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Abstract

This paper describes an application of an Al-based multiagent system to the management and diagnosis of TCP/IP-based intranet/intra-AS
(autonomous system) computer networks. A copy of this system is attached to each network segment and is made responsible for that
segment. It captures packets in the promiscuous mode and analyzes their data in real time. Based on this analysis, the data needed to manage
the local network are obtained, any changes in the local network or network components are recognized, and problems are detected. When a
problem is reported by a user or detected by the system, the problem is diagnosed cooperatively or autonomously depending on its type. The
activities of the agents are coordinated based on the concepts of coordination levels and functional organizations. An example of cooperative
diagnosis clarifies why this multiagent approach is essential for network management. © 2001 Elsevier Science B.V. All rights reserved.
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1. Introduction

Computer networks (the Internet) are now indispensable
in many fields. Ever-advancing network technologies have
drastically changed not only how the computer is used but
also the styles, methods, and environments of business,
education, research, and daily life. Computer networks
can lower costs and improve the timeliness and effective-
ness of work-related matters. One problem with this heavy
reliance on computer networks, however, is that any trouble
in the network may result in lost business opportunities or
crippled research projects. Networks must therefore be
made to operate with little or no downtime, which means
that network problems must be quickly resolved.

There are a number of Al-based management and diag-
nostic systems for one of telecommunication, wide-area,
ISDN, ATM, and radio networks [1,9,11], but most of
them focus on mainly layer-2 and lower-layer management.
For constant network operations, the system that can moni-
tor the network from higher-layer viewpoint is required. A
number of SNMP-based (Simple Network Management
Protocol) network management systems are commercially
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available. These systems can usually manage TCP/IP-based
networks. However, these systems can only show network-
related data to network managers; there is the still problem
that the managers are required to analyze a huge amount of
data, have a wide variety of computer and network knowl-
edge, and run about the building(s) with the network analy-
zer. We believe that Al techniques are essential to overcome
these problems. Furthermore, cooperative distributed
management and diagnosis is a natural approach for geogra-
phically and functionally distributed networks [17], but
many systems are still centralized; in these system, the
scope of networks from the network management system
is limited. Even if such systems were decentralized [16],
there has been little discussion of how they might cooperate.

In this paper, we describe our application of a multiagent
system called LODESv2 (Large-internet Observation and
Diagnostic Expert System, version 2) for detecting and
isolating problems of TCP/IP-based networks (with shared
multiple-access media, such as Ethernet, FDDI, and token
ring) in a cooperative manner. A copy of this system is
attached to each network segment and is made responsible
for that segment. The copy is called the LODES agent,
which is an individually autonomous Al-based expert
system with coordination ability. It captures packets in the
promiscuous mode and analyzes their data in real time.
Based on this analysis, the data needed to manage the
local network are obtained, any changes in the local network
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Fig. 1. An example of ISR problem.

or network components are recognized, and problems are
detected. When a problem is reported by a user or detected
by the system, the problem is diagnosed cooperatively or
autonomously depending on its type. The previous version
of this system (LODESvI1, which was also a multiagent
system) was described briefly in Ref. [12], but its basic
design concept, especially from the viewpoint of a multi-
agent system approach, was not. Our new version,
LODESV2, has three additional features that make it more
efficient for real-world activities. First, coordination levels
have been introduced for dynamically changing coordina-
tion strategies. They also separate descriptions of diagnosis
from ones of coordination strategies. Second, each agent
now has the ability to learn of coordination activities, to
make collaboration more efficient. Finally, functional orga-
nizations have been added for specifying where an agent
should send a message and with whom it should coordinate
its activities.

In this paper, we discuss the significance, design concept,
architectures, and cooperation mechanisms (including coor-
dination levels and functional organizations) of LODESv2
from the viewpoint of multiagent approaches. The learning
of coordination activities is discussed elsewhere [15]. This
paper is organized as follows. First, we discuss why this
kind of system is necessary and why it should be a multi-
agent system. Next, the system architecture and features of
LODESV2, especially the local monitoring and coordinated
activities, are described. Then, the expressions and infer-
ence mechanisms of its cooperative inference activities
are presented. Next, an example of cooperative diagnosis
for a problem that cannot be isolated by a single agent is
described. Finally, its performance and further research
issues are mentioned. LODESvV2 is simply called LODES
hereafter.

2. Motivation
2.1. Why a diagnostic system?

Computer networks (the Internet and TCP/IP-based
network) now play an important role in many social activ-
ities. If a problem occurs in one of these networks, however,
it can be quite difficult to troubleshoot for a number of
reasons. First, these networks are functionally, physically,

and geographically distributed. Because a number of nodes
for network operations and services (such as DNS, DHCP,
and Web servers) work together in a cooperative manner,
network managers have to check these nodes, which may be
located in different rooms and/or at distant sites. Moreover,
a locally observed problem may actually originate in a node
at a different site. Second, network managers must often
analyze a huge amount of packet data because the number
of packets during only a few seconds can easily be more
than a thousand. Data analysis is thus not an easy task.
Third, network problems can occur intermittently,’ making
them difficult to reproduce and troubleshoot. Fourth, the
diverse growth of networks has led to different types of
networks. A wide range of knowledge about computers
and communications is thus required for troubleshooting.
Finally, internetworking has dynamic features; for example,
new hosts and new network segments can be connected, a
host can be replaced by one running another OS, and routes
can change over time. These dynamic changes make it diffi-
cult to isolate the cause of a problem. Furthermore, network
problems can widely affect many people because a network
is a shared resource. These situations are compounded in
communities where users are not familiar with computer
network technologies. There is thus a strong need for auto-
matic network management and diagnostic systems that
support easy, quick, and smart troubleshooting.

