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ABSTRACT
As the recent denial-of-service attacks on several major In-
ternet sites have shown us, no open computer network is
immune from intrusions. The wireless ad-hoc network is
particularly vulnerable due to its features of open medium,
dynamic changing topology, cooperative algorithms, lack of
centralized monitoring and management point, and lack of
a clear line of defense. Many of the intrusion detection tech-
niques developed on a fixed wired network are not applicable
in this new environment. How to do it differently and ef-
fectively is a challenging research problem. In this paper,
we first examine the vulnerabilities of a wireless ad-hoc net-
work, the reason why we need intrusion detection, and the
reason why the current methods cannot be applied directly.
We then describe the new intrusion detection and response
mechanisms that we are developing for wireless ad-hoc net-
works.

1. INTRODUCTION
A wireless ad-hoc network consists of a collection of “peer”
mobile nodes that are capable of communicating with each
other without help from a fixed infrastructure. The inter-
connections between nodes are capable of changing on a con-
tinual and arbitrary basis. Nodes within each other’s radio
range communicate directly via wireless links, while those
that are far apart use other nodes as relays. Nodes usually
share the same physical media; they transmit and acquire
signals at the same frequency band, and follow the same
hopping sequence or spreading code. The data-link-layer
functions manage the wireless link resources and coordinate
medium access among neighboring nodes. The medium ac-
cess control (MAC) protocol is essential to a wireless ad-hoc
network because it allows mobile nodes to share a common
broadcast channel. The network-layer functions maintain
the multi-hop communication paths across the network; all
nodes must function as routers that discover and maintain
routes to other nodes in the network. Mobility and volatil-
ity are hidden from the applications so that any node can
communicate with any other node as if everyone were in a
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fixed wired network. Applications of ad-hoc networks range
from military tactical operations to civil rapid deployment
such as emergency search-and-rescue missions, data collec-
tion/sensor networks, and instantaneous classroom/meeting
room applications.

The nature of wireless ad-hoc networks makes them very
vulnerable to an adversary’s malicious attacks. First of all,
the use of wireless links renders a wireless ad-hoc network
susceptible to attacks ranging from passive eavesdropping
to active interfering. Unlike wired networks where an ad-
versary must gain physical access to the network wires or
pass through several lines of defense at firewalls and gate-
ways, attacks on a wireless ad-hoc network can come from
all directions and target at any node. Damages can include
leaking secret information, message contamination, and n-
ode impersonation. All these mean that a wireless ad-hoc
network will not have a clear line of defense, and every node
must be prepared for encounters with an adversary directly
or indirectly.

Second, mobile nodes are autonomous units that are capa-
ble of roaming independently. This means that nodes with
inadequate physical protection are receptive to being cap-
tured, compromised, and hijacked. Since tracking down a
particular mobile node in a large scale ad-hoc network can-
not be done easily, attacks by a compromised node from
within the network are far more damaging and much harder
to detect. Therefore, any node in a wireless ad-hoc network
must be prepared to operate in a mode that trusts no peer.

Third, decision-making in ad-hoc networks is usually decen-
tralized and many ad-hoc network algorithms rely on the
cooperative participation of all nodes. The lack of central-
ized authority means that the adversaries can exploit this
vulnerability for new types of attacks designed to break the
cooperative algorithms.

For example, the current MAC protocols for wireless ad-
hoc networks are all vulnerable. Although there are many
MAC protocols, the basic working principles are similar. In
a contention-based method, each node must compete for
control of the transmission channel each time it sends a mes-
sage. Nodes must strictly follow the pre-defined procedure
to avoid collisions or to recover from them. In a contention-
free method, each node must seek from all other nodes a
unanimous promise of an exclusive use of the channel re-
source, on a one-time or recurring basis. Regardless of the



type of MAC protocol, if a node behaves maliciously, the
MAC protocol can break down in a scenario resembling a
denial-of-service attack. Although such attacks are rare in
wired networks because the physical networks and the MAC
layer are isolated from the outside world by layer-3 gate-
ways/firewalls, every mobile node is completely vulnerable
in the wireless open medium.

