
 Proceedings of the 2005 IEEE
 Workshop on Information Assurance
 United States Military Academy, West Point, NY June 2005

Ab
m
to
m
in
W
sto
GU
ac
in
in
po

In
In

Pr
m
am
re
pr
th
en
Po
re
m
19
ex
da

Tr
m
en
Pe
bu
fro
op
in
th
th

In
so
nu
w

IS
FABS: File and Block Surveillance System for
Determining Anomalous Disk Accesses

†‡ † †
stract – Despite increasingly
easures, attackers have continued to
 stored data with impacts inc
odification, or deletion. There
dependent of the operating system t
e introduce FABS as a compreh
rage for anomalous accesses. We
l prototype, VisFlowConnect-SS,

cesses visually to human opera
tegrated storage-based monitorin
trusion detection, minimizes attack
st-attack forensic analysis.

dex terms – Storage Security, Vis
trusion Detection

I. INTRODUCTION AND MO

otecting stored data from misus
odern computing. Due to the
ount of sensitive informa

quirement to protect data in stora
oliferation of stored information
at federal regulations have rec
sure its proper security. Notabl
rtability and Accountability Act

asonable methods to protect t
edical records, and the Gramm
99 [2] and the Sarbanes-Oxley
amples of similar legislation aff
ta.

aditionally, the focus of secu
ultiple perimeter solutions tha
cryption techniques to Role Bas
rimeter solutions provide varyin
t all perimeter techniques suffe
m within or those that succes
erating system leave storage
truder has successfully penetrate
e system has no security mechan
e effects of the attack.

side attacks, defined as those w
me degree of trusted access to
mbers and can cause considerab

ith legitimate access inside the

†National Ce
‡Departme

BN 555555555/$10.00 © 2005 I
Paul T. Stanton , William Yurcik , Larry Brumbaugh
nter for Supercomputing Applications (NCSA), Champaign, IL, USA

nt of Computer Science, University of Illinois at Urbana-Champaign
{ptstanto, byurcik, ljbrumb}@ncsa.uiuc.edu
sophisticated security
 find ways to gain access

luding data disclosure,
currently exist no tools
o monitor storage status.
ensive tool to monitor

also introduce a scalable
which represents storage
tors. The goal is an

g system that provides
damage, and assists with

ualization, Data Mining,

TIVATION

e is a critical aspect of
steady increase in the
tion generated, the
ge grows as well. The
 has been so dramatic
ently been enacted to
y, the Health Insurance
 (HIPAA) [1] requires
he privacy of patient
-Leach-Bliley Act of
 Act of 2002 [3] are
ecting stored corporate

ring data has led to
t range from strong
ed Access Control [4].
g degrees of protection,
r limitations. Attacks
sfully compromise the
vulnerable. Once an
d the exterior defenses,
isms to detect or limit

here the intruder has
 data, are growing in
le damage. An insider
 perimeter, experience

with how the system operates, and knowledge of where
targeted data resides, can focus exclusively on accessing
the most valuable information quickly. Of equal danger,
an attacker who can successfully penetrate the operating
system can achieve access throughout the system and then
remove evidence of the intrusion by scrubbing audit logs
and removing exploit tools. Worse yet, the attacker can
dismantle host intrusion or tamper detection systems
rendering them useless and administrators unaware of any
security breach.

Due to susceptibility to such threats, the computing
environment requires a method to minimize the effects of
an attack and to reduce the potential for future incidents.
To meet these goals, we propose the File and Block
Surveillance System (FABS) that monitors storage access
traffic for abnormal behavior. Using a three-tiered
approach, (1) FABS learns file access behavior of users at
the operating system level, (2) identifies block patterns at
the drive controller level, and (3) represents data in a
meaningful way to a human administrator on a separate
console. Each tier can operate independently to provide
resiliency to attack.

FABS classifies the normal behavior of system users and
then compares it to trace records of current storage
accesses. Deviance from the recognizable patterns results
in a warning. Studies have shown that both users and
processes have exhibited predictable behavior [5, 6] that
makes such classification an achievable goal. The
patterns of access while under an attack will be noticeably
different than those of the traditional user.

