an interim solution [11]. 
 
Confidentiality.  All files are encrypted in a secure environment prior to being stored on the server, such that neither the 
server nor the server administrator ever has access to unencrypted data.  Additionally, the computationally costly 
encryption operations are performed on the relatively lightly loaded client machine, and the fact that the data is already 
encrypted obviates any requirement to establish a secure channel to send the file to the server.  Each file owner 
maintains a master encryption key (MEK) and a master signing key (MSK).  Each file has a unique symmetric file 
encryption key (FEK) provided to all users and a file signing key (FSK) provided only to authorized writers to the file.  
The system provides a “freshness guarantee” by maintaining a metadata freshness file for each directory.  All files are 
separated into two parts: an md-file metadata file and a d-file data file.  The metadata file contains a block for the file 
owner’s MEK, a block for every valid user’s FEK (and FSK if authorized to write to the file), and a block with a hash of 
the metadata file’s contents signed with the owner’s MSK.  If the owner or a user has a key maintained in the file’s 
metadata, that person can decrypt the file.  User key revocation is quick and efficient; the file owner removes the 
revoked user’s key block from the metadata file, creates a new FEK, re-encrypts the file with the new key, and then 
updates the remaining users’ key blocks with the new FEK.  The result is immediate revocation.  
 
Integrity.  In addition to added measures, SiRiUS keeps certain file system specific metadata unencrypted so that the file 
system can perform standard integrity checking operations.  SiRiUS keeps all access control information encrypted with 
the file data.  This facilitates using the legacy file system’s standard backup procedures – if the system must recover 
from a crash, all of the needed access information is already available with the file.  SiRiUS uses the “freshness 
guarantee” to ensure that users have the most current version of a file preventing a rollback attack.  At a user-designated 
interval, the user timestamps the metadata freshness file. 
 
Availability.  The design decision to make no modifications to the underlying file server prevents SiRiUS from 
defending against denial of service attacks; an attacker could conceivably compromise the server and delete all files.  
SiRiUS has no ability to intervene in such a circumstance and, therefore, requires users to backup their own files on 
multiple servers to limit the effects of such an attack.  In order to add users, the perspective reader/writer of a file must 
send a public key to the file owner who will then use the public portion of the MEK to encrypt that key and add it to the 
files metadata.  Once the new user’s key is added to the metadata, the user has access to the file.  The key passing 
mechanism is not addressed in the system.  As previously addressed, SiRiUS supports active key revocation such that 
once a user’s access rights have been revoked, the user no longer has any form of access to the file via the freshness 
guarantee.  SiRiUS attempts to improve on other secure networked file system designs by allowing fine grained file 
access while providing the ability for a file owner to grant read-only or read-write access to shared files.  Other systems 
either allow access to entire directories or cannot distinguish between readers and writers. 
 
Performance.  The first time a file is accessed, the file system must return the associated metadata file as well as the 
original (to support appropriate authorization checking).  The metadata file is then cached to prevent the overhead of 
looking up and sending the metadata file on subsequent retrievals for the same file.  Additionally, many SiRiUS file 
system calls require checking the freshness file resulting in increased network traffic and additional file I/O for each.  
63% of the cost associated with using SiRiUS for a 1MB data read is due to the decryption cost.  Similarly, 40% of the 
cost for writing a 1MB file is due to signature generation. 
 



 

4. CLASSIFICATION AND COMPARISON 
 
Table 1 provides a summary of the major characteristics of each surveyed system.  Table 2 provides a quantitative scale 
(0-2) for assessing security attributes.  0 denotes that the security measure does not affect the attribute, 1 denotes that 
the measure enhances security, 2 denotes that the measure significantly enhances security.  For performance, the scale is 
modified such that a 0 denotes a significant, a 1 a moderate, and a 2 a limited performance penalty (all systems suffer 
some performance degradation as a result of added security measures).    While these figures are based on empirical 
data derived from the authors’ research of each system, it is important to note that they are a subjective representation.   

  
Storage 
System  

Encrypt 
Locatio
n 

Trust 
Server  

Key 
Revocation 
Policy 

Confidentiality 
Measures 

Integrity 
Policy 

Availability 
Policy 

Estimated 
Per formance 
Overhead 

NASD Wire Yes 

Aggressive  
by using 
timestamps, key 
issued one time 

Capability keys, 
separate 
authentication 
server 

Hash MAC 
checksums  to 
send data, not 
secure on disk 

Scalable to 
many users, 
subject to DOS 

20% increase 
over system with 
no security 

S4 Wire No  N/A N/A  

Detection 
scheme: 
Comprehensi
ve versioning 

Intrusion 
detection and 
diagnosis to 
provide 
“recent” 
version 

Comparable to 
NFS 

SFS-RO Disk No Revocation list Self-certifying 
pathnames 

Self-
certifying 
pathnames, 
timestamps 

Multiple 
distributed 
copies of RO 
files 

2 times slower 
than NFS for 
small files, 
comparable for 
files > 40 MB 

PLUTUS Disk  No 

Lazy revocation, 
revoked user 
retains same file 
permissions as 
at time of 
revocation 

Lockbox with user 
control over key 
dissemination.  
Users must secure 
distribution 
themselves 