Ad-hoc routing presents another vulnerability. Most ad-hoc
routing protocols are also cooperative in nature[14]. Un-
like with a wired network, where extra protection can be
placed on routers and gateways, an adversary who hijacks
an ad-hoc node could paralyze the entire wireless network by
disseminating false routing information. Worse, such false
routing information could result in messages from all nodes
being fed to the compromised node.

Intrusion prevention measures, such as encryption and au-
thentication, can be used in ad-hoc networks to reduce intru-
sions, but cannot eliminate them. For example, encryption
and authentication cannot defend against compromised mo-
bile nodes, which carry the private keys. Integrity validation
using redundant information (from different nodes), such as
those being used in secure routing [16, 17], also relies on
the trustworthiness of other nodes, which could likewise be
a weak link for sophisticated attacks.

The history of security research has taught us a valuable les-
son – no matter how many intrusion prevention measures are
inserted in a network, there are always some weak links that
one could exploit to break in. Intrusion detection presents
a second wall of defense and it is a necessity in any high-
survivability network.

In summary, a wireless ad-hoc network has inherent vulner-
abilities that are not easily preventable. To build a highly
secure wireless ad-hoc network, we need to deploy intrusion
detection and response techniques, and further research is
necessary to adapt these techniques to this new environmen-
t, from their original applications in fixed wired network. In
this paper, we propose our new model for intrusion detec-
tion and response in mobile, ad-hoc wireless networks. We
are currently investigating the use of cooperative statistical
anomaly detection models for protection from attacks on
ad-hoc routing protocols, on wireless MAC protocols, or on
wireless applications and services. We are integrating them
into a cross-layer defense system and are investigating its
effectiveness, efficiency, and scalability.

2. BACKGROUND OF INTRUSION DETEC-
TION

As network-based computer systems play increasingly vital
roles in modern society, they have become the targets of
our enemies and criminals. When an intrusion (defined as
“any set of actions that attempt to compromise the integri-
ty, confidentiality, or availability of a resource” [4]) takes
place, intrusion prevention techniques, such as encryption
and authentication (e.g., using passwords or biometrics), are
usually the first line of defense. However, intrusion preven-
tion alone is not sufficient because as systems become ever
more complex, while security is still often the after-thought,
there are always exploitable weaknesses in the systems due
to design and programming errors, or various “socially engi-

neered” penetration techniques (as illustrated in the recent
“I Love You” virus). For example, even though they were
first reported many years ago, exploitable “buffer overflow”
security holes, which can lead to an unauthorized root shel-
l, still exist in some recent system softwares. Furthermore,
as illustrated by recent Distributed Denial-of-Services (D-
DOS) attacks launched against several major Internet sites
where security measures were in place, the protocols and
systems that are designed to provide services (to the public)
are inherently subject to attacks such as DDOS. Intrusion
detection can be used as a second wall to protect network
systems because once an intrusion is detected, e.g., in the
early stage of a DDOS attack, response can be put into place
to minimize damages, gather evidence for prosecution, and
even launch counter-attacks.

The primary assumptions of intrusion detection are: user
and program activities are observable, for example via sys-
tem auditing mechanisms; and more importantly, normal
and intrusion activities have distinct behavior. Intrusion
detection therefore involves capturing audit data and rea-
soning about the evidence in the data to determine whether
the system is under attack. Based on the type of audit
data used, intrusion detection systems (IDSs) can be cate-
gorized as network-based or host-based. A network-based
IDS normally runs at the gateway of a network and “cap-
tures” and examines network packets that go through the
network hardware interface. A host-based IDS relies on op-
erating system audit data to monitor and analyze the events
generated by programs or users on the host. Intrusion de-
tection techniques can be categorized into misuse detection

and anomaly detection.

Misuse detection systems, e.g., IDIOT [8] and STAT [5],
use patterns of well-known attacks or weak spots of the sys-
tem to match and identify known intrusions. For example,
a signature rule for the “guessing password attack” can be
“there are more than 4 failed login attempts within 2 min-
utes”. The main advantage of misuse detection is that it can
accurately and efficiently detect instances of known attacks.
The main disadvantage is that it lacks the ability to detect
the truly innovative (i.e., newly invented) attacks.