All storage system access traces are forwarded to
VisFlowConnect-Storage System (VisFlowConnect-SS),
a visualization framework that provides the system
administrator with a graphic representation of storage
activity. Anomalous disk accesses are highlighted to
attract immediate attention, affording the administrator
the opportunity to take appropriate action. Additionally,
VisFlowConnect-SS provides filtering options for
displaying pertinent storage traffic during post-intrusion
analysis and recovery.

This paper describes a proof of concept. Each major
function of FABS has been implemented as a prototype

EEE

 Proceedings of the 2005 IEEE
 Workshop on Information Assurance
 United States Military Academy, West Point, NY June 2005

and tested. Using pre-existing storage access traces, the
system has demonstrated great potential for identifying
anomalous storage accesses and for streamlining post-
attack forensic analysis.

The rest of the paper is organized as follows. Section II
provides background material. Section III describes the
design of FABS. Section IV presents the
VisFlowConnect-SS visualization tool. Section V
discusses the evaluation methodology and initial results.
Section VI describes related work. We end with a
summary and conclusions in Section VII.

II. BACKGROUND

A. Threat Model

We focus our attention on two critical vulnerabilities of
existing storage security solutions: (1) attacks from the
outside that exploit software vulnerabilities to
compromise the host operating system and (2) attacks
from the inside by those with trusted access. Both present
difficult problem areas for detection and analysis because
the attacker has seemingly legitimate access to the data.

One type of such attacks, masquerading, is the act of
gaining unauthorized access by presenting legitimate, but
stolen, credentials in order to assume a trusted identity.
The attacks are difficult to defend against because they
rely on individual human attention to security details.
The best automated authorization protocol is useless if
individuals allow their password information to be
compromised or if they leave their host system unattended
without logging out. Once intruders have fooled the
system into believing they are legitimate users, the
adversaries can then manipulate data without suspicion.

Another category, code injection attacks, includes cross-
site scripting, SQL injection, buffer overflows, and file
includes. These can exploit vulnerabilities by tricking a
current application into running malicious code. One
example is attacking a web-based application by
introducing a code statement via a text box, knowing that
the value will be dynamically inserted into a running
program. The application prompts the user for what it
expects to be a typical value, but the intruder instead
issues a carefully crafted line of partial code that will alter
the program execution. The ultimate result of a code
injection attack is that a typically benign program
executes the intruder’s code [7]. The danger is that users
will run infected applications unwittingly and oblivious to
the effects.

Regardless of how they penetrate the security perimeter,
processes or users will access stored data in a manner
inconsistent with normal activity during the attack. FABS

uses this modified behavior to identify attack scenarios.
The trace extraction and subsequent pattern matching
abilities reduce the likelihood of undetected execution.

Storage jamming is a more subtle form of attack, in which
adversaries modify stored data without detection for the
purposes of degrading its quality [8]. The motivation is to
decrease an organization’s performance, often having the
indirect effect of enhancing the position of a competitor
[9]. The sheer quantity of stored data presents ample
opportunities for an attacker to introduce so called bogus
values in a discrete manner that avoids detection. One
method is to modify data for a short period during which
it can be used for some nefarious purpose, and then
change it back to its original state. Another technique is
to change many small pieces of data over time. Each
change is insignificant in isolation, but the cumulative
effects may introduce significant damage.

FABS helps to minimize the effects of a storage jamming
attack through diagnosis and recovery. Having
maintained traces of all disk activity, FABS can quickly
identify all potentially damaged data by replaying a
filtered trace. Isolating the accesses of an identified
attacker, an administrator can use the visualization tool to
focus on which files or blocks have been modified by a
user or process.

B. Intrusion Detection

Many of the techniques we use in FABS are similar to
those applied during traditional intrusion detection.
Extensive research in this area has resulted in two
classifications: misuse detection (using patterns of known
attacks to identify intrusions), or anomaly detection
(establishing a knowledge base of normal behavior and
identifying deviations as intrusions). We focus on
anomaly detection since it mirrors our methods.

