
Trade-offs in Protecting Storage: A Meta-Data Comparison of Cryptographic,
Backup/Versioning, Immutable/Tamper-Proof, and Redundant Storage Solutions

Joseph Tucek, Paul Stanton, Elizabeth Haubert, Ragib Hasan, Larry Brumbaugh, William Yurcik
National Center for Supercomputing Applications (NCSA)

University of Illinois at Urbana-Champaign
{tucek,pstanton,epartrid,rhasan,ljbrumb,byurcik}@ncsa.uiuc.edu

Abstract

Modern storage systems are responsible for increasing
amounts of data and the value of the data itself is grow-
ing in importance. Several primary storage system solu-
tions have emerged for the protection of data: (1) Secure
Storage through Cryptography, (2) Backup and Versioning
Systems, (3) Immutable and Tamper-Proof Storage, and (4)
Redundant Storage. Using results from published studies,
we compare these four solutions against different require-
ments highlighting trade-offs in performance, space, attack
resistance, and cost. We also present a case study of apply-
ing these solutions based on design work at NCSA. Lastly,
we conclude that while different storage protection solu-
tions may be appropriate for different requirements, some
general conclusions can be made about current state-of-
the-art storage protection solutions as well as directions
for future research.

1. Introduction

The potential for loss, corruption, and leakage of data
in a storage system is of great concern. Data is the criti-
cal element of an organizational processes. Without data
to work with, the computational resources powering mod-
ern activity are useless [31]. Worse yet would be computa-
tions performed with corrupted data. Also unacceptable is
the disclosure of sensitive information to accidents or ma-
licious attacks with new legal liabilities and the ultimate
damage to organizational reputation.

The earliest work in securing data focused on the physi-
cal security of the data. Guards, locked doors, and cameras
did much to deter attackers in the early days of computing.
Later, remote access and inter-networking required security
to be moved to the system level. Operating systems, pass-
words, firewalls, and intrusion detection systems attempt to
effect security in the networks and computers themselves.

However, while both good physical security and good sys-
tem security are necessary to protect data, alone they are in-
adequate. An insider attack with access privileges will find
few obstacles to data destruction while a determined mali-
cious outsider will be obstructed by little more. Given this
evolution, the focus of protection must shift toward data-
centric solutions, with the storage system itself at the cen-
ter.

The primary goal of storage security is to insure the CIA
properties: confidentiality, integrity, and availability. To
do so, a variety of techniques are available. Cryptographic
techniques can do much towards ensuring confidentiality
and integrity. Backup and versioning enhance the availabil-
ity and integrity of data. Tamper-proofing and immutability
effect strong guarantees on integrity. Redundancy provides
better availability. Varying in strengths and weaknesses,
these techniques, applied correctly, can provide a secure,
well performing storage system. Applied incorrectly, they
can easily lead to a costly, slow system with a false sense
of security.

In this paper, we highlight the trade-offs for protecting
storage systems using different solutions in order to deter-
mine which solutions are appropriate under different cir-
cumstances. The remainder of this paper is organized as
follows: Section 2 provides brief overviews of the different
storage protection solutions. Section 3 compares the differ-
ent solutions against each other using data available in the
literature. Section 4 is case study based on storage protec-
tion design work at NCSA. We end in Section 5 with gen-
eral conclusions as well as directions for future research.

2. Summary of storage protection solutions

2.1. Cryptography

Storage solutions that employ cryptography are primar-
ily designed to insure data confidentiality through the use
of strong encryption. Thus, given proper control of the

101

decryption keys, only authorized users can gain access to
specific data, and a breach of the storage system reveals
nothing to an attacker. Such security is clearly beneficial
and often times necessary, but it comes with a two-fold
cost manifested in performance penalties associated with
data access and the additional overhead of key manage-
ment. Cryptographic storage systems differ in the way that
they handle these added costs. Since cryptographic oper-
ations are computationally expensive and time intensive,
some systems offload the cost to client machines rather than
concentrating the load on the storage system itself. Addi-
tionally, some designs rely on a centralized, trusted server
to manage cryptographic keys while others require users to
distribute and revoke their own keys.

It should be noted that cryptographic storage systems
are not, by themselves, designed for availability. Without
incorporating them into a larger storage solution, they are
often susceptible to denial of service and deletion attacks.
Any destruction of data or a successful compromise of the
storage server can prevent an authorized user from access-
ing data,k but the attacker will not be able to recover the
data itself as it is encrypted on disk. PASIS [34], described
in more detail later, provides a method to ensure availabil-
ity, making it an exception to this rule.

Performance within a cryptographic storage system is
largely dependent on the type of cryptography employed.
Cryptographic operations can easily dominate access la-
tency, and as a result the choice of cryptographic scheme
is one of the most major determining factors in perfor-
mance. Older ciphers, especially DES and 3-DES, can be
prohibitively expensive. Newer ciphers, such as AES, are
easier to implement efficiently, and can allow much bet-
ter performance, especially if dedicated hardware is used
to offload the cryptographic operations. In the absence of
cryptographic operations, most systems perform compara-
bly to the underlying file system which they employ. To
demonstrate the significance of cryptographic operations,
Table 1 offers a performance comparison of select systems.

The Transparent Cryptographic File System [3] and
NCryptFS [33] are two examples of file system level sys-
tems that perform all cryptographic operations within the
operating system prior to writing data to disk. Both are de-
signed to be layered on top of another file system, such
as NFS. As an application requests data it is first trans-
ferred from the storage server to the client machines. The
client machine is then responsible for decryption before
the data is transferred to the application. Similarly, data
to be written is first encrypted by the client machine and
then transferred to the storage server. The result is that the
server never handles unencrypted data. The only time that
data is in plaintext form is while it is in use by the appli-
cation. However, these systems have cryptographic keys
that are localized to individual machines, so any data shar-

ing requires the file owner to manually distribute the ap-
propriate keys. This can become unwieldy to manage in
larger storage environments. Additionally, key revocation
in TCFS requires that files be re-encrypted and new keys
distributed, while NCryptFS relies on a cumbersome time-
out threshold, forcing users to periodically re-authenticate
themselves during operations.