Anomaly detection systems, for example, IDES [12], flag
observed activities that deviate significantly from the es-
tablished normal usage profiles as anomalies, i.e., possible
intrusions. For example, the normal profile of a user may
contain the averaged frequencies of some system commands
used in his or her login sessions. If for a session that is being
monitored, the frequencies are significantly lower or higher,
then an anomaly alarm will be raised. The main advantage
of anomaly detection is that it does not require prior knowl-
edge of intrusion and can thus detect new intrusions. The
main disadvantage is that it may not be able to describe
what the attack is and may have high false positive rate.

Conceptually, an intrusion detection model, i.e., a misuse
detection rule or a normal profile, has these two components:

• the features (or attributes, measures), e.g., “the num-
ber of failed login attempts”, “the averaged frequency
of the gcc command”, etc., that together describe a
logical event, e.g., a user login session;



• the modeling algorithm, e.g., rule-based pattern match-
ing, that uses the features to identify intrusions.

Defining a set of predictive features that accurately capture
the representative behaviors of intrusive or normal activities
is the most important step in building an effective intrusion
detection model, and can be independent of the design of
modeling algorithms.

In 1998, DARPA (U.S. Defense Advanced Research Projects
Agency) sponsored the first Intrusion Detection Evaluation
to survey the state-of-the-art of research in intrusion detec-
tion [11]. The results indicated that the research systems
were much more effective than the leading commercial sys-
tems. However, even the best research systems failed to
detect a large number of new attacks, including those that
led to unauthorized user or root access.

It is very obvious that the enemies, knowing that intrusion
prevention and detection systems are installed in our net-
works, will attempt to develop and launch new types of at-
tacks. In anticipation of these trends, IDS researchers are
designing new sensors and hence new audit data sources
and features, new anomaly detection algorithms, techniques
for combining anomaly and misuse detection, and system
architectures for detecting distributed and coordinated in-
trusions.

3. PROBLEMS OF CURRENT IDS TECH-
NIQUES

The vast difference between the two networks makes it very
difficult to apply intrusion detection techniques developed
for a fixed wired network to an ad-hoc wireless network.
The most important difference is perhaps that the latter
does not have a fixed infrastructure, and today’s network-
based IDSs, which rely on real-time traffic analysis, can no
longer function well in the new environment. Compared
with wired networks where traffic monitoring is usually done
at switches, routers and gateways, an ad-hoc network does
not have such traffic concentration points where the IDS
can collect audit data for the entire network. Therefore, at
any one time, the only available audit trace will be limited
to communication activities taking place within the radio
range, and the intrusion detection algorithms must be made
to work on this partial and localized information.

The second big difference is in the communication pattern
in a wireless ad-hoc network. Wireless users tend to be
stingy about communication due to slower links, limited
bandwidth, higher cost, and battery power constraints. Dis-
connected operations [15] are very common in wireless net-
work applications, and so is location-dependent computing
or other techniques that are solely designed for wireless net-
works and seldom used in the wired environment. All these
suggest that the anomaly models for wired network cannot
be used, as is, in this new environment.

Furthermore, there may not be a clear separation between
normalcy and anomaly in wireless ad-hoc networks. A n-
ode that sends out false routing information could be the
one that has been compromised, or merely the one that is
temporarily out of sync due to volatile physical movemen-

t. Intrusion detection may find it increasingly difficult to
distinguish false alarms from real intrusions.

In summary, we must answer the following research ques-
tions in developing a viable intrusion detection system for
wireless ad-hoc networks:

• What is a good system architecture for building in-
trusion detection and response systems that fits the
features of wireless ad-hoc networks?

• What are the appropriate audit data sources? How do
we detect anomaly based on partial, local audit traces
– if they are the only reliable audit source?

• What is a good model of activities in a wireless commu-
nication environment that can separate anomaly when
under attacks from the normalcy?

For the rest of this paper we will address these challenging
problems.

4. NEW ARCHITECTURE
Intrusion detection and response systems should be both
distributed and cooperative to suite the needs of wireless
ad-hoc networks. In our proposed architecture (Figure 1),
every node in the wireless ad-hoc network participates in
intrusion detection and response. Each node is responsible
for detecting signs of intrusion locally and independently,
but neighboring nodes can collaboratively investigate in a
broader range.