Anomaly detection relies on the ability to properly
classify normal behavior. This is a difficult task because
it requires developing audit data over a period of use
during which it is assumed that no attacks occur, and it
requires a method to classify the audit data. The first
problem requires human intervention to prime the system.
The initial audit data must be manually analyzed to
prevent introducing an attack scenario into the knowledge
base of normal behavior. We use trace visualization to
assist this process.

The second problem can be addressed by using data
mining tools to identify patterns for a particular type of
event [10, 11]. Existing tools have been used to classify
events as a series of system calls derived from a particular
process, or network packets that arrive on a particular
port. We define events to be a series of disk access

ISBN 555555555/$10.00 © 2005 IEEE

 Proceedings of the 2005 IEEE
 Workshop on Information Assurance
 United States Military Academy, West Point, NY June 2005

requests at either the file or block level. We use a novel
data mining approach to classify accesses into patterns.

C. Data Mining

Our method for classifying normal behavior relies on data
mining techniques to extract patterns from trace
information. There are many existing data mining tools,
but we selected C-Miner [12] because of its unique ability
to develop correlations involving multiple items and for
its use of closed-sequence mining, which results in
smaller time and space requirements than other data
mining algorithms.

C-Miner helps to identify correlations between
semantically related blocks of data that may not be
obvious or do not coincide with spatial locality. It is
designed to run using only the block-level information
available at the narrow storage system interface where no
information regarding data semantics is available. For
example, in a traditional Unix-based file system, the inode
and its data blocks are closely correlated; an access to the
inode is generally followed by an access to one or more of
the data blocks. However, the inode and the data blocks
are rarely stored contiguously on disk. Inspection of the
block numbers will not reveal any correlation, but
analyzing patterns that develop over long stretches of
sequential accessed blocks shows a semantic connection.

Among data mining algorithms, C-Miner has the unique
ability to identify multi-item correlations that can result in
a smaller set of patterns. Consider the correlation
between a file’s directory, inode, and a data block; one
pattern can adequately describe their relationship. The
ability to identify this multi-item correlation also
improves the classification of behavior for security
purposes by preventing “fooling” of the detection tool.
Since the blocks are classified in a pattern, access to one
without the other is indicative of abnormal activity in the
system.

C-Miner efficiently analyzes large data sets of block
accesses to generate small but powerful correlations.
Initially, C-Miner divides a very large trace into smaller,
fixed-sized sequences and creates a sequence database.
Only those sequences that occur within a max_gap
window are included, because greater separation between
blocks in the original trace provides little interesting
information in regard to semantic correlation. Frequent
sequence mining then eliminates excessive data by
determining which subsequences within a trace do not
meet a minimal support frequency value. The support is
the number of times a subsequence occurs within the
sequence database. Furthermore, C-Miner only considers
closed sequences, those subsequences whose support
value is different from that of its super-sequences. For

example, if ABCD is a frequent subsequence with a
support value of 5 and ABC is also a subsequence with
support of 5, only ABCD will be included. If, however,
the support value for ABC was 6, then both subsequences
would be considered.

After determining all of the closed frequent sequences, C-
Miner then develops association rules which imply that
the occurrence of the first block in the rule is very likely
to be followed by the blocks in the remainder of the rule.
Rules have the form:

A BCD
meaning that A is very likely to be followed by B, C, and
D. FABS uses these rules to define patterns of normal
access.

If ABC is a closed frequent sequence, then the following
association rules apply:

A B A C B C AB C
If ABD is an additional frequent sequence, the rule A B
is not duplicated, so as to minimize the number of
association rules. The final support value for a rule that
could have been generated by multiple frequent sequences
is the maximum support from among the options.

To further reduce the space required to maintain
association rules, C-Miner applies a confidence value to
each rule. Confidence is the probability that a particular
item in the trace will be followed by the remainder of the
items in that association rule. For example, given the rule
A B and a trace where there are ten A’s, nine of which
are followed by a B, the confidence of the rule is 90%.
Rules that don’t have at least the required confidence
value are eliminated. Support and confidence must be
considered together, since a pattern that has a 100%
confidence value but only occurs once in a trace is not
likely to be significant.

C-Miner’s ability to reduce space requirements and its
production of fewer, but more meaningful, rules make it
an appropriate choice for FABS.