Similar to the file system solutions, PLUTUS [15] and
SiRiUS [11] implement a cryptographic storage system
over a standard remote file system. The work of encryp-
tion, decryption, and signing is done on the hosts, allowing
a scalability that is not possible with a centralized server.
A system daemon intercepts all file system access calls and
routes them through the appropriate encryption/decryption
operations. These systems differ from those like TCFS in
that they are not directly embedded within the operating
system, offering a wider range of key management. File
owners are still required to manually distribute keys to ad-
ditional users, however, the keys that actually encrypt the
data are embedded within a key management system lo-
cated on the storage server. Figure 1 shows the arrangement
of keys in PLUTUS. Separate key-system keys and file-
signing keys are used to control access to the lower level
data keys. This allows revoking a user to occur by only
changing keys at the management level, preventing large
amounts of re-encryption. Additionally, PLUTUS employs
a key rotation scheme that automates the key management
process and limits the amount of individual user manage-
ment.

Figure 1. PLUTUS key system

As an alternative solution, PASIS [34] uses a threshold
secret sharing mechanism to separate data among several
servers based on the assumption of independent failures. If
fewer servers than configurable thresholds fail, no data loss
or leakage can result. Clients are able to corrupt data which
they are authorized to write to, however, PASIS records
which client initiates a particular operation, allowing the
source of any corruption to be traced. Some large disadvan-
tages to PASIS, however, include low read and write perfor-

102

Table 1. Comparison of performance of different systems with different cryptographic methods. Note
that the performance results were derived from unrelated studies of individual systems [3, 15] and
cannot be used for a direct comparison.

Storage System Sequential Read Sequential Write
OpenAFS 1.28 s 1.57 s

PLUTUS w/o crypto 1.39 s 1.59 s
PLUTUS DES 4.58 s 4.27 s

PLUTUS 3-DES 7.84 s 7.92 s
NFS 2.26 s 1.39 s

TCFS w/o crypto 2.46 s 2.78 s
TCFS w/trivial crypto 4.04 s 9.05 s

TCFS 3-DES 4.27 s 15.92 s

mance due to excess network traffic, and the susceptibility
to coordinated attacks and dependent server failures.

2.2. Tamper-proofing and immutability

Tamper-proofing and immutability are two techniques
to improve the integrity of data. Tamper-proofing provides
only integrity guarantees [14]. The purpose of tamper-
proofing is to detect if modifications have occurred. Gen-
erally cryptographic hashing or signing is used to effect
tamper-proofing. Immutability, on the other hand, provides
both integrity guarantees and improvements in availability,
by ensuring that once written, data cannot be overwritten.
Enforcement of this property can be done in software, by
the hardware, or be due to the physical nature of the media
itself.

2.2.1. Tamper-proofing. It would seem that im-
mutability subsumes tamper-proofing. Consider, however,
a tamper-proof digital security camera. The camera adds
a cryptographic signature to its images. If the images
are later used in court, there can be no doubting their
authenticity; the camera hardware signs only what it
captures, and modifications become readily apparent.
Suppose instead that the images were recorded to a CD-R.
To modify the images one needs merely to save their
work to another CD-R, and destroy the original. Without
tamper-proofing, this would go undetected. At the same
time, a tamper-proof security log does little good if deleted.
Immutability and tamper-proofing fill different roles.

Figure 2 illustrates the relationship between tamper-
resistant, immutable, and cryptographic systems. Tamper-
resistant systems use cryptography to provide integrity
[14], while some cryptographic systems provide only con-
fidentiality [33]. Some tamper-resistant techniques pro-
vide software immutability, but others such as TCFS do
not. Hardware and media-enforced immutability often do
not provide the metadata protection necessary for tamper-
proofing.

Figure 2. Relationship between tamper-
resistant and immutable techniques

Cryptographic systems may provide tamper-proofing
in addition to confidentiality [34, 3, 15, 11]. Content-
addressable storage systems [9, 10] inherently include
tamper-proofing. Two general techniques exist: crypto-
graphic hashes and cryptographic signatures. In a hashing
system, a summary of the data is made with a hash func-
tion. If a copy of this hash is retained, one can verify that
the data remains unchanged. Cryptographic signatures gen-
erate additional information certifying that the signer “ap-
proves” of the data. This signature serves the same purpose
as a hash. The signature can be checked by anyone, but
cannot be forged. Therefore modified data can be detected.

Another axis along which to classify tamper-resistant
systems is the data protected by the systems: metadata,
such as a full file pathname, or the end-data itself. Protect-
ing the metadata yields a somewhat different form of secu-
rity: assurance that the path meets certain characteristics,
and therefore that the data being retrieved is correct. This is
particularly useful for systems using both tamper-resistant
and immutable techniques. The verification overhead is re-
duced, as less data must be checked; particularly for large
files. Furthermore, such systems can offer strong guaran-

103

tees that if the path, address pair is correct, then the data
has not changed since retrieval. In contrast, in highly repli-
cated or decentralized systems, including sufficient infor-
mation to validate the complete path may become consid-
erably more expensive than protecting data alone. Thus in
general, centralized systems and content-distribution net-
works incorporate metadata protection, as in SFS, while
decentralized systems such as PASIS rely on fragmentation
and replication. Oceanstore is an exception.

2.2.2. Immutability. Immutability refers to the prop-
erty, which, once applied or given to an object, prohibits
any subsequent changes to that object. In file systems, im-
mutability refers to preventing any changes or modifica-
tions to the contents of the file. [13]

Several different strategies have been used to create im-
mutable storage. [30] classify immutable storage into three
major categories:

• Physical WORM technology or P-WORM

• Embedded WORM technology or E-WORM

• Software WORM technology or S-WORM

P-WORM or the physical storage technologies include
media that is by nature immutable and unchangeable. Both
optical and magneto-optical media are used to implement
P-WORM. Among these, optical disks are more popular.
Examples include CD-R and DVD-R. Also, optical juke-
boxes are used which combine several optical drives with
multiple WORM disks. Capacities of optical WORM de-
vices range from several hundreds of Megabytes to sev-
eral Gigabytes in recent Ultra Density Optical (UDO) disks
[21]. Magneto optical disk storage operates on the princi-
pal of changes to the magnetic properties of certain media
at particular temperatures. It has the advantage over Optical
WORM because it tolerates mechanical damages to the me-
dia far better than optical disks. Reading occurs at speeds
of magnetic disks. Currently available Magneto-optical
disks have capacities up to 9 GB. The greatest advantage of
P-WORM technology is its widespread adoption by differ-
ent vendors. Similarly, magneto- optical disks are available
from different vendors. The mass marketing, research and
development into P- WORM have also lowered its price,
compared to other WORM technologies. The major prob-
lem with Optical P-WORM devices is that write operations
are extremely slow when compared to their magnetic coun-
terparts. Also, the capacity of each physical media is rel-
atively small. Finally, management of a large number of
media disks proves to be a big problem.