2.2. Why a multiagent system?

LODESv1 was initially intended to be developed as a
centralized system. Within a few weeks, however, it became
clear that it should be a cooperative distributed system for a
number of reasons. The major reason was that there are
problems incapable of being resolved or efficiently resolved
without cooperation. For example, in the environment

! 1t is possible for a problem to look intermittent even if it is not. For
example, suppose that several hosts have processes that send problematic
packets (such as the ICMP netmask request broadcast shown in Fig. 4)
periodically but not synchronously. Some time later (say 30 min to a
week), these processes, from weak coupling, become inadvertently
synchronized [3,10]. Each problematic packet results in a only small
problem, but when they are sent simultaneously, they cause a serious
problem. Because the synchronization is unexpected, this looks like an
intermittent problem.
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shown in Fig. 1, a user tries to send a telnet request from
local host host; attached to network segment NS;, but no
response is received from target host host, in network
segment NS, because the target host uses static routing,
and it has no routing defined to host,; thus, host, cannot
reply to the telnet request (this problem is hereafter referred
to as an incorrect static routing (ISR) problem). The
network diagnostic system, agent;, attached to the local
network segment observes that the telnet request is actually
sent to the appropriate router and that no reply is returned.
However, it may not be able to diagnose this problem due to
one of many possible causes: an intermediate router may
have failed, the target host may be in the power-off state, the
target host may have an incompatible netmask, the target
host may have replied but the packet was lost somewhere,
the reply packet may have an incorrect check sum, the TTL
(time-to-live) number may be too small, and so on. On the
other hand, no problem can be detected by the diagnostic
system attached to the target network segment, agent,,
because a routing function is not used to communicate
with hosts in the same segment; host, always responds
correctly to test packets from agent,, thus agent, believes
that host, has no problem. Human managers resolve this
type of problem by cooperating with the managers in charge
of the remote network segments; a distributed multiagent
approach is thus quite natural. How this example problem
can be cooperatively diagnosed is discussed in Section 5.

Additionally, we must take into account how the Internet
has been expanding, which is quite different from the expan-
sion of other networks. For example, telephone networks
were typically built by government agencies, initially in a
top—down manner. A centralized system is thus a good
approach to managing and diagnosing this type of network.
In contrast, infer-nets are being built by connecting local,
regional, and small-scale networks. A message transmitted
to a destination may have to pass through other organiza-
tions and even other countries. This poses the question,
should a centralized system be allowed to probe the
networks of other organizations and investigate them?
This situation can also occur within the intranet/intra-AS
internet of a large company, organization, or university.
Human experts have to hold high-level talks for the purpose
of troubleshooting, questioning whether or not the message
actually arrived and was relayed to the correct gateway/
router, without knowing the details of the network structures
and operating policies of other organizations. Such natural
activities of human experts have inspired the use of the
multiagent systems technique.

3. Multiagent system for network management and
diagnosis

In this section, we introduce our system for managing
computer networks and diagnosing TCP/IP-related
problems in a distributed manner.

3.1. Design concept

3.1.1. Local management

A basic concept of LODES is the local management,
meaning that a copy of this system (each autonomous
system is referred to as an agent in the following sections)
is attached to each network segment and is made responsible
for local events. Centralized systems that monitor all
network components use a number of protocols for network
management, such as ICMP (internetwork control message
protocol) and SNMP, to determine the state of the entire
network. The packets obtaining management information
used by these protocols must traverse a number of segments,
thus causing a certain amount of traffic. The larger the
network, the heavier this extra traffic load. Furthermore,
network management information may be unable to be
obtained because of a network problem. In the LODES
concept, each agent obtains and analyzes only the informa-
tion needed to manage the local network. This not only
reduces the non-local traffic load but also enables the
agent to fully understand the state of the local network as
described below.

3.1.2. Passive management

Local management reduces the agent’s work, so passive
management becomes practical. By ‘passive management’
we mean that, in a realtime manner, a system acquires
network management information and manages the network
by analyzing the data in packets captured in the promiscu-
ous mode without sending or receiving additional manage-
ment packets. For example, the ‘ping’ (ICMP echo request)
packets sent to hosts that are communicating normally with
other hosts are not needed. Moreover, LODES can create a
model of the local network configuration and features by
observing packets. This model involves in local hosts,
routers, and servers (such as DNS and DHCP/BOOTP
servers) and network states. It is also used to recognize
network activities such as the current activity state of each
host (from IP and TCP packets), changes in network states
(from traffic and other statistics), the detection of new and
replaced hosts (from I[P addresses and MAC numbers),
partial routing information (from routing protocol packets),
the services provided by local hosts (from the port numbers
of TCP and UDP headers), and the IP addresses of DNSs
and routers (from DNS and routing packets). SNMP, ICMP,
and other test packets are used to get necessary complemen-
tary information for building the local network model” and
to diagnose network problems.

3.1.3. Problem detection

Passive management also enables the system to detect
problems (semi-)automatically. When the network has a
problem, special kinds/forms of packets, different

% Data that are obtained using SNMP include routing tables, interface
types and bandwidth in the local routers.
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Fig. 2. LODES agents attached to segments.

packet-flow patterns, and/or abnormal statistical data are
often observed. Their correspondence to possible problems
can point to the cause of a problem. For example, a packet
whose destination IP address indicates another network
segment but whose target MAC number is the broadcast
number or is not that of the router will be lost or duplicated.
This phenomenon suggests an incorrect routing definition in
the source host. As another example, multiple ARP (address
resolution protocol) reply packets indicate multiple IP
address assignments; this usually makes communication
impossible. Not all problems can be detected in this manner.
For example, a host that cannot send packets (because of a
hardware failure or a software bug) will not be detected
because there are no packets to observe. Such problems
must be reported to LODES by network managers or host
users.

This automatic problem detection can achieve effective
packet capture. When a problem or an indication of a
problem is observed, packets are stored in a timely manner
for detailed analysis. This reduces the amount of data to be
analyzed and thus reduces the inference time. Intermittent
and potential problems can also be found automatically. For
example, a ‘broadcast storm’ [3] may not exhibit any symp-
toms in a network segment if only a few hosts are attached,
but symptoms may arise as more hosts are added. The agent
can advise the network managers of this situation.

Chales

n

NoC PGen
T~ [aw]e

LODES agent ~

Fig. 3. Agent structure.

3.1.4. Cooperative monitoring and diagnosis

Local management limits the cognitive area of an agent.
Cooperation among agents overcomes this limitation for
non-local problem diagnosis. Although each agent has a
detailed management model of its local network segment,
some problems require coordinated activities such as
requesting tasks and/or getting information about the
problem symptoms and non-local network models.

In general, actions are coordinated if their results will be
used by other agents and/or if doing so will help balance the
load. Coordinated actions are determined based on each
agent’s world model, which is subjective but contains a
partial global perspective. Thus, they usually include non-
local data (such as the inference process and planning states
of other agents and the domain-level data in other agents) as
well as local data.

In LODES, coordination is used for more specific
purposes.