III. FABS DESIGN

In order to meet the goals of the system, FABS operates
as a three-tiered monitoring system. This approach
provides both coarse and fine grained access information
while maintaining the resiliency to operate successfully if
portions of the host system become compromised. The
upper tier works in conjunction with the operating system
to employ the user, filename, and process information
only available at that level. The lower tier is at the
storage device level and relies only on block access
patterns. Although lacking information about users and
processes, the lower tier can describe the actual physical
location of the data which becomes useful during

ISBN 555555555/$10.00 © 2005 IEEE

 Proceedings of the 2005 IEEE
 Workshop on Information Assurance
 United States Military Academy, West Point, NY June 2005

diagnosis and recovery. Additionally, the lower tier only
presents a limited storage interface with little likelihood
of compromise. The third tier is a separate administrator
console for analyzing and visualizing data without
interfering with system performance.

To provide comprehensive surveillance, FABS is capable
of employing all levels in conjunction to maximize the
quality of generated warnings. It can also use the two
data tiers independently to provide redundancy. At any
time, the system administrator can rely on the file level,
the block level or a combined level for surveillance.

A. General Design

The underlying physical system on which FABS operates
consists of a host connected to a storage medium. The
exact topology of the storage device does not matter as
long as it has a centralized controller for the disks. In
addition, FABS requires an independent administrative
console that is connected to the host operating system
(OS) and to the disk controller via two separate and
secure lines. The console presents a very limited interface
to defend against a compromised OS or disk controller.
It can be any standard computer with a processor, suitable
memory requirements to hold pattern data structures, and
its own disk storage. All trace information from the OS
and the controller is transmitted to the administrative
console where it is analyzed and interpreted for security
violations.

FABS requires a set of underlying data structures for
implementation. An existing patterns data structure
contains the rules generated by C-Miner that define
normal behavior for the system. To initialize FABS, C-
Miner interprets a clean, system-priming trace off-line to
build the rule set. Initially, all patterns are added
regardless of their support and confidence values, because
it is assumed that the system was not under attack during
generation of the priming trace. After the initial existing
patterns have been established, only those patterns with
sufficient minimal support and confidence values will be
added in the future.

The checking trace contains the raw data for each disk
access that has been extracted from the OS or the disk
controller. Each disk access request is added to the
checking trace until it becomes the size of the checking
window, a parameter that is determined by the system
administrator. When this happens the checking trace is
analyzed and a new trace is created. The checking
window should be sufficiently large to incorporate block
accesses that correspond to logical user and application
requests, but small enough to detect anomalous behavior
within a reasonable amount of time. Analysis of trace
data with VisFlowConnect-SS can help determine an

appropriate size by depicting a user’s working set of files
within a designated time period.

The warning list generated by FABS contains all access
requests that are in violation of an existing pattern. This
list is forwarded to VisFlowConnect-SS for display. The
system relies on warnings rather than direct action
because of the potential for changing user profiles. The
system requires human intervention to determine if
anomalous behavior is truly adversarial or simply a user
accessing data in a new manner.

Users will inevitably change their system behavior over
time. Radical changes that can affect their profiles, such
as installing a new program or switching roles within the
organization, can be accounted for easily by notifying the
system administrator. Smaller, subtle changes require
more scrutiny. For instance, if a user creates a new text
file for editing, the new file will not be in existing
patterns, but its access shouldn’t be classified as
malicious. The system must be able to gracefully adjust
for such changes. The pending patterns queue is used to
add new patterns to a user’s profile. These are patterns
that were developed within a trace, were not already in
existing patterns, and have been determined to be benign
after review.

The remainder of this section discusses the file level,
block level, and combined designs in turn. For each of
these it is assumed that an existing patterns data structure
is created ahead of time.

B. File Level Design

By analyzing file level access, the system can classify
user activity and detect anomalous behavior by specific
individuals or applications. In order to create the
association of a request with a user, the operating system
must cooperate with the file surveillance system. FABS
retrieves portions of useful information during different
stages of a file request system call.

