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FABS:  File and Block Surveillance System for 
Determining Anomalous Disk Accesses 
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with how the system operates, and knowledge of where 
targeted data resides, can focus exclusively on accessing 
the most valuable information quickly.  Of equal danger, 
an attacker who can successfully penetrate the operating 
system can achieve access throughout the system and then 
remove evidence of the intrusion by scrubbing audit logs 
and removing exploit tools.  Worse yet, the attacker can 
dismantle host intrusion or tamper detection systems 
rendering them useless and administrators unaware of any 
security breach.  
 
Due to susceptibility to such threats, the computing 
environment requires a method to minimize the effects of 
an attack and to reduce the potential for future incidents.  
To meet these goals, we propose the File and Block 
Surveillance System (FABS) that monitors storage access 
traffic for abnormal behavior.  Using a three-tiered 
approach, (1) FABS learns file access behavior of users at 
the operating system level, (2) identifies block patterns at 
the drive controller level, and (3) represents data in a 
meaningful way to a human administrator on a separate 
console.  Each tier can operate independently to provide 
resiliency to attack. 
  
FABS classifies the normal behavior of system users and 
then compares it to trace records of current storage 
accesses.  Deviance from the recognizable patterns results 
in a warning.   Studies have shown that both users and 
processes have exhibited predictable behavior [5, 6] that 
makes such classification an achievable goal.  The 
patterns of access while under an attack will be noticeably 
different than those of the traditional user. 
 
All storage system access traces are forwarded to 
VisFlowConnect-Storage System (VisFlowConnect-SS), 
a visualization framework that provides the system 
administrator with a graphic representation of storage 
activity.  Anomalous disk accesses are highlighted to 
attract immediate attention, affording the administrator 
the opportunity to take appropriate action.  Additionally, 
VisFlowConnect-SS provides filtering options for 
displaying pertinent storage traffic during post-intrusion 
analysis and recovery. 
 
This paper describes a proof of concept.  Each major 
function of FABS has been implemented as a prototype 
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and tested.  Using pre-existing storage access traces, the 
system has demonstrated great potential for identifying 
anomalous storage accesses and for streamlining post-
attack forensic analysis. 
 
The rest of the paper is organized as follows.  Section II 
provides background material.  Section III describes the 
design of FABS.  Section IV presents the 
VisFlowConnect-SS visualization tool.  Section V 
discusses the evaluation methodology and initial results.  
Section VI describes related work.  We end with a 
summary and conclusions in  Section VII. 

II. BACKGROUND 

A. Threat Model 

We focus our attention on two critical vulnerabilities of 
existing storage security solutions: (1) attacks from the 
outside that exploit software vulnerabilities to 
compromise the host operating system and (2) attacks 
from the inside by those with trusted access.  Both present 
difficult problem areas for detection and analysis because 
the attacker has seemingly legitimate access to the data. 
 
One type of such attacks, masquerading, is the act of 
gaining unauthorized access by presenting legitimate, but 
stolen, credentials in order to assume a trusted identity.  
The attacks are difficult to defend against because they 
rely on individual human attention to security details.  
The best automated authorization protocol is useless if 
individuals allow their password information to be 
compromised or if they leave their host system unattended 
without logging out.  Once intruders have fooled the 
system into believing they are legitimate users, the 
adversaries can then manipulate data without suspicion.    
 
Another category, code injection attacks, includes cross-
site scripting, SQL injection, buffer overflows, and file 
includes.  These can exploit vulnerabilities by tricking a 
current application into running malicious code.  One 
example is attacking a web-based application by 
introducing a code statement via a text box, knowing that 
the value will be dynamically inserted into a running 
program.  The application prompts the user for what it 
expects to be a typical value, but the intruder instead 
issues a carefully crafted line of partial code that will alter 
the program execution.  The ultimate result of a code 
injection attack is that a typically benign program 
executes the intruder’s code [7].  The danger is that users 
will run infected applications unwittingly and oblivious to 
the effects.   
 