In the systems aspect, individual IDS agents are placed on
each and every node. Each IDS agent runs independently
and monitors local activities (including user and system-
s activities, and communication activities within the radio
range). It detects intrusion from local traces and initiates
response. If anomaly is detected in the local data, or if the
evidence is inconclusive and a broader search is warrant-
ed, neighboring IDS agents will cooperatively participate in
global intrusion detection actions. These individual IDS a-
gent collectively form the IDS system to defend the wireless
ad-hoc network.

The internal of an IDS agent can be fairly complex, but
conceptually it can be structured into six pieces (Figure 2).
The data collection module is responsible for gathering lo-
cal audit traces and activity logs. Next, the local detection
engine will use these data to detect local anomaly. Detec-
tion methods that need broader data sets or that require
collaborations among IDS agents will use the cooperative
detection engine. Intrusion response actions are provided
by both the local response and global response modules.
The local response module triggers actions local to this mo-
bile node, for example an IDS agent alerting the local user,
while the global one coordinates actions among neighbor-
ing nodes, such as the IDS agents in the network electing
a remedy action. Finally, a secure communication module
provides a high-confidence communication channel among
IDS agents.
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4.1 Data Collection
The first module, local data collection, gathers streams of
real-time audit data from various sources. Depending on the
intrusion detection algorithms, these useful data streams can
include system and user activities within the mobile node,
communication activities by this node, as well as communi-
cation activities within the radio range and observable by
this node. Therefore, multiple data collection modules can
coexist in one IDS agents to provide multiple audit streams
for a multi-layer integrated intrusion detection method (Sec-
tion 6).

4.2 Local Detection
The local detection engine analyzes the local data traces
gathered by the local data collection module for evidence
of anomalies. Because it is conceivable that the number of
newly created attack types mounted on wireless networks
will increase quickly as more and more network appliances
become wireless, we cannot simply employ a few expert rules
that are only capable of detecting the few known types of
attack. Furthermore, updating the rule-base with new de-

tection rules across a wireless ad-hoc network in a secure
and reliable manner is never easy. Therefore, we believe
that the IDS for a wireless ad-hoc network should main-
ly use statistical anomaly detection techniques. In general,
the procedure of building such an anomaly detection model
is the following:

• the normal profiles (i.e., the normal behavior pattern-
s) are computed using trace data from a “training”
process where all activities are normal;

• the deviations from the normal profiles are recorded
during a “testing” process where some normal and ab-
normal activities (if available) are included;

• a detection model is computed from the deviation da-
ta to distinguish normalcy and anomalies; although
there will always be “new” normal activities that have
not been observed before, their deviations from the
normal profiles should be much smaller than those of
intrusions.

In previous work on fixed wired networks [10], we have devel-
oped efficient data mining algorithms for computing normal
traffic patterns from TCP/IP trace data (i.e., tcpdump [6]
output), as well as classification techniques for building mis-
use and anomaly detection models. The results from the
1998 DARPA Evaluation showed that the detection models
produced by our system had one of the best overall perfor-
mances among the participating systems. The main chal-
lenges here are how to define the trace data, and how to de-
termine the types of patterns that best describe the normal
behavior. While there are many anomaly detection models
for user behavior and system activities (e.g., [2, 3, 9]), our
focus here is on new models for wireless ad-hoc networks
(Section 5).

4.3 Cooperative Detection
Any node that detects locally a known intrusion or anoma-
ly with strong evidence (i.e., the detection rule triggered
has a very high accuracy rate), can determine independent-
ly that the network is under attack and can initiate a re-
sponse. However, if a node detects an anomaly or intru-
sion with weak evidence, or the evidence is inconclusive but



warrants broader investigation, it can initiate a cooperative
global intrusion detection procedure. This procedure works
by propagating the intrusion detection state information a-
mong neighboring nodes (or further downward if necessary).