In embedded WORM or E-WORM, device driver and
firmware work together to implement an immutable stor-
age system. Many large storage vendors have come up
with proprietary storage solutions incorporating E-WORM.

Both magnetic tapes and disks are used in these solutions.
Magnetic tape WORM uses a combination of tape storage
and firmware based protection. Commonly used tape is not
usually write- protected, so this requires specialized tape
drives with embedded write protection mechanism. Mag-
netic disk WORM uses the disk firmware to add protection
mechanism to magnetic disks. Tape libraries are some-
what similar in nature to the optical juke boxes combin-
ing multiple WORM tapes. The EMC product Centera
[9] and the Network Appliance product NetStore/Snaplock
[19] are two examples of embedded WORM technology
based on hybrid firmware/software approach. E-WORM
devices have larger storage space available per tape or mag-
netic disk. Also, faster write operations are performed than
with optical media. The cost is comparatively small. How-
ever, magnetic media is prone to problems related to phys-
ical damage. WORM tapes are not recognized or usable
with non-WORM devices. Also, magnetic tape WORMs
allow only sequential read/writes but not any random ac-
cess to the contents. Finally, intruders with physical access
to magnetic WORM tape can damage the tape and destroy
the contents

user

unchangeable
digital object

changeable
digital object

allow read
disallow write

allow read
allow write

OS
immutable

flag?
yes no

Figure 3. S-WORM architecture

The final category in immutable storage is software
WORM or S-WORM (see Figure 3). Here, the oper-
ating system provides protection using mechanisms like
capability-based schemes or modified file systems. For ex-
ample, Unix provides a mechanism for indicating system
files and directories immutable. System utilities like chattr
and lsattr can be used to set the immutability flag and ren-

104

der a file impossible to modify even with root access. How-
ever, any malicious user gaining root level access can cir-
cumvent this protection. Linux Intrusion Detection System
(LIDS) [16] provides immutability by enabling many of the
all-powerful root privileges to be revoked. Therefore, an in-
truder who has gained root privileges cannot perform many
activities used for exploiting the machine. LIDS also can
prevent root kits that use Linux Kernel Modules (LKM), by
allowing only loading of LKMs until the kernel is sealed by
LIDS. In addition to these, LIDS can enforce access control
list or ACLs on file system objects. A problem with using
LIDS is that, all the above features are implemented using
the Linux VFS. An intruder can still modify or delete a file
by using the raw disk interface, circumventing the ACLs
enforced by LIDS. To solve this, LIDS can be used to dis-
able the capability CAP SYS RAWIO, preventing any raw
access to storage devices. A major advantage of software-
based WORM technology is that it is simple to implement
and integrate with existing operating systems. On the other
hand, all these solutions depend on the file system code to
incorporate security. Anyone with root privileges could by-
pass the file system and access the physical media. Also,
intruders who gains root access to a system have almost
complete control over memory and can bypass any soft-
ware based immutability mechanism.

Table 2 shows a comparison of the different WORM
techniques available. The main issues and challenges in
achieving immutable storage are capacity, data throughput,
management overhead, cost and security. Magnetic tape
is the cheapest, and has high capacities. However, it has
slower data throughput, and management overhead. Opti-
cal jukeboxes have medium capacities, but are very costly.
Magnetic disk based WORMs are fast, and have high ca-
pacities. But security is a problem with such devices. OS
based techniques provide the best performance and capac-
ities, but are prone to security problems. In view of this,
a hybrid approach based on S-WORM and firmware based
techniques seem to be the best solution for immutable stor-
age.

2.3. Backup and versioning (time dimension)

Backup and versioning technology improve the avail-
ability and integrity of data in the time dimension. Backup
provides a snapshot of a past system state. Modern backup
solutions operate with constrained space and low system
overhead, but require management configuration and leave
large time spans of unprotected data. Versioning provides
a more continuous data view but involves higher overheads
and greater space requirements.

Modern backup systems are quite mature [5]. Since the
work of the Amanda project [25], effort has focused on im-
proving backup management. A modern backup system,

such as Legato Networker or Tivoli, usually has a number
of backup clients. These clients are individual servers or
workstations. Software on the clients sends data to a cen-
tral backup server. This server has a quantity of disk to
accumulate backup data. Once sufficient data has been ac-
cumulated, it is written off to tape. Meta-data about the
backups is kept on-disk for efficiency. A newer refinement
of this process is to replace the tape with disk arrays. This
disk-to-disk backup, made possible by the falling cost of
disk drives, improves performance, especially for restores.
However, tape is still the cheapest media for bulk backup,
especially given it’s low power costs. Massive Arrays of
Idle Disks [6], or MAID, examines the potential of idling
many of these disks to save power. Power usage can be
reduced by 90% with only marginal reductions in perfor-
mance compared to an active array. Recent work has fo-
cused on managing mobile hosts and prioritizing backup
based on organization or economic value [20]. The preva-
lence of laptops in modern enterprise environments reduces
the effectiveness (see Figure 4) of backup management
software, and necessitates different strategies.

Figure 4. Effectiveness of backup as a func-
tion of mobility.