Regardless of how they penetrate the security perimeter, 
processes or users will access stored data in a manner 
inconsistent with normal activity during the attack.  FABS 

uses this modified behavior to identify attack scenarios.  
The trace extraction and subsequent pattern matching 
abilities reduce the likelihood of undetected execution.   
 
Storage jamming is a more subtle form of attack, in which 
adversaries modify stored data without detection for the 
purposes of degrading its quality [8].  The motivation is to 
decrease an organization’s performance, often having the 
indirect effect of enhancing the position of a competitor 
[9].  The sheer quantity of stored data presents ample 
opportunities for an attacker to introduce so called bogus 
values in a discrete manner that avoids detection.  One 
method is to modify data for a short period during which 
it can be used for some nefarious purpose, and then 
change it back to its original state.  Another technique is 
to change many small pieces of data over time.  Each 
change is insignificant in isolation, but the cumulative 
effects may introduce significant damage. 
 
FABS helps to minimize the effects of a storage jamming 
attack through diagnosis and recovery.  Having 
maintained traces of all disk activity, FABS can quickly 
identify all potentially damaged data by replaying a 
filtered trace.  Isolating the accesses of an identified 
attacker, an administrator can use the visualization tool to 
focus on which files or blocks have been modified by a 
user or process. 

B. Intrusion Detection 

Many of the techniques we use in FABS are similar to 
those applied during traditional intrusion detection.  
Extensive research in this area has resulted in two 
classifications: misuse detection (using patterns of known 
attacks to identify intrusions), or anomaly detection 
(establishing a knowledge base of normal behavior and 
identifying deviations as intrusions).  We focus on 
anomaly detection since it mirrors our methods. 
 
Anomaly detection relies on the ability to properly 
classify normal behavior.  This is a difficult task because 
it requires developing audit data over a period of use 
during which it is assumed that no attacks occur, and it 
requires a method to classify the audit data.  The first 
problem requires human intervention to prime the system.  
The initial audit data must be manually analyzed to 
prevent introducing an attack scenario into the knowledge 
base of normal behavior.  We use trace visualization to 
assist this process.   
 
The second problem can be addressed by using data 
mining tools to identify patterns for a particular type of 
event [10, 11].  Existing tools have been used to classify 
events as a series of system calls derived from a particular 
process, or network packets that arrive on a particular 
port.  We define events to be a series of disk access 
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requests at either the file or block level.  We use a novel 
data mining approach to classify accesses into patterns. 

C. Data Mining 

Our method for classifying normal behavior relies on data 
mining techniques to extract patterns from trace 
information.  There are many existing data mining tools, 
but we selected C-Miner [12] because of its unique ability 
to develop correlations involving multiple items and for 
its use of closed-sequence mining, which results in 
smaller time and space requirements than other data 
mining algorithms.   
 
C-Miner helps to identify correlations between 
semantically related blocks of data that may not be 
obvious or do not coincide with spatial locality.  It is 
designed to run using only the block-level information 
available at the narrow storage system interface where no 
information regarding data semantics is available.  For 
example, in a traditional Unix-based file system, the inode 
and its data blocks are closely correlated; an access to the 
inode is generally followed by an access to one or more of 
the data blocks.  However, the inode and the data blocks 
are rarely stored contiguously on disk.  Inspection of the 
block numbers will not reveal any correlation, but 
analyzing patterns that develop over long stretches of 
sequential accessed blocks shows a semantic connection.   
 
Among data mining algorithms, C-Miner has the unique 
ability to identify multi-item correlations that can result in 
a smaller set of patterns.  Consider the correlation 
between a file’s directory, inode, and a data block; one 
pattern can adequately describe their relationship.  The 
ability to identify this multi-item correlation also 
improves the classification of behavior for security 
purposes by preventing “fooling” of the detection tool.  
Since the blocks are classified in a pattern, access to one 
without the other is indicative of abnormal activity in the 
system. 
 