The intrusion detection state information can range from a
mere level-of-confidence value such as

• “With p% confidence, node A concludes from its local
data that there is an intrusion”

• “With p% confidence, node A concludes from its local
data and neighbor states that there is an intrusion”

• “With p% confidence, node A, B, C, ... collectively
conclude that there is an intrusion”

to a more specific state that lists the suspects, like

• “With p% confidence, node A concludes from its local
data that node X has been compromised”

or to a complicated record including the complete evidence.

As the next step, we can derive a distributed consensus al-
gorithm to compute a new intrusion detection state for this
node, using other nodes’ state information received recent-
ly. The algorithm can include a weighted computation un-
der the assumption that nearby nodes have greater effects
than far away nodes, i.e., giving the immediate neighbors the
highest values in evaluating the intrusion detection states.

For example, a majority-based distributed intrusion detec-
tion procedure can include the following steps:

• the node sends to neighboring node an “intrusion (or
anomaly) state request”;

• each node (including the initiation node) then propa-
gates the state information, indicating the likelihood
of an intrusion or anomaly, to its immediate neighbors;

• each node then determines whether the majority of the
received reports indicate an intrusion or anomaly; if
yes, then it concludes that the network is under attack;

• any node that detects an intrusion to the network can
then initiate the response procedure.

The rationales behind this scheme are as follows. Audit
data from other nodes cannot be trusted and should not be
used because the compromised nodes can send falsified data.
However, the compromised nodes have no incentives to send
reports of intrusion/anomaly because the intrusion response
may result in their expulsion from the network. Therefore,
unless the majority of the nodes are compromised, in which
case one of the legitimate nodes will probably be able to de-
tect the intrusion with strong evidence and will respond, the
above scheme can detect intrusion even when the evidence
at individual nodes is weak.

A wireless network is highly dynamic because nodes can
move in and out of the network. Therefore, while each node
uses intrusion/anomaly reports from other nodes, it does not
rely on fixed network topology or membership information
in the distributed detection process. It is a simple majority

voting scheme where any node that detects an intrusion can
initiate a response.

4.4 Intrusion Response
The type of intrusion response for wireless ad-hoc networks
depends on the type of intrusion, the type of network pro-
tocols and applications, and the confidence (or certainty) in
the evidence. For example, here is a few likely response:

• Re-initializing communication channels between nodes
(e.g, force re-key).

• Identifying the compromised nodes and re-organizing
the network to preclude the promised nodes.

For example, the IDS agent can notify the end-user, who
may in turn do his/her own investigation and take appro-
priate action. It can also send a “re-authentication” request
to all nodes in the network to prompt the end-users to au-
thenticate themselves (and hence their wireless nodes), using
out-of-bound mechanisms (like, for example, visual contact-
s). Only the re-authenticated nodes, which may collectively
negotiate a new communication channel, will recognize each
other as legitimate. That is, the compromised/malicious
nodes can be excluded.

5. ANOMALY DETECTION IN WIRELESS
AD-HOC NETWORKS

In this section, we discuss how to build anomaly detection
models for wireless networks. Detection based on activities
in different network layers may differ in the format and the
amount of available audit data as well as the modeling algo-
rithms. However, we believe that the principle behind the
approaches will be the same. To illustrate our approach, we
focus our discussions on ad-hoc routing protocols.

5.1 Detecting Abnormal Updates to Routing
Tables

The main requirement of an anomaly detection model is low
false positive rate, calculated as the percentage of normal-
cy variations detected as anomalies, and high true positive
rate, calculated as the percentage of anomalies detected. We
need to first determine the trace data to be used that will
bear evidence of normalcy or anomaly. For ad-hoc routing
protocols, since the main concern is that the false routing
information generated by a compromised node will be dis-
seminated to and used by other nodes, we can define the
trace data to describe, for each node, the normal (i.e., legit-
imate) updates of routing information.

A routing table usually contains, at the minimum, the nex-
t hop to each destination node and the distance (number
of hops). A legitimate change in the routing table can be
caused by the physical movement(s) of node(s) or network
membership changes. For a node, its own movement and the



Distance Direction Velocity PCR PCH
0.01 S 0.1 20 15
10 S 20 80 50
0.02 N 0.1 0 0
... ... ... ... ...