Notable versioning file systems include S4 [28], the Re-
pairable File Service (RFS) [35], and the Elephant file sys-
tem [23]. S4 and RFS are both comprehensive version-
ing systems—all writes are logged up to a specified age.
S4 [28] operates under the assumption that the host system
is untrustworthy. Every write up to the age of the detec-
tion window is maintained. An administrative interface can
be tunneled through the host system, using strong cryptog-
raphy to defeat a potentially compromised host. Studies
of daily write traffic show that total versioning is reason-
able given usual disk capacities. RFS [35] extends the S4
concept to include logging to isolate damage caused by a
malicious modification. Given the identification of a ma-
licious process, RFS uses a dependency tree of operations

105

Table 2. Comparison of immutable techniques

CD/DVD-R Optical Jukebox Tape Disk Unix FS Tools OS Techniques
Cost/MB High Very High Very Low Medium Medium Medium
Capacity Low Medium Very High High High High
Speed Low Low Very Low High High High
Security High High Medium/Low Medium Very Low Low
Management Overhead High Medium High/Medium Low Low Low

to automatically identify a recovery state. The Elephant
file system [23] keeps “landmark” versions, representative
of the file system state at increasing intervals in time. In-
dividual files may be assigned different versioning levels:
no versioning, complete versioning, windowed versioning,
or landmark versioning. While this is good for accidental
modifications or deletions, landmark versioning is insuffi-
cient to protect against a malicious attacker.

2.4. Redundancy (space dimension)

Redundancy improves availability and integrity in the
space dimension - data is replicated in different space so
it can be recovered instantly. The best example of storage
system redundancy is RAID [4]. Either through mirror-
ing (RAID 1), parity (RAID 5), or error-correcting codes
(RAID 3), RAID can recover from hardware failures.

Erasure codes [12] are another important storage system
protection technique based on redundancy. Erasure codes
allow a more flexible allotment between failure resistance
and space usage than ordinary parity or mirroring. On the
other hand, erasure codes are computationally expensive,
imposing large penalties on write performance.

Double failures are not uncommon due to common envi-
ronmental conditions or malicious attack. To survive dou-
ble failures, a redundancy technique such as Row-Diagonal
Parity [7] may be used. Data loss from double failures gen-
erally comes from the failure of individual blocks on other
disks during the rebuild of a failed disk. These failed blocks
which could ordinarily be scrubbed are exposed under the
stressful conditions of an array rebuild. Row-diagonal par-
ity keeps two units of parity information rather than one.
This additional parity information is aligned such that any
two disk failure can be recovered. Write performance is
somewhat worse than RAID-5, but read performance is
equivalent.

Some data is of course more important than other data.
D-GRAID [26] recognizes this. D-GRAID uses the extra
free space generally available in a disk array to store ad-
ditional copies of more critical data, such as file-system
metadata. Under failure, D-GRAID allows the majority of
processes to complete even though data they require may be
missing. Additionally, the extra copies of commonly read

data can improve performance. This automatic balancing
between replication levels is the key idea of the HP Au-
toRAID [29] system. AutoRAID puts newly written data
in a RAID-1 style redundancy pattern. As space is filled,
older, unaccessed data is moved to a more efficient RAID-
5 style redundancy. This allows better storage efficiency
without sacrificing performance. Additionally, the system
is self-tuning, not requiring administrative overhead.

3. Meta-data comparison

Existing literature provides plenty of statistics as to the
properties of these various techniques. However, it is scat-
tered throughout the papers describing each technology.
Additionally, there is little direct comparison across gen-
eral techniques. Therefore we find it necessary to provide
a meta-data comparison of all of the techniques.

3.1. Performance

Of primary concern is performance. Regardless of se-
curity, a system that does not meet necessary performance
levels is of little use. Generally, performance is measured
in terms of CPU overhead, latency, and network bandwidth.

For cryptography, the primary cost is CPU overhead.
However, depending on how the cryptography is imple-
mented, the magnitude of the costs can vary greatly. One
important factor is the choice of cipher. 3DES can result
in throughput as low as 10MB/sec, while Blowfish can ap-
proach 53 MB/sec [32]. Performance comparisons of dif-
ferent ciphers can be found in [8, 27, 18]. The new AES
cipher, Rijndael, can be very high performing if properly
implemented. On the other hand, public key cryptographic
operations, critical in many digital signature algorithms,
are among the slowest. Even so, modern processors can
perform such operations in millisecond times. Addition-
ally, most private key ciphers are well suited to implemen-
tation in hardware, with inexpensive FPGAs and ASICs
supporting multi-megabyte per second performance [17]

Tamper-proofing imposes similar overheads as cryptog-
raphy, but lesser in magnitude, as hashing and signature al-
gorithms tend to be rather efficient. Since individual clients
will tend to want to verify data on their own, the load can be

106

Table 3. Comparison matrix
Confidentiality Integrity Availability Cost

Encryption High Medium None CPU
Secret Sharing High High High CPU, Latency
Tamper-Proofing None High None CPU
Immutability None High High Latency, Space
Backup None Medium Medium Bandwidth, Space
Versioning None Medium High Space
RAID None Low Medium Space

easily spread out among many machines, without leaving a
single bottleneck.

Immutability, backup, and redundancy impose relatively
small performance overheads. Optical and tape media can
limit the storage bandwidth in immutable storage systems–
this can be overcome by using disk-based systems. Backup
is not particularly performance sensitive, although bottle-
necks may exist in tape and network bandwidth. Redun-
dancy generally provides performance improvements, if
the additional data can be used to provide benefits to read
performance. Penalties are generally paid in write perfor-
mance, but these penalties again are well understood [4].

3.2. Space

Cryptographic and tamper-proof systems incur simi-
lar sorts of overhead in the form of additional metadata.
In cryptographic systems, this is key management data.
Tamper-proofing requires the storage of digital signatures
and hashes, which imposes an additional storage cost per
file. If integrity is manages on a per-file basis, this overhead
is negligible except when dealing with many small files. If
integrity information is done at a finer-grained level, then
the space overhead may become burdensome–however, this
is generally a configurable trade-off.

Immutability and comprehensive versioning impose
similar space overheads, in that space requirements con-
tinually grow. Depending on the application, the rate of
growth can vary a lot, although for many systems it is rea-
sonable [28]. Workstation disks typically experience no
more than 200MB a day of write traffic, and so can eas-
ily be comprehensively versioned, perhaps to an immutable
system.