C-Miner efficiently analyzes large data sets of block 
accesses to generate small but powerful correlations.  
Initially, C-Miner divides a very large trace into smaller, 
fixed-sized sequences and creates a sequence database. 
Only those sequences that occur within a max_gap 
window are included, because greater separation between 
blocks in the original trace provides little interesting 
information in regard to semantic correlation.  Frequent 
sequence mining then eliminates excessive data by 
determining which subsequences within a trace do not 
meet a minimal support frequency value.  The support is 
the number of times a subsequence occurs within the 
sequence database.  Furthermore, C-Miner only considers 
closed sequences, those subsequences whose support 
value is different from that of its super-sequences.  For 

example, if ABCD is a frequent subsequence with a 
support value of 5 and ABC is also a subsequence with 
support of 5, only ABCD will be included.  If, however, 
the support value for ABC was 6, then both subsequences 
would be considered.   
 
After determining all of the closed frequent sequences, C-
Miner then develops association rules which imply that 
the occurrence of the first block in the rule is very likely 
to be followed by the blocks in the remainder of the rule.  
Rules have the form:  

A    BCD 
meaning that A is very likely to be followed by B, C, and 
D.  FABS uses these rules to define patterns of normal 
access. 
 
If ABC is a closed frequent sequence, then the following 
association rules apply: 

A   B A   C B   C AB   C 
If ABD is an additional frequent sequence, the rule A  B 
is not duplicated, so as to minimize the number of 
association rules.  The final support value for a rule that 
could have been generated by multiple frequent sequences 
is the maximum support from among the options. 
 
To further reduce the space required to maintain 
association rules, C-Miner applies a confidence value to 
each rule.  Confidence is the probability that a particular 
item in the trace will be followed by the remainder of the 
items in that association rule.  For example, given the rule 
A   B and a trace where there are ten A’s, nine of which 
are followed by a B, the confidence of the rule is 90%.   
Rules that don’t have at least the required confidence 
value are eliminated.  Support and confidence must be 
considered together, since a pattern that has a 100% 
confidence value but only occurs once in a trace is not 
likely to be significant.   
 
C-Miner’s ability to reduce space requirements and its 
production of fewer, but more meaningful, rules make it 
an appropriate choice for FABS. 

III. FABS DESIGN 

In order to meet the goals of the system, FABS operates 
as a three-tiered monitoring system.  This approach 
provides both coarse and fine grained access information 
while maintaining the resiliency to operate successfully if 
portions of the host system become compromised.  The 
upper tier works in conjunction with the operating system 
to employ the user, filename, and process information 
only available at that level.  The lower tier is at the 
storage device level and relies only on block access 
patterns.  Although lacking information about users and 
processes, the lower tier can describe the actual physical 
location of the data which becomes useful during 
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diagnosis and recovery.  Additionally, the lower tier only 
presents a limited storage interface with little likelihood 
of compromise.  The third tier is a separate administrator 
console for analyzing and visualizing data without 
interfering with system performance. 
 
To provide comprehensive surveillance, FABS is capable 
of employing all levels in conjunction to maximize the 
quality of generated warnings.  It can also use the two 
data tiers independently to provide redundancy.  At any 
time, the system administrator can rely on the file level, 
the block level or a combined level for surveillance. 

A. General Design 

The underlying physical system on which FABS operates 
consists of a host connected to a storage medium.  The 
exact topology of the storage device does not matter as 
long as it has a centralized controller for the disks.  In 
addition, FABS requires an independent administrative 
console that is connected to the host operating system 
(OS) and to the disk controller via two separate and 
secure lines.  The console presents a very limited interface 
to defend against a compromised OS or disk controller.   
It can be any standard computer with a processor, suitable 
memory requirements to hold pattern data structures, and 
its own disk storage.  All trace information from the OS 
and the controller is transmitted to the administrative 
console where it is analyzed and interpreted for security 
violations.   
 