Table 1: Sample Trace Data for Ad-Hoc Routing

change in its own routing table are the only reliable informa-
tion that it can trust. Hence, we use data on the node’s phys-
ical movements and the corresponding change in its routing
table as the basis of the trace data. The physical movement
is measured by distance, direction, and velocity (this data
can be obtained by a built-in GPS device). The routing ta-
ble change is measured by the percentage of changed routes
(PCR), and the (positive or negative) percentage of changes
in the sum of hops of all the routes (PCH). We use per-
centages as measurements because of the dynamic nature of
wireless networks (i.e., the number of nodes/routes is not
fixed). Table 1 shows some fictional trace data for a node.

During the “training” process, where a diversity of normal
situations are simulated, the trace data is gathered for each
node. The trace data sets of all nodes in the training network
are then aggregated into a single data set, which describes
all normal changes in routing tables for all the nodes. A
detection model which is learned from this aggregated data
set will therefore be capable of operating on any node in the
network.

A normal profile on the trace data in effect specifies the cor-
relation of physical movements of the node and the changes
in the routing table. We can use the following scheme to
compute the normal profile:

• denote PCR the class (i.e. concept), and distance, di-
rection, velocity, and PCH the features describing the
concept;

• use n classes to represent the PCR values in n ranges,
for example, we can use 10 classes each representing
10 percentage points – that is, the trace data belongs
to n classes;

• apply a classification algorithm to the data to learn a
classifier for PCR;

• repeat the above for PCH, that is, learn a classifier for
PCH;

A classification algorithm, e.g., RIPPER [1], can use the
most discriminating feature values to describe each concep-
t. For example, when using PCR as the concept, RIPPER
can output classification rules in the form of: “if (distance
≤ 0.01 AND PCH ≤ 20) then PCR = 2; else if ...”. Each
classification rule (an “if”) has a “confidence” value, calcu-
lated as the percentage of records that match both the rule
condition and rule conclusion out of those that match the
rule condition. The classification rules for PCR and PCH
together describe what are the (normal) conditions that cor-
relate with the (amount of) routing table changes. We use
these rules as the normal profiles.

PCR deviation PCH deviation Class
0.0 0.0 normal
0.1 0.0 normal
0.2 0.2 normal
0.9 0.5 abnormal
0.3 0.1 normal
... ... ...

Table 2: Sample Deviation Data

Checking an observed trace data record (that records a rout-
ing table update) with the profile involves applying the clas-
sification rules to the record. A misclassification, e.g., when
the rules say it is “PCR = 3” but in fact it is “PCR = 5”,
is counted as a violation. We can use the “confidence” of
the violated rule as the “deviation score” of the record. In
the “testing” process, the deviation scores are recorded. For
example, if abnormal data is available, we can have devia-
tion data like those shown in Table 2. We can then apply a
classification algorithm to compute a classifier, a detection
model, that uses the deviation scores to distinguish abnor-
mal from normal.

If abnormal data is not available, we can compute the nor-
mal clusters of the deviation scores, where each score pair is
represented by a point (PCR deviation, PCH deviation) in
the two-dimensional space, e.g., (0.0, 0.0), (0.2, 0.2), (0.3,
0.1), etc. The “outliers”, i.e., those that do not belong to
any normal cluster, can then be considered as anomalies.
Clustering is often referred to as “un-supervised learning”
because the target clusters are not known a priori. Its dis-
advantage is that the computation (i.e., the formation) of
clusters is very time consuming. If the application envi-
ronment allows a tolerable false alarm rate, e.g., 2%, then
the clustering algorithm can be parameterized to terminate
when sufficient, e.g., greater than 98%, points are in proper
clusters.

A poor performance of the anomaly detection model, e.g., a
higher than acceptable false alarm rate, indicates that the
data gathering (including both “training” and “testing” pro-
cesses) is not sufficient, and/or the features and the model-
ing algorithms need to be refined. Therefore, repeated trials
may be needed before a good anomaly detection model is
produced.