File surveillance assumes that an operating system issues
a block-structured disk request to local or remote storage
systems. Figure 1 depicts a simplified version of the
steps within the operating system as a request is
generated. For each active process, the operating system
maintains a process table with several attributes, two of
which are the userID of the process’ owner and a file
descriptor table. The file descriptor table contains entries
for each file that a process has open at a given time.
When a process requests to read or write to a file, it
references its file descriptor table prior to retrieving the
logical block number (LBN) of the file’s inode from the
Vnode table. Eventually, the file system forwards the
LBN, the file offset, and the size of the data to retrieve to

ISBN 555555555/$10.00 © 2005 IEEE

 Proceedings of the 2005 IEEE
 Workshop on Information Assurance
 United States Military Academy, West Point, NY June 2005

the disk controller. The controller dereferences the inode
via the block address table and retrieves the physical
block, or blocks, depending on the size of the request.

UserID

UserID

UserID fd
fd
fd
fd
fd
fd

fd
fd
fd

Process Table Open File
Table

Kernel

<flags,Vnode,offset>

Vnode
Table

<flags,Vnode,offset>

<flags,Vnode,offset>
<flags,Vnode,offset>
<flags,Vnode,offset>
<flags,Vnode,offset> <iNode> = LBN

File Descriptor
Table

<iNode> = LBN

<iNode> = LBN

<iNode> = LBN
<iNode> = LBN

<iNode> = LBN

<iNode> = LBN

<iNode> = LBN

Figure 1. Data structures involved during file access

Using the chain of events during file access and the
relationships between kernel-maintained data structures,
the file surveillance system can extract the userID and the
LBN for the file’s inode using kernel hooks. The current
system relies on the DFSTrace tool developed at Carnegie
Mellon University and described by Mummert and
Satyanarayanan in their paper written in support of the
Coda Project [14]. In short, the userID is gained from the
process table as the file descriptor table is referenced, and
the LBN from the Vnode table to make a pair <userID,
LBN>. The resultant pair is then sent to the
administrative console to be added to the trace.

Within the administrative console, the processor adds the
<userID, LBN> pair to the checking trace data structure,
which contains all of the requested pairs that have not
already been checked against the existing patterns. Once
the checking trace has been filled to the size of the
checking window, it is evaluated against the existing
patterns.

Since multiple processes and multiple threads are run
concurrently, the trace will likely be developed from the
interleaved requests of multiple processes. This requires
careful attention to the method of checking the trace
against the patterns. The patterns must consist of pairs
requested from individual processes.

An example of the entire algorithm is depicted in Figure 2
with a max_gap window of 8. In this example, block G
was the first block checked and it was determined to be
anomalous because it had no matches in existing patterns.
It was then added to the warning list and marked as both
checked and anomalous. In checking the next block
(block A) the algorithm determines that the rule A ZYV
is applicable and checks the trace against it. The
algorithm successfully identifies all of the subsequent
blocks for the rule and marks the blocks accordingly. It is

important to note that all of the blocks in the rule are not
within max_gap of block A (block Y is 9 accesses from
block A), but they are within max_gap of each other
(block Y is only 3 accesses from its predecessor in the
rule, block Z).

Turning to the next unmarked block, the algorithm checks
for rules that apply to block B and begins checking the
trace for the rule B EF. Since block E is not found
within the max_gap of 8, the algorithm terminates the
check for that rule and searches for another potential rule.
Since no other rule exists, block B is determined to be
anomalous and is marked. Note that block F is not
marked even though it is part of the pattern B EF
because it may be part of a separate pattern.

A B C D H F Z T U Y V

A

B

C

ZYV

EF

D

Y Y Y

G

Y-A

G

B

Warning ListExisting Patterns

Checking
Trace

Marked?

. . .

. . .Y-A Y

Figure 2. Checking a trace against existing patterns

After the trace has been checked against the existing
patterns, the system must decide whether or not to add all
or portions of the patterns in the trace to the existing
patterns data structure. If the number of warnings
generated exceeds an administrator established warning
threshold, the entire trace is discarded as suspect. If the
percentage of warnings generated was less than an
administrator established floor value, the trace is
forwarded to the pending patterns queue on the
administrative machine.

Periodically, the pending patterns queue is processed
using C-Miner to determine new patterns and update the
support and confidence values of existing patterns. C-
Miner performs processing off-line due to the time
required to review all of the data. It is optimal to run C-
Miner when the system would otherwise be idle.