FABS requires a set of underlying data structures for 
implementation.  An existing patterns data structure 
contains the rules generated by C-Miner that define 
normal behavior for the system.  To initialize FABS, C-
Miner interprets a clean, system-priming trace off-line to 
build the rule set.  Initially, all patterns are added 
regardless of their support and confidence values, because 
it is assumed that the system was not under attack during 
generation of the priming trace.  After the initial existing 
patterns have been established, only those patterns with 
sufficient minimal support and confidence values will be 
added in the future. 
 
The checking trace contains the raw data for each disk 
access that has been extracted from the OS or the disk 
controller.  Each disk access request is added to the 
checking trace until it becomes the size of the checking 
window, a parameter that is determined by the system 
administrator.  When this happens the checking trace is 
analyzed and a new trace is created.  The checking 
window should be sufficiently large to incorporate block 
accesses that correspond to logical user and application 
requests, but small enough to detect anomalous behavior 
within a reasonable amount of time.  Analysis of trace 
data with VisFlowConnect-SS can help determine an 

appropriate size by depicting a user’s working set of files 
within a designated time period. 
 
The warning list generated by FABS contains all access 
requests that are in violation of an existing pattern.  This 
list is forwarded to VisFlowConnect-SS for display.  The 
system relies on warnings rather than direct action 
because of the potential for changing user profiles.  The 
system requires human intervention to determine if 
anomalous behavior is truly adversarial or simply a user 
accessing data in a new manner.   
 
Users will inevitably change their system behavior over 
time.  Radical changes that can affect their profiles, such 
as installing a new program or switching roles within the 
organization, can be accounted for easily by notifying the 
system administrator.  Smaller, subtle changes require 
more scrutiny.  For instance, if a user creates a new text 
file for editing, the new file will not be in existing 
patterns, but its access shouldn’t be classified as 
malicious.  The system must be able to gracefully adjust 
for such changes.  The pending patterns queue is used to 
add new patterns to a user’s profile.  These are patterns 
that were developed within a trace, were not already in 
existing patterns, and have been determined to be benign 
after review.  
 
The remainder of this section discusses the file level, 
block level, and combined designs in turn.  For each of 
these it is assumed that an existing patterns data structure 
is created ahead of time.  

B. File Level Design 

By analyzing file level access, the system can classify 
user activity and detect anomalous behavior by specific 
individuals or applications.  In order to create the 
association of a request with a user, the operating system 
must cooperate with the file surveillance system.  FABS 
retrieves portions of useful information during different 
stages of a file request system call. 
 
File surveillance assumes that an operating system issues 
a block-structured disk request to local or remote storage 
systems.   Figure 1 depicts a simplified version of the 
steps within the operating system as a request is 
generated.  For each active process, the operating system 
maintains a process table with several attributes, two of 
which are the userID of the process’ owner and a file 
descriptor table.  The file descriptor table contains entries 
for each file that a process has open at a given time.  
When a process requests to read or write to a file, it 
references its file descriptor table prior to retrieving the 
logical block number (LBN) of the file’s inode from the 
Vnode table.  Eventually, the file system forwards the 
LBN, the file offset, and the size of the data to retrieve to 
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the disk controller.  The controller dereferences the inode 
via the block address table and retrieves the physical 
block, or blocks, depending on the size of the request.   
 