Redundancy achieves its gains primarily through addi-
tional space requirements. However, these additional space
requirements are generally very configurable. Standard
RAID-5 systems require (n + 1) disks for n disks worth
of usable space. Row-diagonal parity and other “RAID-
6” schemes use (n + 2) disks. Erasure codes allow an ar-
bitrarily flexible choice of space overhead, although with
added complexity. Finally, both D-GRAD [26] and HP Au-
toRAID [29] impose variable amounts of overhead, adjust-

ing to disk usage patterns to provide better protection when
the space is available. When disk space is not available,
they approach RAID-5 efficiency.

Finally, backup also imposes space overheads, in the
form of multiple versions of the data. Complicated ro-
tation schemes, like the Towers Of Hanoi, can minimize
this overhead at the expense of higher management com-
plexity. Additionally, refinements to backup such as dif-
ferential and incremental backups can further reduce the
overhead required. Proper use of backup management soft-
ware [25, 20] can reduce the management overhead of more
complicated backup techniques.

3.3. Resilience to attack

It is difficult to measure the strength of security tech-
niques. Although frameworks attempting to do so exist
[22], they are mostly qualitative, and attempting to assign
quantitative meaning to them seems arbitrary. Therefore,
we attempt a qualitative comparison of the security proper-
ties of the different technologies. Table 3 provides a sum-
mary of our comparison. We base our model comparisons
on [22].

Confidentiality is only increased by cryptographic tech-
niques, such as encryption and secret sharing. However,
these techniques alone cannot ensure data protection. Each
relies on the assumption that the keys necessary to decrypt
the data are kept confidential. However, management of
these keys can be centralized, and is an easier problem than
securing every system in an enterprise.

The integrity of a system is most protected by tamper-
proof and encryption techniques. RAID only provides pro-
tection against hardware failures, but is easily thwarted
by any purposeful attack. Backup and versioning provide
some protection, but if an attacker makes a change to data
under the guise of an authorized user, both backup and ver-
sioning will blindly backup and version the corrupted data.
They do however allow the recovery of uncorrupted data
given non-trivial task of detecting when the corruption oc-
curred, and having made additional copies in the relevant
time period. Encryption and tamper-proofing, while they
make corruption difficult and detectable, can do little to

107

prevent deletion. Tamper-proofing, while it does little to
prevent corruption, will alert users to the presence of cor-
ruption, in essence allowing only deletion attacks.

Secret sharing and especially immutability provide
strong guarantees for integrity. Secret sharing requires mul-
tiple failures of authorization to occur. Finally, immutabil-
ity prevents modifications from occurring at all, and there-
fore completely protects the integrity of data.

Availability, like integrity, can be influences by multi-
ple techniques. Encryption can actually reduce availabil-
ity, since loss of the encryption keys will cause the associ-
ated data to be lost. Backup and RAID improve availabil-
ity moderately. A proper backup system will allow data
to be recovered, however there will be a period of unavail-
ability while the restore is in progress, and if the required
backup does fall into the backup window, no recovery will
be possible at all. RAID protects against hardware failures
quite well, but software failures can result in the RAID sys-
tem storing incorrect data. The incorrect data will be pro-
tected against hardware failures, but it will still be incor-
rect. Secret sharing, immutability, and versioning all in-
crease availability. Again, secret sharing requires multiple
points of failure for data to become unavailable. This can
protect against both software and hardware attacks. Theo-
retically, an immutable system will never lose the data that
is placed into it. Finally, versioning can act as a very com-
plete backup system. Since versioning is generally on-line,
the recovery period will be very short. Since versioning
is often quite space efficient, a large window of changes
can be kept. An attacker may make many changes to a
system to perform a denial of service against the version-
ing system–S4 [28] addresses those attacks by rate limiting
changes if malicious behavior is detected. Together, these
qualities allow versioning to greatly increase availability.

It is important to realize that all of these techniques in-
troduce additional complexity into the storage system. This
complexity provides vulnerabilities–opportunities for ad-
ministrators to make configuration mistakes, and opportu-
nities for attackers to find additional flaws. Successfully
dealing with the extra complexity is necessary to garner
any additional protection benefits at all.

3.4. Cost

Given that these techniques are adding functionality to
the storage, there will be additional complexity in the resul-
tant system. This complexity imposes overhead, in terms of
additional equipment, human resources, floorspace, power,
etc. For example, to store 1 PB in a tape library for a year,
one may consume $9,400 worth of power. Under the same
conditions, a disk array may consume $91,500 worth of
power [6]. The specific additional resources imposed can
vary greatly from technique to technique and are also de-

pendent on the specific implementation details of a partic-
ular environment.

Although it may seem that the additional hardware and
software required to meet performance and space require-
ments dominates cost, the highest overhead is often in-
creased storage management costs. Organizations spend
significantly more money managing their storage infras-
tructures than they do acquiring and implementing tech-
nology. The root causes are the organizational complexi-
ties that evolved as storage demands increase and as tech-
nology grows more powerful. As a result, storage man-
agement responsibilities are typically dispersed throughout
the enterprise, creating cost inefficiencies. One solution
is consolidating storage management – storage-area net-
works, network-attached storage, direct-attached primary
storage, secondary storage and backup – under the um-
brella of a storage administrator or administration team.
Storage administrators must manage performance (max-
imize throughput and minimize response time), manage
storage infrastructure resilient to failure, and manage scal-
ability that grows without downtime or redesign.

Among the several strategies to improve storage se-
curity, the highest management costs are associated with
backup, especially as machines have become more mobile
and difficult to track [20]. Even in the case where the stor-
age is centrally located, a mistake in backup procedure im-
poses immediate costs in the form of lost data. Somewhat
lesser management costs exist in the initial deployment of
the other techniques, however, they can be amortized across
the entire lifetime of the deployment. Once set up, most of
these techniques will generally continue to function with-
out additional management costs until such time as a fail-
ure occurs–after which the costs imposed are well worth
the initial investment.

4. Case study: storage protection design for
NCSA

As compute power has increased at NCSA, so has the
corresponding mass storage system[1, 2]. While storage
protection against reliability failures using backup and re-
dundancy solutions has been the primary focus, a new
threat has emerged from Internet attacks against High Per-
formance Computing (HPC) Centers during Spring 2004.
NCSA reported intrusions on its supercomputing clusters
but these intrusions did not result in the loss of data.