In the discussion thus far, we have used only the minimal

routing table information in the anomaly detection model
to illustrate our approach, which can be applied to all rout-
ing protocols. For a specific protocol, we can use additional
routing table information and include new features in the
detection model to improve the performance. For example,
for DSR ad-hoc routing protocol [7, 13], we can add source
route information (the complete, ordered sequence of net-
work hops leading to the destination). We can also add pre-
dictive features according to the “temporal and statistical”
patterns among the routing table updates, following the sim-
ilar feature construction process we used to build intrusion
detection models for wired networks [10]. For example, for
a wired TCP/IP network, a “SYN-flood” DOS attack has a
pattern which indicates that a lot of half-open connections
are attempted against a service in a short time span. Ac-



cordingly, a feature, “for the past 2 seconds, the percentage
of connections to the same service that are half-open” was
constructed and had been proved to be highly predictive.
Similarly, in a wireless network, if an intrusion results in a
large number of routing table updates, we can add a feature
that measures the frequency (how often) the updates take
place.

Our objective in this study is to lead to a better understand-
ing of the important and challenging issues in intrusion de-
tection for ad-hoc routing protocols. First, using a given set
of training, testing, and evaluation scenarios, and modeling
algorithms (e.g., with RIPPER as the classification algo-
rithm for protocol trace data and “nearest neighbor” as the
clustering algorithm for deviation scores), we can identify
which routing protocol, with potentially all its routing table
information used, can result in better performing detection
models. This will help answer the question “what informa-
tion should be include in the routing table to make intrusion
detection effective.” This finding can be used to design more
robust routing protocols. Next, using a given routing proto-
col, we can explore the feature space and algorithm space to
find the best performing model. This will give insight to the
general practices of building intrusion detection for wireless
networks.

5.2 Detecting Abnormal Activities in Other
Layers

Anomaly detection for other layers of the wireless networks,
e.g., the MAC protocols, the applications and services, etc.,
follows a similar approach. For example, the trace data for
MAC protocols can contain the following features: for the
past s seconds, the total number of channel requests, the
total number of nodes making the requests, the largest, the
mean, and the smallest of all the requests, etc. The class

can be the range (in the number) of the current requests by
a node. A classifier on this trace data describes the normal
context (i.e. history) of a request. An anomaly detection
model can then be computed, as a classifier or clusters, from
the deviation data.

Similarly, at the wireless application layer, the trace data
can use the service as the class (i.e., one class for each ser-
vice), and can contain the following features: for the past s

seconds, the total number of requests to the same service,
the number of different services requested, the average dura-
tion of the service, the number of nodes that requested (any)
service, the total number of service errors, etc. A classifier
on the trace data then describes for each service the normal
behaviors of its requests.

Many attacks generate different statistical patterns than
normal requests. Since the features described above are de-
signed to capture the statistical behavior of the requests, the
attacks, when examined using the feature values, will have
large deviations than the normal requests. For example,
compared with normal requests to MAC or an application-
level service, DOS attacks via resource exhaustion normally
involve a huge number of requests in a very short period of
time; a DDOS has the additional tweak that it comes from
many different nodes.

6. MULTI-LAYER INTEGRATED INTRU-
SION DETECTION AND RESPONSE

Traditionally, IDSs use data only from the lower layers:
network-based IDSs analyze TCP/IP packet data and host-
based IDSs analyze system call data. This is because in
wired networks, application layer firewalls can effectively
prevent many attacks, and application-specific modules, e.g.,
credit card fraud detection systems, have also been develope-
d to guard the mission-critical services.

In the wireless networks, there are no firewalls to protect
the services from attack. However, intrusion detection in
the application layer is not only feasible, as discussed in the
previous section, but also necessary because certain attacks,
for example, an attack that tries to create an unauthorized
access “back-door” to a service, may seem perfectly legiti-
mate to the lower layers, e.g., the MAC protocols. We also
believe that some attacks may be detected much earlier in
the application layer, because of the richer semantic infor-
mation available, than in the lower layers. For example, for
a DOS attack, the application layer may detect very quickly
that a large number of incoming service connections have no
actual operations or the operations don’t make sense (and
can be considered as errors); whereas the lower layers, which
rely only on information about the amount of network traf-
fic (or the number of channel requests), may take a longer
while to recognize the unusually high volume.