UserID

UserID

UserID fd
fd
fd
fd
fd
fd

fd
fd
fd

Process Table Open File
Table

Kernel

<flags,Vnode,offset>

Vnode
Table

<flags,Vnode,offset>

<flags,Vnode,offset>
<flags,Vnode,offset>
<flags,Vnode,offset>
<flags,Vnode,offset> <iNode> = LBN

File Descriptor
Table

<iNode> = LBN

<iNode> = LBN

<iNode> = LBN
<iNode> = LBN

<iNode> = LBN

<iNode> = LBN

<iNode> = LBN

Figure 1.  Data structures involved during file access 
 
Using the chain of events during file access and the 
relationships between kernel-maintained data structures, 
the file surveillance system can extract the userID and the 
LBN for the file’s inode using kernel hooks.  The current 
system relies on the DFSTrace tool developed at Carnegie 
Mellon University and described by Mummert and 
Satyanarayanan in their paper written in support of the 
Coda Project [14].  In short, the userID is gained from the 
process table as the file descriptor table is referenced, and 
the LBN from the Vnode table to make a pair <userID, 
LBN>.  The resultant pair is then sent to the 
administrative console to be added to the trace.   
 
Within the administrative console, the processor adds the 
<userID, LBN> pair to the checking trace data structure, 
which contains all of the requested pairs that have not 
already been checked against the existing patterns.  Once 
the checking trace has been filled to the size of the 
checking window, it is evaluated against the existing 
patterns.  
 
Since multiple processes and multiple threads are run 
concurrently, the trace will likely be developed from the 
interleaved requests of multiple processes.  This requires 
careful attention to the method of checking the trace 
against the patterns.  The patterns must consist of pairs 
requested from individual processes.   
 
An example of the entire algorithm is depicted in Figure 2 
with a max_gap window of 8.  In this example, block G 
was the first block checked and it was determined to be 
anomalous because it had no matches in existing patterns.  
It was then added to the warning list and marked as both 
checked and anomalous.  In checking the next block 
(block A) the algorithm determines that the rule A   ZYV 
is applicable and checks the trace against it.  The 
algorithm successfully identifies all of the subsequent 
blocks for the rule and marks the blocks accordingly.  It is 

important to note that all of the blocks in the rule are not 
within max_gap of block A (block Y is 9 accesses from 
block A), but they are within max_gap of each other 
(block Y is only 3 accesses from its predecessor in the 
rule, block Z).   
 
Turning to the next unmarked block, the algorithm checks 
for rules that apply to block B and begins checking the 
trace for the rule B   EF.  Since block E is not found 
within the max_gap of 8, the algorithm terminates the 
check for that rule and searches for another potential rule.  
Since no other rule exists, block B is determined to be 
anomalous and is marked.  Note that block F is not 
marked even though it is part of the pattern B    EF 
because it may be part of a separate pattern. 
 

A B C D H F Z T U Y V

A

B

C

ZYV

EF

D

Y Y Y

G

Y-A

G

B

Warning ListExisting Patterns

Checking 
Trace

Marked?

. . .

. . .Y-A Y

 
Figure 2.  Checking a trace against existing patterns 

  
After the trace has been checked against the existing 
patterns, the system must decide whether or not to add all 
or portions of the patterns in the trace to the existing 
patterns data structure.  If the number of warnings 
generated exceeds an administrator established warning 
threshold, the entire trace is discarded as suspect.  If the 
percentage of warnings generated was less than an 
administrator established floor value, the trace is 
forwarded to the pending patterns queue on the 
administrative machine.   
 
Periodically, the pending patterns queue is processed 
using C-Miner to determine new patterns and update the 
support and confidence values of existing patterns.  C-
Miner performs processing off-line due to the time 
required to review all of the data.  It is optimal to run C-
Miner when the system would otherwise be idle. 

C. Block Level Design 

Monitoring block level access from the storage system is 
useful when the operating system cannot be trusted.  The 
process for analyzing block level disk accesses mirrors 
that of the file level design with the exception of 
extracting the trace data.  Essentially, the block level 
extraction begins where the file level extraction ended.  
Once the operating system has the logical block number 
for the file inode and the offset for the blocks to retrieve, 
the information is passed to the disk controller.   
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Figure 3.  FABS Combined Design 

 
The disk controller then performs a traditional conversion 
of the logical block number (LBN) to the physical block 
number (PBN), which corresponds to the head, track and 
sector location on the disk.  Prior to servicing the request, 
however, the disk controller forwards the LBN and the 
PBN to the FABS administrative console so that it can be 
added to the current checking trace.  The controller then 
completes the disk operation as usual by returning the 
actual data to the operating system.  The remainder of the 
process for block level analysis is the same as that 
described in the file level design above. 
 