In a worse case scenario, the scientific community using
high performance computing has petabyte datasets that are
at risk. These scientific datasets fall into one or more of
these categories: (1) one of a kind, developed over decades
of research; (2) not independent, the datasets fit together
uniquely such that the loss of one dataset has widespread
effects; and (3) benchmarks, if one dataset were to be cor-

108

rupted and used unknowingly by a scientific community it
would make all subsequent research results suspect.

4.1. Storage environment

NCSA supports large scale scientific computing. As a
result, the storage environment must deal with large data
sets and high performance requirements. It is infeasible
to deploy a storage system meeting both the performance
and the capacity requirements at once. Therefore, the stor-
age environment can be partitioned into two environments:
high-performance storage intended to support short and
medium term persistence requirements of scientific com-
puting jobs, and a mass storage system intended to supply
large quantities of long term storage. Figure 5 shows the
basic layout of a portion of NCSA’s storage environment.

140TB

GigE

Compute Nodes
1280 Nodes

Disk Cache
35 TB

1 PB
Tape Library

HSM

Storage Nodes
104 Nodes

Disk

Figure 5. Logical diagram of storage environ-
ment

Each supercomputer at NCSA has its own performance
storage system. Rather than describe the environment
of every supercomputer, we take Tungsten, currently the
largest cluster machine at NCSA, as an example system.
Tungsten is a IA32 Linux cluster, with 1280 dual proces-
sor compute nodes. Supporting the compute nodes are 104
storage servers running the Lustre [24] cluster file system.
In total, they provide 140TB of disk space, to be used as
scratch space. Individually, each storage server is capable
of providing 40 MB/sec of bandwidth to the disks, with a
total available bandwidth of 11.1 GB/sec.

Typical workloads for the system is massive reads and
writes. When a scientific computing job starts, every node
associated with the job will attempt to read in its initial

dataset simultaneously. After the job runs for a while, it
will need to write out a partial result. At that time, every
node associated with the job will simultaneously attempt
to write out its state. Typically, jobs cannot continue un-
til the IO operations are complete, so providing maximum
bandwidth is the ultimate concern.

Being a cluster system, Tungsten is built from commod-
ity components. Although the quality and reliability of
each individual component is satisfactory, the large num-
ber of components ensures that some failures will occur.
Some level of redundancy is built into the system, but as
the system is intended for scratch use, fail stop and failsafe
conditions aren’t disastrous, although the associated down-
time is still undesirable.

The mass storage system is a unified system which all of
the machines at NCSA share. It provides archival storage
for all of the NCSA’s high-performance computing users,
as well as providing storage for the datasets that are in ac-
tive use. Given the large data requirements, it is necessary
to use a hierarchical storage manager. The bulk of the stor-
age is provided by about 1 petabyte of tape (LTO2), with
35 TB of disk acting as a cache. Given that this is perma-
nent storage, each file is duplicated within the system, so
that the failure of any one tape will not cause loss of data.
Although tapes have been lost, the system has never lost
data.

Access to the mass storage system is through an FTP
interface. All transfers are whole file, and larger latencies
(averaging in the seconds, peaking in the minutes) are al-
lowed. High performance users are encouraged to prefetch
files to avoid these latencies. The system is not intended to
nor required to be high performance–it is not in general a
bottleneck to site performance.

Somewhat unusual for a storage system is the mix of
traffic. The read to write ratio is about .3; there are more
writes than reads. This inverse scenario implies that much
data is written to tape which is never read again. Addition-
ally, lack of quotas encourages users to keep everything.
As a result, storage use is growing at about 2 TB/week, and
is accelerating.

4.2. Confidentiality

Cryptography is the most direct means of improving the
confidentiality of a system. Given that the authentication
and metadata control are effective, encryption of the data
can provide protection against unauthorized reads. The
confidentiality of data at NCSA is not generally critical,
however for a corporate, military, or grid computing envi-
ronment, confidentiality guarantees may be necessary.

To provide on-disk encryption for the high performance
system would require providing extra processing power to
perform the cryptographic operations. A single P4 2.1 GHz

109

can do AES in software at a rate of 50 MB/s [8]. Ded-
icated hardware can easily hit 200 MB/s or greater, even
with inexpensive (50 dollar FPGA) parts. Given that the
write bandwidth of individual storage nodes on Tungsten
is 40 MB/s, it is feasible to encrypt all data on disk. Sup-
port for the additional metadata would have to be added to
Lustre, but this too seems reasonable. On-wire encryption
would impose an additional load on the compute nodes.
However, since typically the IO causes the compute nodes
to stall, it may be possible to support the additional com-
putational load without reducing the performance of user
jobs. Ideally, support for the cryptography would be im-
plemented at the network interface to minimize use of the
system bus. As Tungsten uses gigabit ethernet to access
its storage nodes, either purchasing network interfaces with
cryptographic acceleration or designing such cards as semi-
custom hardware would be feasible. This would not be fea-
sible if Tungsten used a proprietary interconnect, such as
Myrinet, to communicate with the disk. In such a case, on-
wire encryption would probably reduce performance some-
what. Either way, allowing an encrypted file system as an
option, so that users can choose to encrypt files if they re-
quire the protection, or not if they would prefer the perfor-
mance, seems the most reasonable choice.

Providing encryption for the mass storage system would
be relatively cheap and reasonable. Although additional
hardware would be required to provide for the crypto-
graphic operations, it is less than what is needed for the
high-performance systems. Additionally, the centralized
nature of the storage system would simplify the manage-
ment of cryptographic metadata.

4.3. Integrity

Integrity can be provided by tamper-proofing, im-
mutability, and redundancy. Tamper-proofing imposes sim-
ilar overheads as cryptography, and therefore has similar
feasibility and implementation possibilities. For both the
high performance and mass storage domains, it is feasi-
ble. For mass storage especially, tamper-proofing may be
very desirable. Purposeful corruption of data sets, if unde-
tected, will corrupt resulting computations, and can spread
throughout many users’ work. Most worrisome is that
backup protection is useless unless when the corruption oc-
curred can be determined, and even then it may be beyond
the backup window.