C. Block Level Design

Monitoring block level access from the storage system is
useful when the operating system cannot be trusted. The
process for analyzing block level disk accesses mirrors
that of the file level design with the exception of
extracting the trace data. Essentially, the block level
extraction begins where the file level extraction ended.
Once the operating system has the logical block number
for the file inode and the offset for the blocks to retrieve,
the information is passed to the disk controller.

ISBN 555555555/$10.00 © 2005 IEEE

 Proceedings of the 2005 IEEE
 Workshop on Information Assurance
 United States Military Academy, West Point, NY June 2005

Application

DISK

Device
Controller

Administrative
Console1

1. Application makes disk
request

2. <UserID, LBN> is extracted
from process table

3. Traditional SCSI interface with
controller

4. <LBN,PBN> extracted from
controller

5. Perform disk traditional I/O

2

3

4

UserID

UserID

UserID 1
3
5

12
34
52

11
31
51

Process Table File Descriptor
Table

Open File
Table

OS UserID, LBN, time

LBN

LBN, PBN, time

5

Figure 3. FABS Combined Design

The disk controller then performs a traditional conversion
of the logical block number (LBN) to the physical block
number (PBN), which corresponds to the head, track and
sector location on the disk. Prior to servicing the request,
however, the disk controller forwards the LBN and the
PBN to the FABS administrative console so that it can be
added to the current checking trace. The controller then
completes the disk operation as usual by returning the
actual data to the operating system. The remainder of the
process for block level analysis is the same as that
described in the file level design above.

Block level access information will be considerably more
limited than that which can be extracted from the
operating system. Specifically, the drive controller has no
visibility of any data which is cached. We recognize this
problem, but we aren’t overly concerned because
exclusive use of the block level design implies that the
operating system is under attack. If the operating system
is compromised, then any data which is already in the
system’s memory hierarchy has already been disclosed
for read access. It is any attempt to read additional stored
data or any attempt to write to disk that is of concern.
Both of these operations must pass through the storage
system and will therefore be visible to FABS.

D. Combined Design

To comprehensively monitor disk access traffic, FABS
must combine the block level and file level techniques.
This avoids the pitfalls of using each in isolation: the file
level is susceptible to OS compromise and does not
provide physical disk block locations while the block
level does not provide user information or any
information regarding access to blocks cached in memory.

To achieve the combined information, we have added a
time attribute to the trace information extracted from both
the file and block level systems. The time attribute is

used to match the access records extracted from the OS
with those extracted from the drive controller so that
multiple accesses to a particular block from separate users
can be distinguished. Once the two records are matched,
the administrative processor has enough information to
combine the userID and the physical block numbers for
each disk access. The combination of userID and PBN
allows FABS to monitor the individual blocks of data a
particular user accesses. The system is presented in
Figure 3. With this information, the combined design can
establish normal behavior, compare access traces for
anomalies, and learn new patterns as discussed
previously.

IV. VISUALIZATION WITH VISFLOWCONNECT-SS

The amount of data generated during trace collection is
enormous. FABS employs data visualization to quickly
and effectively relay the raw data to a system
administrator. The initial version of VisFlowConnect-SS
presents a parallel axis representation of user and file
interaction. Figure 4 shows an example. On the left axis
(a) each user is represented as a small square. At any
time, selecting a user will open a window to display all of
the files the user has accessed (b). Files that have been
accessed are represented on the right axis as points (c). A
segment connecting a square to a point represents the
specified user accessing the file (d).

File accesses that are on the warning list are highlighted
as bright red to immediately attract the attention of the
viewing administrator (e). Additionally, the administrator
can select any given access segment and the <userID,
file> will be displayed in a text box (f). The tool is
designed for displaying accesses that occur within a given
time window. The clock (g) displays the “current time”
in the system trace, while the moving window (h)
encapsulates the interval surrounding the current time
during which all of the displayed accesses occurred.