Non-local problem detection. Symptoms of a problem
may be observed in a network segment at a distance from
the segment in which the problem originated. For example,
the ISR problem (cf. Section 2 and Fig. 1) does not make
local communications (between hosts in the local segment)
impossible because local communications do not use a rout-
ing table. This problem can be observed only on other
network segments.

Problem notification. It is often necessary for an agent to not
only detect a problem but also notify the agent in the segment
where it originated. This is not simple because the remote
agent often cannot observe any problematic symptoms. It is
thus necessary to send evidence of the problem to the remote
agent so that the remote agent will change the hypothesis and
plan it currently holds. Again in the example of the ISR
problem, the routing function is never used in local commu-
nications; all tests in the local segment (i.e. those run by agent,)
show that the local host (host,) is working correctly. Thus,
agent; must send evidence of the problem to agent,.
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ICMP 6:53:38 410ms x:x:x:0:a8:8 x:x:x:1:2:2a Hostl > hostX I:14950

ttl:255 C:0xlaa0 TYPE(18)

Netmask reply 255.255.0.0

UDP 6:53:38 410ms x:x:x:0:6f:8 x:x:x:0:d1:8 HostA.nfs > HostB.1023
ttl:255 L:136 RPC(ID:-1444505557 T:1(Reply) S:0 VRF:0)
ICMP 6:53:38 410ms x:x:x:0:31:9 x:x:x:1:2:2a Host2 > hostX I1:19403

ttl:255 C:0x93a TYPE(18)

Netmask reply 255.255.0.0

ICMP 6:53:38 410ms x:x:x:0:2e:9 x:x:x:1:2:2a Host8 > hostX I:34054

ttl:255 C:0xd001 TYPE(18)

Netmask reply 255.255.0.0

ICMP 6:53:38 410ms x:x:x:0:2d:9 x:x:x:1:2:2a Host9 > hostX I:49597

ttl:255 C:0x934b TYPE(18)

Netmask reply 255.255.0.0

* ICMP 6:53:38 410ms x:x:x:0:ed:8 x:x:x:1:2:2a Hostl0 > hostX I:22119

ttl:255 C:0x11d4 TYPE(18)

Netmask reply 255.0.0.0

ICMP 6:53:38 420ms x:X:x:0:2Cc:9 x:x:X:1:2:2a Hostll > hostX I:38617

ttl:255 C:0xbe30 TYPE(18)

Netmask reply 255.255.0.0

ICMP 6:53:38 420ms x:X:x:0:16:b x:x:x:1:2:2a Hostl9 > hostX I:15598

ttl:255 C:0x2a58 TYPE(18)

Netmask reply 255.255.0.0

UDP 6:53:38 420ms x:x:x:0:d1:8 x:x:x:0:6f:8 HostB.1023 > HostA.nfs
ttl:255 L:120 RPC(ID:-1427728341 T:0(Call) V:2 PROG:100003 (nfs))

Fig. 4. Example of captured packets when a problem is detected. This is an example of a detected problematic situation in which all hosts in the local segment
(more than 200) simultaneously replied to an ICMP netmask request [4] (this format for printed packet data is similar to that produced by Van Jacobson’s
tcpdump program for human network experts). This data is read and analyzed by the LAND component. Before these reply packets were observed, many ARP
request packets (broadcast) and their replies were observed though they are not shown in this figure. Furthermore, the host Host10 had a different netmask (so
this capture is done for two reasons, ‘many ARP request flow’ and ‘incompatible netmask’). This is a typical intermittent problem that causes network
congestion and soon disappears. However, the automatic detection reduces the amount of packet data that must be analyzed. This is quite important for both
efficient system and human diagnosis. In conventional protocol analyzers, even if packets are captured, it is often difficult to identify data indicating a problem;
to use the filter and search function, network managers have to predict what type of problem has occurred, and if this prediction is inappropriate, the problem is

not located.

Network model comparison. The model of the local
network and a partial (incomplete) model of the non-local
network are exchanged by agents to help them to understand
the configuration of the non-local network segments and/or
to verify their generated models. For example, the ISR
problem is observed only by agent;, while agent, thinks
that host, can communicate with any other host because it
does not observe any malfunction. Even if agent; sends
evidence that suggests host, is not working correctly, it is
meaningless if agent, does not analyze the data appropri-
ately. In such situations, a comparison of the network
models may generate a sensible suggestion or an answer.
In this example, the models of hosts differ. By identifying
differing parts and using diagnostic knowledge about them,
LODES can be associated with a number of specific hypoth-
eses, one of which is the ISR problem.

Task and data requests. Tasks can be run to balance the
load and to select and verify hypotheses. Requests for data
needed to solve a problem may lead to new tasks in the
receiver agents. In the ISR problem, for example, agent,
may think that the route between itself and agent; is
temporarily congested, making it impossible for the request-
ing service to receive reply packets. To verify this, agent,
requests agent; to ‘ping to host,” and ‘ping to other hosts in
NS,’. Note that the results of network observation often
differ between agents, so agents may perform the same
actions even though they may be redundant.

Problem reproduction. Reproducing a problem is one

way to convince an agent that a problem exists. It can also
enable an agent to capture timely data. Reproducing and
observing a problem, however, often requires coordinated
activities. Again in the ISR problem example agent, never
observes the ISR problem so it does not recognize that its
local host has a problem. In this case, host; (or agent,) sends
test packets, and agent, looks at them and at the packets sent
in reply to them. This coordinated reproduction and obser-
vation will convince agent, of the existence of a problem in
host,. These actions can also be seen as synchronization, a
type of coordination activity. Note that the help of human
managers or users is sometimes necessary for reproduction.

In LODES, the agents are homogeneous even though they
are situated in different environments. Their automatic
management and troubleshooting capabilities are identical,
only their local network data is different. Because they look
at a problem differently, they generate different hypotheses
about what is causing the problem and develop different
plans about what to do next.

3.2. System configuration and architecture

The global configuration of LODES is shown in Fig. 2. A
LODES agent is attached to the network segment for which
it is made responsible. When a problem is detected or is
reported by a network manager, a number of selected agents
start the diagnostic processes. Diagnosis is performed coop-
eratively or autonomously depending on the problem type.
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Fig. 5. LAND architecture.