Immutability can prevent this. For obvious reasons, it
is infeasible to make the entire high performance storage
immutable, but critical system files and files identified by
users can be protected. The mass storage system, however,
is essentially paying the cost already. No quota is imposed
on users, so there is no incentive to users to delete anything,
and there is no evidence to support that they do. Disallow-

ing deletes would mostly be a formalism to the current be-
havior of the system. Additionally, the growth of new data
in the system is exponential–old data accounts for only a
small portion of storage used. Finally, given the low per-
formance requirements and large economies of scale avail-
able, the cost of storage is relatively low. Include capacity
in the tape library, the cost of the storage system is about
one dollar per gigabyte.

4.4. Availability

Primarily, we can increase the availability of the system
by improving the availability of the hardware. Some clus-
ter systems at NCSA are already implemented with high
availability hardware; while Tungsten is not heavily re-
dundant as these systems, the ability of Lustre to support
some failover can be leveraged to eliminate single points
of failure. Except for the immediate moment-to-moment
usability of the system, the high performance storage is too
ephemeral and too volatile to bother with other techniques.

The mass storage already has high availability–it has
never lost a file. The tape library supports sufficient re-
dundancy to eliminate it as a worrisome point of failure.
The disk cache in front of it is of more a concern, however,
as it uses RAID-3, it is unlikely to fail.

The largest availability concerns relate to loss and cor-
ruption; that is, permanent loss of availability. Better in-
tegrity guarantees will, as a side effect, eliminate any such
potential. Of secondary concern is occasional latency is-
sues. While the average latency is acceptable, on the order
of 30 seconds, peak latencies can exceed an hour. Although
it is uncertain to us at this time the specific causes of these
peak latencies, in the long term, a move away from tape
and towards spinning disk may be feasible [6].

4.5. Remarks

The storage environment at NCSA is divided into two
sub-environments, the high-performance systems and the
mass storage system. Both are large and heavily used, but
have unique characteristics. The high-performance sys-
tems are volatile, and cannot stand performance degrada-
tion. The mass storage system, on the other hand, is char-
acterized simply by being large–over a petabyte.

Given these differences, they must be treated differently.
The high-performance systems can be protected with cryp-
tography if additional hardware is used. However, letting
users disable the cryptography for their particular jobs is
desirable–most users at NCSA are not concerned with con-
fidentiality but solely with performance. Tamper-proofing
does not provide many benefits to HPC, although it is tech-
nically feasible. Immutability is not possible, nor is secret
sharing, as both techniques are ill-suited to write-intensive

110

applications. The same volatility which makes immutabil-
ity impossible also makes backup and versioning difficult.
Finally, the high-performance systems already incorporate
some element of redundancy, providing sufficient availabil-
ity for current purposes. Our recommendation is to leave
the high-performance systems as they are, as they meet
current needs. An exception would be any grid and util-
ity computing–the increased confidentiality requirements
of shared resources will require additional protection and
necessitate changes.

The mass storage system can also be protected with
cryptography–encrypt on-disk is possible without any spe-
cial hardware, while encrypt on-wire would require hard-
ware acceleration for the clients. Tamper-proofing would
be both feasible and desirable, however it is subsumed by
immutability. Currently the system is already paying the
costs of immutability by the nature of its use–formalizing
a policy of immutability would provide stronger guaran-
tees of integrity for free. Finally, the availability of the
mass storage system could be improved in terms of qual-
ity of performance–occasionally the latency of the system
is high. To improve the availability of data in the mass stor-
age system, we propose examining large disk arrays as an
alternative to much or all of the tape.

5. Conclusions

In this paper we have summarized the current state of
the art of the four primary storage protection solutions: (1)
cryptography, (2) immutable and tamper-proof storage, (3)
backup and versioning, and (4) redundancy. Depending on
the environment under consideration, each of these solu-
tions may be appropriate. For example, at NCSA, for HPC
storage cryptographic techniques are the most applicable,
although not required, and for mass storage immutability
provides the most benefits.

We feel that interesting areas of future work in storage
protection should focus on three areas:

1. Usability. These techniques add complexity to an al-
ready complex system, and management errors by ad-
ministrators can nullify the potential benefits. Addi-
tionally, if additional burden is pressed on to users,
they will attempt to circumvent the system.

2. Unification with clusters. Currently there are cluster
file systems, and there are cryptographic and version-
ing file systems. It is necessary to actually implement
some techniques from secure storage into a parallel
file system,such as Lustre.

3. Leveraging unique properties. These techniques were
designed with general purpose storage in mind. How-
ever, there are many properties of high performance

and massive storage systems which differ from gen-
eral systems. Taking advantage of the differences may
allow for solutions which work much better for spe-
cific tasks.

We hope we have started a discussion of the trade-offs in
making storage protection decisions, especially as it relates
to large and high-performance installations. There is much
work to be done.

References

[1] M. L. Butler. Storage issues at NCSA: How to get file sys-
tems going wide and fast within and out of large scale linux
cluster systems. In NASA/IEEE Goddard Conference on
Mass Storage Systems and Technologies, 2002.

[2] M. L. Butler. 1 petabyte production storage environments
and file systems (presentation). Supercomputing Confer-
ence (SC), 2004.

[3] G. Cattaneo, L. Catuogno, A. D. Sorbo, and P. Persiano.
The design and implementation of a transparent cryp-
tographic file system for unix. In Proceedings of the
FREENIX Track: 2001 USENIX Annual Technical Confer-
ence, pages 199–212. USENIX Association, 2001.

[4] P. M. Chen, E. K. Lee, G. A. Gibson, R. H. Katz, and
D. A. Patterson. RAID: High-performance, reliable sec-
ondary storage. ACM Computing Surveys, 26(2):145–185,
1994.

[5] A. Chervenak, V. Vellanki, and Z. Kurmas. Protecting file
systems: A survey of backup techniques, 1998.

[6] D. Colarelli and D. Grunwald. Massive arrays of idle disks
for storage archives. In Proceedings of the 2002 ACM/IEEE
conference on Supercomputing, pages 1–11. IEEE Com-
puter Society Press, 2002.

[7] P. Corbett, B. English, A. Goel, T. Grcanac, S. Kleiman,
J. Leong, and S. Sankar. Row-diagonal parity for double
disk failure correction. In Proceedings of the USENIX FAST
’04 Conference on File and Storage Technologies, pages 1–
14, San Francisco, CA, March 2004. Network Appliance,
Inc., USENIX Association.