ISBN 555555555/$10.00 © 2005 IEEE

 Proceedings of the 2005 IEEE
 Workshop on Information Assurance
 United States Military Academy, West Point, NY June 2005

i

Figure 4. VisFlowConnect-SS

The administrator has the ability to adjust multiple filters
to customize the data represented on a single screen (i).
The tool can present individual users, individual files, or a
combination of the two. Thus, if a particular user’s
activity seems suspicious, the administrator can remove
the “noise” of the rest of the file system and focus on only
the potentially dangerous activity.

V. EVALUATION METHODOLOGY AND INITIAL RESULTS

To prove that FABS can detect anomalies, we had to train
the system with patterns of normal behavior, inject attack
scenarios, execute our pattern matching algorithm, and
inspect the resultant warnings for successful identification
and false positive reporting. We used the Mozart traces
[14] for file level and the Cello92 traces for block level
testing. We used 80% of the trace for developing existing
patterns and the remaining 20% of a trace for testing the
pattern matching code.

Trace #
Patterns

Accesses # of
Anomalies
Detected

of False
Positives

Mozart 25,000 1000 100 27
Cello92 525,023 1000 97 43

Table 1. Detection Results

We hand modified a subset of each trace consisting of
1000 accesses that was taken from the 20% of the trace
that had not been used for pattern development. We
inserted 100 different block values at random intervals
into the subset and executed multiple iterations of our
pattern matching algorithm. The worst case results are
reported in Table 1. We were able to identify at least
97% of the anomalies with a false positive rate of slightly
more than 4%. The few anomalies that we failed to detect
were as a result of the trace exceeding the max_gap prior
to identifying a pattern. These results suggest that we are
capable of identifying anomalous disk accesses.

In order for FABS to be an acceptable solution for
intrusion detection and storage protection it needs to run
in real-time so that anomalous behavior can be stopped
before considerable damage is done to the system. FABS
is not yet running in real-time, but we conducted a
performance analysis of its potential using existing
hardware specifications as a model. We analyzed the
performance of an IBM Travelstar 32GH DJSA-232
ATA-4 hard drive with 32 GB capacity to gauge the
average disk access time for a typical system. We then
compared the time it takes our system to analyze requests
to the average disk access time.

Trace # Pattern Rules # of Accesses System Time (sec)
Mozart 293 1000 0.002
Cello92 39,156 1000 0.02

Table 2. Performance Results

Using the average disk access times derived from the
manufacturer’s specifications, the IBM Travelstar
requires 21.5 ms for a random disk access. This means it
will take 0.0215 seconds to conduct 1000 random
accesses on average. Using a personal workstation with
an Intel Pentium M processor running at 1.6 GHz with 1.0
GB of RAM, our pattern matching performance results
are provided in Table 2. FABS requires 0.02 seconds to
analyze 1000 access requests against 39,000 patterns.
Since FABS operates from a separate console that does
not interfere with regular system performance, we believe
that it will be possible to run FABS in real-time in the
future. We are encouraged by these preliminary results.

VI. RELATED WORK

Protecting stored data has been well researched, but
monitoring storage access for security and visualization of
storage accesses are two novel areas of research. In his
work, Reiher, [5, 6] presents a system that performs file
profiling based on the number of times users or processes
access files. This research has developed working sets of

a

b
c

d

e

f

g

h

ISBN 555555555/$10.00 © 2005 IEEE

 Proceedings of the 2005 IEEE
 Workshop on Information Assurance
 United States Military Academy, West Point, NY June 2005

likely files a process or user will access such that attempts
to access those outside of the working set are suspicious.
FABS extends this work by applying data mining tools to
trace data to determine sequential patterns of access.

The Self-Securing Storage System, or S4 [15, 16], uses
comprehensive versioning to record all data access within
the storage device. When used in conjunction with the
storage-based intrusion detection design, the system
reports access to “watched” data to an administrator log.
While similar to FABS, S4 has not implemented any
method for using pattern analysis in its intrusion detection
system, nor can it identify users who make anomalous
access since it is strictly part of the storage device.

Some host-based intrusion detection systems provide a
portion of the security outlined by FABS. Tripwire [17]
is an integrity checking tool that is useful for detecting
file system modifications, but cannot help unless the
attacker makes a change to a file. The eXpert-BSM [18]
tool provides surveillance of file level accesses within a
Sun Solaris system based on a set of filtering policies that
are platform-specific. Both of these solutions are
exclusively designed for use as part of the operating
system and are consequently ineffective if the host OS
becomes compromised.