Block level access information will be considerably more 
limited than that which can be extracted from the 
operating system.  Specifically, the drive controller has no 
visibility of any data which is cached.  We recognize this 
problem, but we aren’t overly concerned because 
exclusive use of the block level design implies that the 
operating system is under attack.  If the operating system 
is compromised, then any data which is already in the 
system’s memory hierarchy has already been disclosed 
for read access.  It is any attempt to read additional stored 
data or any attempt to write to disk that is of concern.  
Both of these operations must pass through the storage 
system and will therefore be visible to FABS. 

D. Combined Design 

To comprehensively monitor disk access traffic, FABS 
must combine the block level and file level techniques.  
This avoids the pitfalls of using each in isolation: the file 
level is susceptible to OS compromise and does not 
provide physical disk block locations while the block 
level does not provide user information or any 
information regarding access to blocks cached in memory. 
 
To achieve the combined information, we have added a 
time attribute to the trace information extracted from both 
the file and block level systems.  The time attribute is 

used to match the access records extracted from the OS 
with those extracted from the drive controller so that 
multiple accesses to a particular block from separate users 
can be distinguished.  Once the two records are matched, 
the administrative processor has enough information to 
combine the userID and the physical block numbers for 
each disk access.  The combination of userID and PBN 
allows FABS to monitor the individual blocks of data a 
particular user accesses.  The system is presented in 
Figure 3.  With this information, the combined design can 
establish normal behavior, compare access traces for 
anomalies, and learn new patterns as discussed 
previously. 

IV. VISUALIZATION WITH VISFLOWCONNECT-SS 

The amount of data generated during trace collection is 
enormous.  FABS employs data visualization to quickly 
and effectively relay the raw data to a system 
administrator.  The initial version of VisFlowConnect-SS 
presents a parallel axis representation of user and file 
interaction.  Figure 4 shows an example.  On the left axis 
(a) each user is represented as a small square.  At any 
time, selecting a user will open a window to display all of 
the files the user has accessed (b).  Files that have been 
accessed are represented on the right axis as points (c).  A 
segment connecting a square to a point represents the 
specified user accessing the file (d).  
 
File accesses that are on the warning list are highlighted 
as bright red to immediately attract the attention of the 
viewing administrator (e).  Additionally, the administrator 
can select any given access segment and the <userID, 
file> will be displayed in a text box (f).  The tool is 
designed for displaying accesses that occur within a given 
time window.  The clock (g) displays the “current time” 
in the system trace, while the moving window (h) 
encapsulates the interval surrounding the current time 
during which all of the displayed accesses occurred.     
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i 

 
Figure 4.  VisFlowConnect-SS 

 
The administrator has the ability to adjust multiple filters 
to customize the data represented on a single screen (i).  
The tool can present individual users, individual files, or a 
combination of the two.  Thus, if a particular user’s 
activity seems suspicious, the administrator can remove 
the “noise” of the rest of the file system and focus on only 
the potentially dangerous activity.   

V. EVALUATION METHODOLOGY AND INITIAL RESULTS 

To prove that FABS can detect anomalies, we had to train 
the system with patterns of normal behavior, inject attack 
scenarios, execute our pattern matching algorithm, and 
inspect the resultant warnings for successful identification 
and false positive reporting.  We used the Mozart traces 
[14] for file level and the Cello92 traces for block level 
testing.  We used 80% of the trace for developing existing 
patterns and the remaining 20% of a trace for testing the 
pattern matching code.   
 