The structure of a LODES agent is shown in Fig. 3. Each
agent consists of four components: a network observer
component (NoC) (this component corresponds to NOBS
in LODESv1), a network packet generator (PGen), a local
network diagnostic system (LAND), and a communication
interface for large TCP/IP-network diagnosis expert
systems (Chales). NoC captures packets in the promiscuous
mode and analyzes them in real time, so it:

1. Generates management information and statistical data
concerning its local network

2. Locates network problems based on its analysis of the
captured packets and its embedded knowledge.

An example of packets captured when a problem is
observed is shown in Fig. 4. To make this detection efficient,
NoC uses only simple pattern matching. It may issue a
warning even if there is no real problem, because LAND
determines whether or not it is really a problem. The detec-
tion process thus errs on the safe side so that no serious
problems are missed. The detection of a problem by NoC
initiates a diagnostic process in LAND. PGen sends test and
management packets (such as SNMP), receives their
responses and/or simulates communication behaviors
under the control of LAND. It also reports to LAND the
amount and number of packets sent or received during each
operation indicated by LAND. These data are stored in the
LAND knowledgebase as history to achieve self-monitor-
ing; they can be used to predict the resources being used and
effects on the environment of performing an operation.
LAND is the main management and diagnosis component.
It uses SNMP and a number of test packets to gather
management information that cannot be obtained simply
by observation. It controls all other components during
this diagnosis. Chales makes connections to other LODES
agents, sends the messages requested by LAND and
receives all messages from other agents.

LODES has knowledge involved in: (1) communication
protocols (such as TCP/IP/Ethernet (IEEE 802.3) protocol
suites’ [4], DNS, dynamic routing protocols), (2) network
management protocols (such as SNMP and ICMP), (3)
problem detection, (4) diagnosis, and (5) cooperative work
(how and when to communicate, and with whom). All
necessary management data are generated by NoC and
LAND (if all routers in the local segment can speak
SNMP). These data include all types of addresses (including
IP addresses, MAC numbers, IP broadcast address,
frequently used multicast addresses, and the subnet mask),
servers providing public services (including DNSs, Reverse
ARP servers, DHCP (BOOTP) [7] servers, gateways, and IP
routers), behavioral data on each host (services provided by
the host and how to react to problematic packets), the types
of lines to adjacent segments (such as the throughput and
MTU), local physical and logical topologies, and IP
addresses of other LODES agents. The details of NoC,
PGen, and Chales are outside the scope of this paper since
this paper focuses on multi-agent diagnosis; they are
described elsewhere [12].

3.3. Structure of LAND component

The LAND component is in charge of diagnosing
problems in cooperation with the other LODES agents.
This diagnosis is based on the locally generated model
about the world. The model includes partial non-local data
(domain data in and inference states of other agents), as well
as the locally obtained domain data (such as network config-
uration, management data, and observed current network
states, as shown in Section 3.2) and the local inference states
(e.g. the current hypothesis and plan and scheduled opera-
tions). The model is expressed by a set of variables stored in

* Currently, this system assumes that the datalink network is Ethernet or
IEEE 802.3 because these are the most widely used ones.
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Fig. 6. Example of Generated Plan and Task Dependency Structure. Plans in this example are generated to investigate the local network traffic load, that is, to
calculate the value of variable network-1oad, which is used in the current hypothesis verification. The task sequences in level-2 are generated to calculate
this value. There are three sequences but one of them will be selected in the Planner. The selected sequence is further expanded to the operation sequence (only
the first part of the sequence corresponding to the first element of the level-2 task sequence is shown in this paper). Of course, these operations also refer to
other variables (enable-relation as shown in this figure), but they are scheduled to calculate in previous part of this sequence or have already been calculated in

the previously selected plans.

the shared memory in the LAND component. The model
created in LODES is explained more in Section 4.1.

The LAND component consists of the four subcompo-
nents shown in Fig. 5. The Planner, based on the (locally)
generated model, proposes possible causes of a problem
(such a cause is called a hypothesis) and gives each one a
likelihood rating, which is called the certainty rating or
simply the certainty and is expressed by a positive number.
The certainties of the hypotheses are initially given as diag-
nostic knowledge; but later they reflect past problem-
solving experience (such as the number of occurrences)
and the network data observed during the current diagnosis.
The planner then builds a number of operation sequences to
determine whether the candidate hypothesis is a valid expla-
nation for the problem. After these operation sequences” for
verifying the current hypothesis have been generated, the
Planner selects the most appropriate one from its local view-
point. This selected sequence is called the current plan or
cplan for the current hypothesis in this paper. How to gener-
ate operation sequences is described in Section 4.

The scheduler then selects the operation that should be
done next among the set of operations according to a partial
order: if it is a local operation, it is executed by the executor;
if the operation requires an operation execution or a variable
value in other agents, the scheduler commits the coordinator
to send a request message to other agents. All possible
hypotheses, the selected hypothesis, the generated operation

* More precisely, they are partially ordered sets of operations. The
selected ordered set is serialized so that the operations are executed by
the Scheduler using coordination knowledge. How to verify a hypothesis
is not unique, so a number of ordered sets for verifying it are generated.

sequences, the selected plan, and the scheduled operations
are stored in the local model as the inference state of this
agent. The execution of operations defines/modifies the
variable values in the local model (shared memory) as
domain data.

The coordinator sends the committed messages and
analyzes the received messages. If a received message
requests an operation that has not yet been executed, this
requested operation is also stored in the model. If the
requested operation/variable is already executed/calculated
its result/value is available from the shared memory, so its
reply is immediately generated in the Coordinator. The
Planner and the Scheduler look at the revised model after
an operation has executed: the Planner decides whether the
current hypothesis should be retained or another one should
be selected; the scheduler decides which operation (a locally
proposed one or requested one) should be executed next.
This cycle is iterated until the candidate hypothesis is veri-
fied.

4. Inference and cooperative activities in LODES
4.1. Model and inference

4.1.1. TAEMS framework

It is assumed, for generality, that agents decide their
actions according to TAEMS, a task-centered coordination
model proposed by Decker and Lesser [5] based on generic
coordination relationships. In this model, each agent makes
planning and scheduling decisions based on a subjective
view of its own and other agents’ task structures, which
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(defhypothesis
IF (string= #V:Main-Symptom "No-Response-to-Service-Request")

(string= (get-network-portion #V:*next-hop*) #V*Local-Network-Address*) #Z:3
(eql #V:find-pingponged-ICMP-packet T)

Then pingponged-packets

Initial-rating 5

Learned-weight 0)

This is the definition of the hypothesis pingponged-packets with initial rating 5 (rating is between 1 to 10), which
describes the probability of the occurrence of this problem. Of course, the occurrence depends on the network
environments; the rating is modified through experience. This definition expresses that the local router relays the
packets for Net IP-of -Rhost to another local router so it is probable that packets to the Net IP-of -Rhost are
pingponged between local routers. Note that the defhypothesis is invoked when all #V-signed variables are bound.
All of the IF part is an AND condition; if an OR condition is used, the defhypothesis is copied into a number of

defhypothesis definitions to eliminate the OR condition.