Stored 
encrypted, but 
requires 
augmentation 
to ensure 
integrity 

Uses 
filegroups, but 
requires file 
owner to 
distribute keys 

1.4 times 
decrease from 
SFS for single 
file access 

SiRiUS Disk  No Aggressive 
Revocation 

Combination of 
Master Encryption 
Key and File 
Encryption Keys 

Freshness 
guarantee  
timestamp 

Scalable to 
Internet, but 
requires file 
owner to 
distribute FEK  

20 times slower 
than NFS for 
small files, 2-6 
times slower for 
1MB files 

Table 1 System Description 
 

Security Measure Confidentiality Integrity Availability Per formance Total 
Encrypt-on-disk 2 2 0 0 4 
Encrypt-on-wire 1 1 0 0 2 
Threshold scheme 1 1 2 2 6 
Timestamps 0 2 0 2 4 
Digital signatures 0 2 0 0 2 
Checksums 0 1 0 1 2 
Lazy revocation 1 0 2 2 5 
Aggressive revocation 2 1 1 0 4 
Key distribution server 1 0 1 1 3 
Manual key distribution 2 0 0 0 2 
Lockbox key mechanism 2 0 1 1, 2* 4,5* 
Self-Certifying pathnames 1 0 2 1 4 
Filegroups 0 0 1 1 2 
Comprehensive versioning 0 2 2 2 6 

Table 2 Quantitative Comparison of Security Measures 

*PLUTUS’ key rotation scheme enhances performance. 
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Table 3 Security Measure Applications to Surveyed Systems            Figure 3 Quantitative Comparison 

 
Table 3 maps the security measures to the systems that employ them.  The quantitative values in Figure 3 are derived by 
summing the total scores of each security measure that applies to each system.  While the numbers provide some 
measure for comparison, one must consider the purpose of each system in conjunction with the evaluation.  For 
instance, S4 is a survivable storage system which should be used as part of a larger, secure storage system.  Most 
authors mention that using their design in conjunction with a survivable storage system would provide the best security.  
Additionally, SFS-RO receives a high quantitative score, but it is limited to read-only applications.  SiRiUs receives a 
moderate score, but potential users must account for its performance penalties. 
 

5. APPLICATIONS TO MULTIMEDIA 
 
Multimedia applications generally present a restrictive set of criteria for storage because performance is critical; real-
time deadlines must be met for data retrieval or the application may degrade to an unacceptable level.  The design of 
certain systems may eliminate them from consideration immediately.  Specifically, the following secure systems were 
omitted from the survey because they do not lend themselves to multimedia applications.  Pasis [4, 25] distributes file 
data among multiple servers such that compromising a portion of the data will not reveal anything significant about the 
original file.  The system is heavily reliant on network traffic and would likely not be conducive for use with any real-
time application.  Secure Network Attached Disks (SNAD) [12, 13] uses a lock-box key management mechanism 
similar to PLUTUS and was omitted in favor of PLUTUS due to PLUTUS’ key rotation scheme.  The Cryptographic 
File System (CFS) [14] is one of the original encrypt-on-disk schemes that others have used as a building block, but it is 
almost obsolete.   
 
Of the systems included in the survey, some lend themselves better to specific types of multimedia applications.  Some 
applications require the ability to make changes to data, while others simply need a secure location to store a read-only 
file. Table 4 lists several multimedia applications and matches a suitable secure storage solution to the specific 
requirements of each.  For an application that does not require any modifications, SFS-RO provides a high degree of 
security along with scalability and accessibility, if, however, data must be changed SFS-RO is not an option.  For 
applications that may need to be modified, PLUTUS provides a high degree of security, but can potentially suffer from 
server bottleneck and is therefore not appropriate for deadline dependent applications.  NASD, by contrast, provides a 
secure solution that eliminates the server bottleneck.  SiRiUs can be layered on top of any existing networked storage 
solution and can be applied to any application.  It is a suitable system to provide immediate security to applications prior 
to implementing a long-term solution.  S4 can be used in conjunction with any of the other systems, but requires 
additional hardware. 

Secur ity Measure NASD S4 SFS-
RO 

PLUTUS/ 
SNAD 

SiRiUs 

Encrypt-on-disk   X X X 
Encrypt-on-wire X X    
Threshold scheme      
Timestamps X  X  X 
Digital signatures   X   
Checksums X   X*  
Lazy revocation   X X  
Active revocation X    X 
Key distribution server X     
Manual key distribution      
Lockbox key mechanism    X  
Self-certifying pathnames   X   
Filegroups    X  
Comprehensive 
versioning 

 X    



 

 
Application Modifiable Deadline Dependent Recommended System 
Streaming video/audio No Yes SFS-RO 
Downloaded video/audio No No SFS-RO 
Images No No SFS-RO 
Graphics Yes No PLUTUS 
Interactive features Yes Yes NASD 

Slide shows/presentations Yes No PLUTUS 
Table 4 Application to System Mapping 

 
6. CONCLUSIONS 

 
All of the systems share a common goal: to protect stored data from the effects of a malicious adversary.  From this 
common ground, however, the design approaches to reach this goal vary tremendously.  Some systems aim to prevent 
an adversary from ever having access to data, while others assume that intrusions are inevitable and try to limit the 
amount of damage an intruder can cause.  Some systems separate data onto multiple storage servers to eliminate a single 
point of attack, and others rely on centralized trusted servers to effectively manage cryptographic keys.  Some systems 
store encrypted data and others require encryption prior to transmitting messages on the wire.  All of these examples 
present large fundamental differences that provide options to potential users of a storage security medium.  It is very 
difficult to make direct comparisons between the systems because of the varied approaches, but potential users can 
select the most applicable solution to their specific problems. 
 
The most secure solution will likely be a combination of the systems described.  In fact, the majority of the designers of 
the systems recommend that their solution be part of a larger security plan.  For example, if a user can accept additional 
cryptographic latency there is no reason to avoid encrypting data before applying a threshold scheme.  The result would 
provide the security of encryption without relying on a trusted server and would increase the degree of availability.  The 
problem with such layering, however, is the performance penalty.  It is therefore a design requirement to analyze the 
tradeoffs between security and performance. 
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