Trace # 
Patterns 

# Accesses # of 
Anomalies 
Detected 

# of False 
Positives 

Mozart 25,000 1000 100 27 
Cello92 525,023 1000 97 43 

Table 1.  Detection Results 
 
We hand modified a subset of each trace consisting of 
1000 accesses that was taken from the 20% of the trace 
that had not been used for pattern development.  We 
inserted 100 different block values at random intervals 
into the subset and executed multiple iterations of our 
pattern matching algorithm.  The worst case results are 
reported in Table 1.  We were able to identify at least 
97% of the anomalies with a false positive rate of slightly 
more than 4%.  The few anomalies that we failed to detect 
were as a result of the trace exceeding the max_gap prior 
to identifying a pattern.  These results suggest that we are 
capable of identifying anomalous disk accesses. 

 

In order for FABS to be an acceptable solution for 
intrusion detection and storage protection it needs to run 
in real-time so that anomalous behavior can be stopped 
before considerable damage is done to the system.  FABS 
is not yet running in real-time, but we conducted a 
performance analysis of its potential using existing 
hardware specifications as a model.  We analyzed the 
performance of an IBM Travelstar 32GH DJSA-232 
ATA-4 hard drive with 32 GB capacity to gauge the 
average disk access time for a typical system.  We then 
compared the time it takes our system to analyze requests 
to the average disk access time.   
 

Trace # Pattern Rules # of Accesses System Time (sec) 
Mozart 293 1000 0.002 
Cello92 39,156 1000 0.02 

Table 2.  Performance Results 
 
Using the average disk access times derived from the 
manufacturer’s specifications, the IBM Travelstar 
requires 21.5 ms for a random disk access.  This means it 
will take 0.0215 seconds to conduct 1000 random 
accesses on average.  Using a personal workstation with 
an Intel Pentium M processor running at 1.6 GHz with 1.0 
GB of RAM, our pattern matching performance results 
are provided in Table 2.  FABS requires 0.02 seconds to 
analyze 1000 access requests against 39,000 patterns.  
Since FABS operates from a separate console that does 
not interfere with regular system performance, we believe 
that it will be possible to run FABS in real-time in the 
future.  We are encouraged by these preliminary results. 

VI. RELATED WORK 

Protecting stored data has been well researched, but 
monitoring storage access for security and visualization of 
storage accesses are two novel areas of research.  In his 
work, Reiher, [5, 6] presents a system that performs file 
profiling based on the number of times users or processes 
access files.  This research has developed working sets of 
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likely files a process or user will access such that attempts 
to access those outside of the working set are suspicious.  
FABS extends this work by applying data mining tools to 
trace data to determine sequential patterns of access. 
 
The Self-Securing Storage System, or S4 [15, 16], uses 
comprehensive versioning to record all data access within 
the storage device.  When used in conjunction with the 
storage-based intrusion detection design, the system 
reports access to “watched” data to an administrator log.  
While similar to FABS, S4 has not implemented any 
method for using pattern analysis in its intrusion detection 
system, nor can it identify users who make anomalous 
access since it is strictly part of the storage device. 
 
Some host-based intrusion detection systems provide a 
portion of the security outlined by FABS.  Tripwire [17] 
is an integrity checking tool that is useful for detecting 
file system modifications, but cannot help unless the 
attacker makes a change to a file.  The eXpert-BSM [18] 
tool provides surveillance of file level accesses within a 
Sun Solaris system based on a set of filtering policies that 
are platform-specific.  Both of these solutions are 
exclusively designed for use as part of the operating 
system and are consequently ineffective if the host OS 
becomes compromised. 

VII. CONCLUSIONS 

We have developed a prototype storage access monitoring 
tool that will help to identify and minimize the effects of a 
successful attack on stored data.  The system is multi-
tiered to provide reliable performance regardless of the 
potential compromise of the host system’s components.  
We accomplished this by extracting and mining relevant 
disk access information from multiple levels of the 
system.  Once we have generated the raw data defining 
disk accesses, we have shown that it is possible to identify 
seemingly innocuous behavior as suspect.   
 