(defhypothesis
If (string= #V:Main-Symptom "No-Response-to-Service-Request")

(eq #V:Echo-Reply-from-the-Local-Host T)
(string= #V:Sync-Ping-Observation "arrive-but-no-response")

Then No-Routing-Data-in-Local-Host
Supported-by (and (eq #V:Echo-Reply-from-the-Local-Host T)
(eq #V: (Echo-Reply-from-the-Remote-Host in Remote-Net agent) nil))
#Z:5
Initial-rating 2
Learned-weight 1)

This definition of the hypothesis No-Rout ing-Data-in-Local-Host expresses that if the local host correctly
responds to an ICMP echo request, no response is observed at a remote agent, and the local agent cannot observes
the response packet to the ICMP echo request sent from the remote agent (there are some additional conditions, but
they are omitted here), then this problem is No-Routing-Data-in-Local -Host (that is, the local host does not
know about the routing relay to the remote network). Note that Remote-Net indicates the agent at the other end if
this hypothesis is at the source- or target-side agent (See Section 4.5), otherwise this hypothesis is ignored.

Fig. 7. Examples of hypotheses.

consist of the relationships among these tasks such as
enable-, facilitate-, and support-relations’ and resource
usage patterns (such as the use-relation) [6].

5 The support-relation is a new relationship that was not in the original
formulation discussed in Ref. [5]. This relates to how a task in one agent can
affect the subjective view of its own and other agents’ task structures by
changing the importance rating of its tasks. When a task is requested of
other agents that may have different goals, for example, the agent must
decide which goal is more appropriate for the current problem. Even in a
local agent, the problem situation is gradually understood by executing
tasks; thus, the agent may have to decide that the current goal is not appro-
priate but another goal is. Support-relations, therefore, express the seman-
tics of inference in the domain, although enable- and facilitate-relations are
relatively syntactical. A support-relation may be qualitative or quantitative
depending on the system designs. This rating change can, in turn, cause the
agent to choose one task over another for execution.

During diagnosis, the hypothesis having the highest
certainty is selected. The certainty of the hypothesis is
calculated from the rating initially given, the learned
weight, and additional weights based on data observed
during diagnosis and described by support-relations in
TAEMS (the details are described later). Then the Planner
has the highest-level (i.e. most-abstract-level) plan ‘verify
the selected hypothesis’. In this sense, a hypothesis can be
identified with the corresponding highest-level plan, which
is ‘to verify it’. This plan is expanded into a number of task
sequences based on the task structure, especially enable-
and facilitate-relations, defined in TAEMS. Each task is a
subplan or an operation. A subplan is further divided into a
number of task sequences. An operation is a non-divisible
executable form of a program or a shell script (Fig. 6). All
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(defplan "observe-pingponged-packets"
:level 2 ;; describe abstract level

(higher is more abstract)

:used-variables IP-Address-of-RHost NetIP-of-Rhost *next-hop*

:target-variables find-pingponged-ICMP-packets ;; this plan is invoked to bind

;; this variable.

:history-list-of-sequences ;; sequence of operations generated by planner

(((Start-capturing-ICMP-Echo-packets)

Send-Echo-Request-to-Rhost-and-Observe-Its-Reply)

(
(Stop-the-capture)
(Find-pingponged-ICMP-packets)

:average-execution-time <execution-time> ;; Statistical data of execution

;; time of this plan

This subplan is invoked to bind the variable £ ind-pingponged- ICMP-packets, which is partly used to verify the

hypothesis pingponged-packets from the variables IP-Address-of -RHost NetIP-of -Rhost and *next-

hop*. This plan may be executed when all variables in the assumed-variables slot are bound. If some variables in

this slot are not bound, a (sub)sequence of operations for obtaining these values will be added into the plan to verify

this hypothesis. When this subplan is completely done, the variable pingponged-packets is bound (and if the

value of pingponged-packets is T, the hypothesis is verified).

Fig. 8. Example of a subplan.

subplans may be expanded into operations a priori, or some
of them may be retained as subplans and expanded in an
opportunistic manner (an example is shown in Fig. 6).

4.1.2. Model description

The (subjective) world model in a LODES agent is
expressed by a set of variables and their values. This
model includes the inference states of local and remote
agents, including their current hypotheses, plans (operation
sequences) and scheduled operations, as well as their
domain-level data describing the network environment,
the status of observable network elements, and the results
of testing and operations. The part of the model describing
remote agents and remote networks may be incomplete and
insufficient.

We assume that because an agent selects a candidate
hypothesis and generates a plan to verify it based on its
subjective model, the values of the variables that are
elements of the model do not frequently change. This
assumption is necessary to guarantee that the inference
activities based on the current hypothesis and plan remain
feasible for some time. In a networking environment, data
can change frequently. For example, the state of a
network interface may frequently change (up and
down). In this situation, the variable in the world model
expressing the network interface is said to be ‘flapping’.
In another example, an agent may be observing a network
state, such as network traffic, for some time. The number
of bytes flowing in a network segment can greatly vary,
but the variable used to describe the state in the model
simply takes the value ‘(severely, slightly) heavy, normal,
light, or inactive’. Frequently changeable variables are

used in operation execution but not in hypothesis selec-
tion or plan generation.

4.1.3. Descriptions of hypothesis plan and operation

A candidate hypothesis is selected by using initial ratings
of hypotheses and the agent’s past experience. Two exam-
ples of hypothesis definition are shown in Fig. 7, where a
#V-signed variable is one in the model of an agent and must
be bound for verifying the hypothesis; when the IF part of
the rule is satisfied, the hypothesis is verified. However,
because some variables in the IF part are usually unbound
at some point during the inference process, the plan is gener-
ated to obtain these unbound variables.