[8] W. Dai. Speed comparison of popular crypto algo-
rithms. http://www.eskimo.com/ weidai/benchmarks.html,
Jan. 2004.

[9] EMC Corperation. EMC: Products: Platforms: Centera.
http://www.emc.com/products/systems/centera.jsp?open-
folder=platform, Oct. 2004.

[10] K. Fu, M. F. Kaashoek, and D. Mazières. Fast and se-
cure distributed read-only file system. In Proceedings of the
4th USENIX Symposium on Operating Systems Design and
Implementation (OSDI 2000), pages 181–196, San Diego,
California, October 2000.

[11] E.-J. Goh, H. Shacham, N. Modadugu, and D. Boneh. SiR-
iUS: Securing Remote Untrusted Storage. In Proceed-
ings of the Tenth Network and Distributed System Secu-
rity (NDSS) Symposium, pages 131–145. Internet Society
(ISOC), February 2003.

[12] G. Goodson, J. Wylie, G. Ganger, and M. Reiter. Efficient
byzantine-tolerant erasure-coded storage, 2003.

111

[13] R. Hasan, J. Tucek, P. Stanton, L. Brumbaugh, and W. Yur-
cik. The techniques and challenges of immutable stor-
age with applications in multimedia. In Proceedings of
IS&T/SPIE International Symposium, Jan. 2005.

[14] E. Haubert, J. Tucek, L. Brumbaugh, and W. Yurcik. A sur-
vey of tamper-resistant storage techniques for multimedia
systems. In Proceedings of IS&T/SPIE International Sym-
posium, Jan. 2005.

[15] M. Kallahalla, E. Riedel, R. Swaminathan, Q. Wang, and
K. Fu. Plutus – scalable secure file sharing on untrusted
storage. In In Proceedings of the Second USENIX Confer-
ence on File andStorage Technologies, Mar. 2003.

[16] LIDS Project. LIDS Project—secure linux system.
http://www.lids.org, Oct. 2004.

[17] T.-F. Lin, C.-P. Su, C.-T. Huang, and C.-W. Wu. A high
throughput low cost AES cipher chip. In Proceedings of
the 3rd IEEE Asia-Pacific Conference on ASICs (AP-ASIC),
Aug. 2002.

[18] A. J. Menezes, P. C. van Oorschot, and S. A. Vanstone.
Handbook of Applied Cryptography. CRC Press, 1996.

[19] Network Appliance, Inc.
http://www.netapp.com/products/filer/snaplock.html,
Jan. 2005.

[20] G. A. Pluta, L. Brumbaugh, W. Yurcik, and J. Tucek.
Who moved my data? A backup tracking system for dy-
namic workstation environments. In Proceedings of the
18th Large Installation Systems Administration Conference
(LISA XVIII), Nov. 2004.

[21] G. Quickel. Infinistore virtual disk–optical worm killer?
Global Distribution White Paper, June 2002.

[22] E. Riedel, M. Kallahalla, and R. Swaminathan. A frame-
work for evaluating storage system security. In Proceedings
of the Conference on File and Storage Technologies, pages
15–30. USENIX Association, 2002.

[23] D. S. Santry, M. J. Feeley, N. C. Hutchinson, A. C. Veitch,
R. W. Carton, and J. Ofir. Deciding when to forget in the
elephant file system. In Symposium on Operating Systems
Principles, pages 110–123, 1999.

[24] P. Schwan. Lustre: Building a file system for 1000-node
clusters. In Proceedings of the 2003 Linux Symposium, July
2003.

[25] J. D. Silva and O. Guǒmundsson. The Amanda network
backup manager. Proceedings of the Seventh Systems Ad-
ministration Conference (LISA VII) (USENIX Association:
Berkeley, CA), page 171, 1993.

[26] M. Sivathanu, V. Prabhakaran, A. C. Arpaci-Dusseau, and
R. H. Arpaci-Dusseau. Improving storage system availabil-
ity with D-GRAID. In Proceedings of the USENIX FAST
’04 Conference on File and Storage Technologies, pages
15–30, San Francisco, CA, March 2004. University of Wis-
consin, Madison, USENIX Association.

[27] A. Slagell. A simple, portable and expandable crypto-
graphic application program interface. Master’s thesis, Uni-
versity of Illinios at Urbana-Champaign, 2003.

[28] J. D. Strunk, G. R. Goodson, M. L. Scheinholtz, C. A. N.
Soules, and G. R. Ganger. Self-Securing storage: Protecting
data in compromised systems. In Symposium on Operating
Systems Design and Implementation, pages 165–180, Octo-
ber 2000.

[29] J. Wilkes, R. Golding, C. Staelin, and T. Sullivan. The HP
AutoRAID hierarchical storage system. In H. Jin, T. Cortes,
and R. Buyya, editors, High Performance Mass Storage and
Parallel I/O: Technologies and Applications, pages 90–106.
IEEE Computer Society Press and Wiley, New York, NY,
2001.

[30] R. Williams. P-WORM, E-WORM, S-WORM: Is a sausage
a wienie? Imaging World, July 1996.

[31] R. Williams. Tao of backup wailing wall homepage.
http://www.taubackup.com/wailing.cgi, Oct. 2004.

[32] C. P. Wright, J. Dave, and E. Zadok. Cryptographic File
Systems Performance: What You Don’t Know Can Hurt
You. In Proceedings of the 2003 IEEE Security In Stor-
age Workshop (SISW 2003), pages 47–61, Washington, DC,
Oct. 2003.

[33] C. P. Wright, M. Martino, and E. Zadok. NCryptfs: A se-
cure and convenient cryptographic file system. In Proceed-
ings of the Annual USENIX Technical Conference, pages
197–210, San Antonio, TX, June 2003.

[34] J. J. Wylie, M. W. Bigrigg, J. D. Strunk, G. R. Ganger,
H. Kilite, and P. K. Khosla. Survivable information stor-
age systems. Computer, 33(8):61–68, 2000.

[35] N. Zhu and T. Chiueh. Design, implementation, and evalu-
ation of repairable file service. In Proceedings of Depend-
able Systems and Networks (DSN03), 2003.

112