Given that there are vulnerabilities in multiple layers of
wireless networks and that an intrusion detection module
needs to be placed at each layer on each node of a network,
we need to coordinate the intrusion detection and response
efforts. We use the following integration scheme:

• if a node detects an intrusion that affects the entire
network, e.g., when it detects an attack on the ad
hoc routing protocols, it initiates the re-authentication
process to exclude the compromised/malicious nodes
from the network;

• if a node detects a (seemingly) local intrusion at a
higher layer, e.g., when it detects attacks to one of
its services, lower layers are notified. The detection
modules there can then further investigate, e.g., by
initiating the detection process on possible attacks on
ad hoc routing protocols, and can respond to the at-
tack by blocking access from the offending node(s) and
notifying other nodes in the network of the incident.

In this approach, the intrusion detection module at each
layer still needs to function properly, but detection on one
layer can be initiated or aided by evidence from other layers.
As a first cut of our experimental research, we allow the
evidence to flow from one layer to its (next) lower layer by
default, or to a specific lower layer based on the application
environment.

The “augmented” versions of the detection model at a lower
level are constructed as follows. In the “testing” process,
the anomaly decision, i.e., either 1 for “yes” or 0 for “no”
from the upper layer is inserted into the deviation score of
the lower level, for example, (0.1, 0.1) now becomes (0.1,



0.1, 0). In other words, the deviation data also carries the
extra information passed from the upper level. An anoma-
ly detection model built from the augmented data therefore
combines the bodies of evidence from the upper layers and
the current layer and can make a more informed decision.
The intrusion report sent to other node for cooperative de-
tection also includes a vector of the information from the
layers.

With these new changes, the lower layers now need more
than one anomaly detection model: one that relies on the
data of the current layer and therefore indirectly uses ev-
idence from the lower layers, and the augmented one that
also considers evidence from the upper layer.

The multi-layer integration enables us to analyze the attack
scenario in its entirety and as a result, we can achieve bet-
ter performance in terms of both higher true positive and
lower false positive rates. For example, a likely attack s-
cenario is that an enemy takes control of the mobile unit
of a user (by physically disable him or her), and then uses
some system commands to send falsified routing informa-
tion. A detection module that monitors user behavior, e.g.,
via command usage, can detect this event and immediately
(i.e., before further damage can be done) cause the detection
module for the routing protocols to initiate the global detec-
tion and response, which can result in the exclusion of this
compromised unit. As another example, suppose the users
are responding to a fire alarm, which is a rare event and may
thus cause a lot of unusual movements and hence updates
to the routing tables. However, if there is no indication that
a user or a system software has been compromised, each in-
trusion report sent to other nodes will have a “clean” vector
of upper layer indicators, and thus the detection module for
the routing protocols can conclude that the unusual updates
may be legitimate.

7. CONCLUSION
We have argued that any secure network will have vulner-
ability that an adversary could exploit. This is especially
true for wireless ad-hoc networks. Intrusion detection can
compliment intrusion prevention techniques (such as encryp-
tion, authentication, secure MAC, secure routing, etc.) to
improve the network security. However new techniques must
be developed to make intrusion detection work better for the
wireless ad-hoc environment.

Through our continuing investigation, we have shown that
an architecture for better intrusion detection in wireless ad-
hoc networks should be distributed and cooperative. A s-
tatistical anomaly detection approach should be used. The
trace analysis and anomaly detection should be done local-
ly in each node and possibly through cooperation with all
nodes in the network. Further, intrusion detection should
take place in all networking layers in an integrated cross-
layer manner.

Currently, we are continuing our investigation in the archi-
tecture issues, the anomaly detection model, and the multi-
layer integration approach. For architecture study, we are
refining its design and plan to implement it and study it-
s performance implications. For anomaly detection model,
we are studying the effectiveness and scalability of our ap-

proach for building anomaly detection models for ad-hoc
routing protocols and for other layers of wireless network-
ing. In particular, we will first focus on two questions about
ad-hoc routing: what information a routing protocol should
include to make intrusion detection effective, and what is
the best anomaly detection model for a given routing pro-
tocol. Finally, we will study the effectiveness gain (i.e., in
detection rate) with the multi-layer integration approach, as
well as its performance penalties.
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