A (sub)plan and operations are defined by defplan
(Fig. 8) and defoperation (Fig. 9), respectively. In
Fig. 8, the variables in the used-variables slot are
the ones that must be bound when this plan is executed
(because they are referred to). The variables in the
target-variables slot are the ones whose values
this plan aims to calculate. The level slot is used to express
the abstract level of task sequence for efficient planning
(described later). Fig. 9 defines the procedure, which is an
executable (LISP, perl) program or a shell script, invoked in
this operation. The #D- and #V-signed variables in each
operation describe variables whose values will be set or
will be referred to during execution. The enable-relations
of the task structure in TAEMS are generated from these
dependencies in defhypothesis, defplan, and
defoperation.

Because the agents are placed in different segments of the
network and the results of tests and observations will vary
with the observation point, it is necessary to describe which
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This is an example of the operation "Router-Relay-to-Remote." #V: <variable> means the assumed variable that
must be bound before this operation is invoked. #D: <variable> indicates that this variable will be bound after
execution of this operation. These variable relations (dependencies) are used to generate a plan (a sequence of

operations).

(defoperation Router-Relay-to-Remote
:procedure
(progn
(if (null (setq #D:*next-hop*
(get-router-to-remote-by-snmp #V:NetIP-of-Rhost)))
(setqg #D:*next-hop* (get-router-to-remote-by-snmp "0.0.0.0")))))

The variable NetIP-of-Rhost, which is a string of the network IP address (not host address) of the remote host
Host2 expressed by dotted notation, must be bound before this operation is invoked. This operation will bind to the
variable *next-hop*, the IP address of the router relay to the remote network.

The function get-router-to-remote-by-SNMP sends an SNMP message to the local router (R’ from the
viewpoint of agent1 in Figure 1), which relays packets to the NetIP-of-Rhost; the function then gets the string of the

IP address of the next router (R” from the viewpoint of agent1 in Figure 1). This value is obtained using

(snmpget <routers> "ip.ipRoutingTable.ipRouteEntry.ipRouteNextHop.<NetIP-of-Rhost>")

The 0.0.0.0 means the default routing. This function returns NIL when the local router does not look at SNMP or has

no routing information for remote network.

Fig. 9. Example of an operation.

agent calculates the variable value. This type of variable is
described in the form of ((variable) {(agent)), such as
Echo-Reply-from-the-Remote-Host in Fig. 7.5 On
the other hand, there are a number of variable values that do
not depend on the observation point, so all agents get iden-
tical values for these variables. For example, the value of a
variable computed using SNMP data from a specific router/
gateway/switch/hub/host is invariant among agents. This
type of variable is marked invariant.

4.1.4. Hypothesis selection and plan generation

In the beginning of diagnosis, the first candidate hypoth-
esis is selected as follows. First, the hypotheses whose IF
parts are consistent with the current subjective world model
are collected. There are a number of variables that are
always bound at the start of diagnosis, and these variables
are used for efficient hypothesis selection. For example, the
variable main-symptom describes the main symptom
(such as no-answer-from-a-host or many-
broadcasts-observed) of the problem reported by a
LODES user or by an initial message from NoC. All hypo-
theses defined by defhypothesis are encoded into the tree

® In this example, the (agent) part is described using functional organiza-
tion, which is explained in Section 4.5. The variables whose (agent) part is
not specified have locally calculated values.

structured by these variables. Then, from among these
consistent hypotheses, one is selected based on its certainty;
that is on the combination of its predefined rating
(initial-rating) and experience (learned-
weight).

Then the plan is generated to verify the selected hypo-
thesis. To verify it, all variables in the IF part of the hypoth-
esis definition must be calculated and the conditions must be
satisfied. The Planner selects the referred variables that are
still unbound and generates plans by tracing backward along
dependency chains (enable-relations) from each of the
unbound variables. That is, it finds the plans or operations
in which (at least) one of these variables is set. The plans
and operations that are found in this step usually require
other variables that may be unbound, so other plans or
operations are searched for in order to calculate one of
these. This cycle is iterated until all unbound variables are
included. This plan search is done from higher-level plans
(defined in the 1evel slot) to operations. Thus, a number of
elements in the generated sequence (partially ordered set)
are (sub)plans; these plans are further expanded into opera-
tion sequences by repeating the backward tracing, but some
of them are done in another agent because the referred vari-
ables can only be calculated there. Note that the generated
sequences for verifying a certain hypothesis are not always
identical, because which variables are unbound (i.e. which
operations were executed before) are different.
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This is a part of the definition of structure operat ion corresponding to an operation defined by defoperation. A
number of slot values (such as No-of -pkts, real-time-cost-list, .value, and why-plan-propose) are
dynamically defined during or after the execution of the operation, although others (such as referred-variables,

defined-variables, and name are bound when this operation is defined.

(defstruct operation

name ;; name of this operation

default ;7 nil or list of default values

type ;; nil, costly, or side-effect

called-for ;; this operation is invoked to verify this hypothesis

iteration ;; If this is T, this operation can be executed two or more time.
procedure ;i program (Lambda formula, LISP source code) to be executed

;; when this op is invoked.
ft ;i program name. (after compilation, this function name is

;; used instead of invoking the above lambda formula or S-expressions

args ;1 supplied arguments

applied ;7 T if this operation is executed.

nth ;; Integer: this is the Nth operation during the last diagnosis
No-of-pkts ;; the number of packets sent during execution of thisg operation.
real-time-cost-list ;; Elapsed-time history for executing this operation
cpu-time-cost-list ;; CPU-time history for executing this operation
total-cost ;; Estimated cost as the combination of above two slots.
init-cost ;7 initially given cost

document ;; comment about this operation.

why-plan-propose ;; static (defined in the rule file)

referred-variables ;; #V-signed variables that must be bound

;; when this operation is executed.

defined-variables ;; #D-signed variables that will be bound by this operation.

.value

;; value returned by the lisp program (stored in the ft or procedure).

Fig. 10. Part of the operation structure.

There are usually a number of operation sequences to
verify a hypothesis; the agent selects one of them based
on its probability of execution and some measures (such
as expected CPU and elapsed time and the quality of the
obtained result) and the inference history. An operation is
transformed into the structure as shown in Fig. 10. The name
of the operation, the procedure (LISP program, shell script,
etc.), and its return value are stored there. Furthermore,
history data about the operation such as whether or not an
operation was completely executed, CPU time, elapsed time
and how many packets were sent/received are recorded
there after its execution. This information is used to select
the cplan.