VII. CONCLUSIONS

We have developed a prototype storage access monitoring
tool that will help to identify and minimize the effects of a
successful attack on stored data. The system is multi-
tiered to provide reliable performance regardless of the
potential compromise of the host system’s components.
We accomplished this by extracting and mining relevant
disk access information from multiple levels of the
system. Once we have generated the raw data defining
disk accesses, we have shown that it is possible to identify
seemingly innocuous behavior as suspect.

We have also implemented a visualization tool that
empowers the system administrator with timely warnings.
The administrator can analyze disk traffic using
VisFlowConnect-SS to decide an appropriate course of
action to handle the possible security breach.

VIII. REFERENCES

[1] Health Insurance Portability and Accountability Act
(HIPAA), PL 104-191, 104th Congress, August 1996.

[2] The Financial Modernization Act of 1999. PL 106-
102, 106th Congress, November 1999.

[3] Sarbanes-Oxley Act of 2002, PL 107-204, 107th
Congress, July 2002.

[4] J. Tucek, P. Stanton, E. Haubert, R. Hasan, L.
Brumbaugh, W. Yurcik "Trade-offs in Protecting Storage:
A Meta-Data Comparison of Cryptographic,
Backup/Versioning, Immutable/Tamper-Proof, and
Redundant Storage Solutions ," 13th NASA Goddard Conf
on Mass Storage Systems and Technologies, April 2005.

[5] P. Reiher, “File Profiling for Insider Threats,” Air
Force Research Laboratory, February 2002.

[6] N. Nguyen, P. Reiher, G. Kuenning, “Detecting
Insider Threats by Monitoring System Call Activity,”
IEEE Workshop on Information Assurance, June 2003.

[7] P. Litwin, “Stop SQL Injection Attacks Before They
Stop You,” MSDN Magazine, September 2004.

[8] J. McDermott, D. Goldschlag, “Storage Jamming,”
Database Security IX: Status and Prospects, Aug 1995.

[9] S. Jajodia, P. Ammann, C. McCollum, “Surviving
Information Warfare Attacks,” IEEE Comp., April 1999.

[10] C. Warrender, S. Forrest, and B. Pearlmutter,
“Detecting Intrusions Using System Calls: Alternative
Data Models,” IEEE Symp on Security and Privacy, 1999.

[11] W. Lee and S. Stolfo, “Data Mining Approaches for
Intrusion Detection,” 7th USENIX Security Symposium,
January 1998.

[12] Z. Li, Z. Chen, S. Srinivasan, Y. Zhou, “C-Miner:
Mining Block Correlations in Storage Systems,” 3rd
Conference on File and Storage Technology, March 2004.

[13] G. Kuenning, “The Design of the Seer Predictive
Caching System,” Mobile Computing Systems and
Application, December 1994.

[14] L. Mummert, M. Satyanarayanan, “Long Term
Distributed File Reference Tracing: Implementation and
Experience,” Carnegie Mellon University Technical
Report: CMU-CS-94-213, November 1994.

[15] J. Strunk, G. Goodson, M. Scheinholtz, C. Soules, G.
Ganger, “Self-Securing Storage: Protecting Data in
Compromised Systems,” 4th Symposium on Operating
Systems Design and Implementation, October 2000.

[16] A. Pennington, J. Strunk, J. Griffin, C. Soules, G.
Goodson, G. Ganger, “Storage-based Intrusion Detection:
Watching Storage Activity for Suspicious Behavior,” 12th
USENIX Security Symposium, August 2003.

[17] G. Kim, E. Spafford, “The Design and
Implementation of Tripwire: A File System Integrity
Checker,” 2nd ACM Conference on Computer and
Communications Security, February 1995.

[18] U. Lindqvist, P. Porras, “eXpert-BSM: A Host-based
Intrusion Detection System for Sun Solaris,” 17th Annual
Computer Security Applications Conference, Dec 2001.

ISBN 555555555/$10.00 © 2005 IEEE