We have also implemented a visualization tool that 
empowers the system administrator with timely warnings.  
The administrator can analyze disk traffic using 
VisFlowConnect-SS to decide an appropriate course of 
action to handle the possible security breach.   

VIII. REFERENCES 

[1] Health Insurance Portability and Accountability Act 
(HIPAA), PL 104-191, 104th Congress, August 1996.  
 

[2] The Financial Modernization Act of 1999.  PL 106-
102, 106th Congress, November 1999.  
 

[3]  Sarbanes-Oxley Act of 2002, PL 107-204, 107th 
Congress, July 2002.  
 

 

[4] J. Tucek, P. Stanton, E. Haubert, R. Hasan, L. 
Brumbaugh, W. Yurcik "Trade-offs in Protecting Storage: 
A Meta-Data Comparison of Cryptographic, 
Backup/Versioning, Immutable/Tamper-Proof, and 
Redundant Storage Solutions ," 13th NASA Goddard Conf 
on Mass Storage Systems and Technologies, April 2005. 
 

[5] P. Reiher, “File Profiling for Insider Threats,” Air 
Force Research Laboratory, February 2002. 
 

[6] N. Nguyen, P. Reiher, G. Kuenning, “Detecting 
Insider Threats by Monitoring System Call Activity,” 
IEEE Workshop on Information Assurance, June 2003. 
 

[7] P. Litwin, “Stop SQL Injection Attacks Before They 
Stop You,” MSDN Magazine, September 2004. 
 

[8] J. McDermott, D. Goldschlag, “Storage Jamming,” 
Database Security IX: Status and Prospects, Aug 1995. 
 

[9] S. Jajodia, P. Ammann, C. McCollum, “Surviving 
Information Warfare Attacks,” IEEE Comp., April 1999. 
 

[10] C. Warrender, S. Forrest, and B. Pearlmutter, 
“Detecting Intrusions Using System Calls: Alternative 
Data Models,” IEEE Symp on Security and Privacy, 1999. 
 

[11] W. Lee and S. Stolfo, “Data Mining Approaches for 
Intrusion Detection,” 7th USENIX Security Symposium, 
January 1998. 
 

[12] Z. Li, Z. Chen, S. Srinivasan, Y. Zhou, “C-Miner: 
Mining Block Correlations in Storage Systems,” 3rd 
Conference on File and Storage Technology, March 2004. 
 

[13] G. Kuenning, “The Design of the Seer Predictive 
Caching System,” Mobile Computing Systems and 
Application, December 1994. 
 

[14] L. Mummert, M. Satyanarayanan, “Long Term 
Distributed File Reference Tracing: Implementation and 
Experience,” Carnegie Mellon University Technical 
Report: CMU-CS-94-213, November 1994. 
 

[15] J. Strunk, G. Goodson, M. Scheinholtz, C. Soules, G. 
Ganger, “Self-Securing Storage: Protecting Data in 
Compromised Systems,” 4th Symposium on Operating 
Systems Design and Implementation, October 2000. 
 

[16] A. Pennington, J. Strunk, J. Griffin, C. Soules, G. 
Goodson, G. Ganger, “Storage-based Intrusion Detection: 
Watching Storage Activity for Suspicious Behavior,” 12th 
USENIX Security Symposium, August 2003. 
 

[17] G. Kim, E. Spafford, “The Design and 
Implementation of Tripwire: A File System Integrity 
Checker,” 2nd ACM Conference on Computer and 
Communications Security, February 1995. 
 

[18] U. Lindqvist, P. Porras, “eXpert-BSM: A Host-based 
Intrusion Detection System for Sun Solaris,” 17th Annual 
Computer Security Applications Conference, Dec 2001. 

ISBN 555555555/$10.00  © 2005 IEEE 