The certainty of a hypothesis may change after the
execution of each operation, because a number of opera-
tions in the plan can result in unexpected values that are
incompatible with the current hypothesis or that suggest
another hypothesis. In particular, some operation results,
that is, some variable values, often strongly support a
hypothesis. To represent this phenomenon, the hypoth-
esis definition may have weighted conditions described

in its IF part with #Z-signed weight integers ranging 1
(default) to 5 (cf. Fig. 7). A weighted condition means
that if it is satisfied, the certainty of its hypothesis
increases. Because the default weight of each condition
is 1, the certainty of the current hypothesis increases if one of
conditions in its IF part is proved to be satisfied.” The certainty
of a hypothesis also takes into account the conditions in the
supported-by slot. The conditions express that they are
not necessarily used to verify it, but the facts strongly support
it. Note that the certainty of not only the current hypothesis but
also all consistent hypotheses may change. After each opera-
tion execution, the planner investigates the certainties of the

" Thus the hypothesis that has more conditions in its IF part may have
higher certainty. This can be explained as follows: if a more specific
hypothesis is supported by many condition predicates, it is natural that
the specific hypothesis is selected. If this phenomenon causes a negative
effect, the use of Learned-weight plays an important role in overcom-
ing it. The hypothesis that does not have a very specific IF part but
frequently occurs in a network segment will have a high learned-
weight value by experience. How to calculate this weight is system-
dependent and is not discussed here.
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A-level coordination

—

A/

An agent at this level has a high-certainty
hypothesis for the current problem
so it sends messages with higher ratings.

The requested tasks are given priority over

other tasks in the receiver agents

S-level coordination

@

S

An agent always starts at this level. The
results of reasoning activities may support

(or negate) its local hypotheses, causing
it to switch to A- or D-level coordination.

\ D-level coordination f

An agent at this level sends messages with low
ratings, thus their reading may be postponed
if the receiver agent is in A- or S- level coordination.

Fig. 11. Coordination levels in LODES.

current and other consistent hypotheses. If another one has
higher certainty, the plan execution for the current hypothesis
is suspended and the higher-certainty one is selected as the
current hypothesis. It is obvious that the certainties of the
hypotheses may also be affected by messages from other
agents.

4.2. Types of coordination messages

Communications take place to achieve coordinated activ-
ities described in Section 3.1. Three types of messages are
used in LODES.

¢ Request-type messages:

Request for domain data, inference-state data (the current
hypothesis, generated plan, executed operations, etc.): The
variable names, which are elements of the agent’s model,
are included in this message. A message requesting domain
data may induce a number of associated plans and opera-
tions in the receiver agents to investigate them.

Request for operation executions: The names of the opera-
tions are included in the message.® This type of message is
usually used for coordinating activities (see Section 5).

¢ Inform-type messages:
Transmission of domain data and inference-state data: A
pair of the variable and the value corresponding to the
data item is transmitted.

¢ Control-type messages:
Control (for synchronizing activities and stopping/inter-
rupting the inference process): A control instruction name
and its arguments are sent in this type of message.

A message has an associated rating indicating the impor-
tance of its contents as determined from the sender’s view-

8 A request for domain data can induce operation execution but cannot
specify the name of an operation. If the value is already known, the opera-
tion(s) to compute it is (are) not executed. In the example in Section 5, the
LODES agent sends a request for an operation in which ICMP echo-request
packets are sent to the specified target.

point. The rating of the message is the certainty of the current
hypothesis because the message is generated according to the
plan (operation sequence) for verifying it.

4.3. Coordination levels

Three coordination levels, — nearly autonomous coordi-
nation (A-level coordination), shallow coordination (S-level
coordination), and deep coordination (D-level coordination)
— are introduced in LODES for effective coordination of
activities (Fig. 11). A-level coordination implies that each
agent’s local autonomous control is almost exclusively
decided based on locally available data. In this mode, it is
assumed that knowledge about the specifics of operations
and their results in other agents will minimally affect the
decision about what operation to perform next. Further-
more, analysis of messages received from other agents
will unnecessarily slow down local problem-solving activ-
ities.

In contrast, S-level coordination involves requesting
domain data and operation executions of other agents.
However, the use of non-local knowledge to make control
decisions is severely limited because information about the
range of activities of other agents and the detailed features
of their environments is not used. Control of local problem
solving is determined using only a small number of para-
meters and ratings attached to request messages by sender
agents [13] based on their local viewpoints.

D-level coordination implies that local control deci-
sions involve the use of a partial global view of the
hypotheses and plans in other agents [8]. This view is
generated in agents by exchanging both non-local domain
and inference-state data, such as their current hypotheses
and selected plans, as well as the intermediary results and
observed data of other agents Fig. 11. Agents may also
use negotiation messages to resolve detected conflicts at
this coordination level. This more global view enables
each agent to better understand the problem-solving
state of other agents, so control decisions about which
local task to execute next are made to optimize the
network rather than the local problem-solving
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performance. D-level coordination is also necessary to
avoid the serious side-effects of interactions among agents
and environments.

The basic concept of dynamically changeable coordina-
tion levels is that full coordination is not always worthwhile
because it can lead to additional overhead for analyzing
message exchanges and for formulating coordinated activ-
ities. For more efficient cooperation, a nearly autonomous or
shallow coordination regime is often better.

(A) When an agent has a hypothesis whose certainty is
higher than the given threshold and has a plan to verify it
in the autonomous regime, additional messages and
inferences for collaboration may cause needless over-
head (A-level coordination). This situation can be
described in TAEMS as the agent having the high-
certainty hypothesis and its plan being completely
expanded to the operation sequence (even though
some operations must be done in other agents). Thus
the agent believes that its central and/or autonomous
regime is more appropriate.

(S) When a number of agents have hypotheses that have
a not-low and nearly equal certainty, these are equally
worth being verified. Uncoordinated behavior might
cause incoherent and/or redundant behaviors. There is,
however, a trade-off between selecting one of these
hypotheses by collaboration (D-level coordination) and
trying to verify all of them without collective behavior
(S-level coordination). This trade-off involves other
factors such as the amount of resources. Therefore, in
such a situation, D-level coordination activities are
sometimes required [14].

(D) Deep coordination is definitely required when:

1. All agents have only hypotheses whose certainties are
low from the local viewpoint (some of these may have
higher certainties from a more global viewpoint);

2. An agent is about to execute a costly (time-consuming,
traffic-generating, such as long-term observation, moni-
toring, polling, etc.) operation because it may not be
worthwhile to execute this operation (there might be
other operations that could be executed before this
costly operation); or

3. In general, an agent is about to execute an operation that
will consume/use scarce resources (described by the
use-relation in TAEMS) or must be done within a strict
deadline. In these cases, the operations of different
agents must be done in turn or selectively.

The agent chooses the coordination level at which to
operate based on the certainties of its possible
hypotheses. The LODES agent selects S-level coordination
when it start diagnosis and in the case of (S). The assump-
tion behind this non-full coordination is that there are suffi-
cient bandwidth and computational resources available on

the network to sustain a certain level of non-coherent beha-
vior. However, eager coordination may result in inefficient
diagnosis. An agent will switch to A-level coordination
when it obtains strong proof about the cause of the current
diagnosis (that is, the current hypothesis has a certainty
higher than the given threshold) and is confident that the
hypothesis can be verified without the suggestions from
other agents (its plan must thus already be generated).
An agent will switch to D-level coordination if it has
only hypotheses with low certainties or which can only
be verified by using costly operations (such as long-term
monitoring, testing that generates many packets in narrow-
band lines, such as VPN and leased line and/or side-effect
operations, such as setting up monitoring in routers using
SNMP). This is described in more detail in Section 4.4.

4.4. Coordination levels and control

In A- and S-level coordination, the plan/operation that
should be done next is selected simply according to their
ratings. If they are selected to verify the locally selected
hypothesis, their ratings are calculated from its certainty:
The ratings of the plan and operation that are induced
from the request message reflect the rating of this request
message. Furthermore, in these coordination levels, an agent
sends only messages requesting domain data and operation
executions in order to execute its local plan. Therefore, this
non-full coordination does not need sophisticated decision
for collaboration, but may bring about incoherent and
redundant behaviors, so additional resources are consumed.
However, in LODES, many (but not all) problems in this
domain can be isolated using this request-based and simple
rating-based collaboration, because they are not so compli-
cated and the local network environment has sufficient
network resources.” Note that if the agent is in A-level coor-
dination the ratings of its messages are relatively higher, so the
received requests are usually performed immediately.

In D-level coordination, an agent gets more non-local
data by requesting inference-state data and coordinates its
activities as follows. First, by analyzing the received not-
low-rated plan of other agents, the agent identifies the parts
it can execute instead of the agent that originally generated
the plan. These parts (subsequences of operations) are
usually the calculations of invariant variables. The agent
then executes these parts of plans if the original agent agrees

? Non-full coordination may generate redundant activities and traffic
(such as SNMP and ICMP packets for non-coherent testing and data collec-
tion), which is not acceptable in some network segments such as narrow-
band VPN and leased-line. On the other hand, full coordination also
generates additional packets for coordination. Anyway, it is better that
the agent can predict how many packets will be sent/received through the
scarce network resources during diagnosis. Fortunately, LODES has a
monitoring component, NoC, that can count the input/output packets
from/to LODES. This self-monitoring can be used to reflect its coordination
strategy for future diagnosis. This learning ability is described in Ref. [15].
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on this collaboration. Second, the agent evaluates
hypotheses from a more global viewpoint, that is,
using its local data, it re-evaluates the received hypoth-
eses of other agents (this is possible because, although
all agents in LODES have different domain data, they
have identical diagnostic and control knowledge and the
same inference mechanism). For this purpose, hypoth-
eses are always sent with information about the func-
tional organization (described in Section 4.5). For
example, the hypothesis No-Routing-Data-
in-Local in Fig. 7 may be strongly supported by
the non-local variable Echo-Reply-from-the-
Remote-Host (=NIL) of the agent in the remote-
side network segment. Therefore, the agent in the
remote-side segment has this data and (1) if its value
is NIL, this hypothesis has higher certainty so it should
be verified immediately or (2) if its value is not NIL,
this hypothesis is not valid. These results are sent to the
agent that formulated the hypothesis. Finally, to re-eval-
uate the hypotheses in other agents, an agent generates
and executes a sequence of operations to identify the
variable values that strongly affect the certainties of the
hypotheses. Again in the same example, if the agent in
the remote-side segment does not have the value of
Echo-Reply-from-the-Remote-Host it gener-
ates a sequence of operations to obtain it. Moreover,
if the sequence includes no costly operations, it is
worthwhile executing it. Note that messages sent during
D-level coordination have relatively low ratings. Thus,
the request messages from agents in S- or A-level coor-
dination take priority over ones from agents in D-level
coordination.

The Coordinator component coordinates these activities.
First, it manages message exchanges; it sends the messages
committed by the executor and reads/analyzes the received
messages. The analyzed message data is stored in the local
model. Furthermore, by comparing the rating of the local
hypothesis to the rating of the message, it determines
whether the message is to be analyzed immediately or left
for later analysis. Note that a reply to a request for infer-
ence-state data is generated immediately because the data
are always available from shared memory. Second, the coor-
dinator manages the coordination level of the local agent by
monitoring the current and other possible hypotheses. Note
that, we must consider the case where an agent has a high--
certainty hypothesis (causing it to enter A-level coordina-
tion) but its plan contains a costly operation. This hypothesis
is called a marked hypothesis. The time for executing the
plan to verify the marked hypothesis is domain-dependent.
The LODES agents hold the plans for the marked hypo-
theses until D-level coordination is selected; they are
re-evaluated with non-local domain data and inference-
state data, then executed. This is because it takes longer to
execute such operations, but the marked hypotheses usually
have higher certainties, so they usually have higher priority
even in the D-level coordination regime.

4.5. Functional organization of agents

The concept of functional organization is introduced to
indirectly specify with whom an agent should coordinate
and to whom a message should be sent, because participat-
ing agents and their roles in diagnosis vary from problem to
problem. In particular, the role of each agent depends on
where the problem is observed, where the cause is located,
and the structure and architecture of the network.'" In
LODESvV1, the first few steps of diagnosis were always to
used to identify the agents to coordinate with. This means
that knowledge for diagnosis and knowledge for organiza-
tional role were not clearly separated so diagnostic knowl-
edge easily became complicated.

In our problem domain, two types of organizations are
mainly used (see Fig. 12) depending on whether the current
hypothesis concerns a link-level (IP layer) or higher-layer
(TCP/UDP- and application-layer-) problem. The cause of a
link-level problem may be located in the source, target, or
intermediate network. Furthermore, an IP-related problem
may be caused by DNSs. The agents managing these compo-
nents are required to coordinate based on their observational
positions. The cause of higher-layer problems is certainly in
one or both of the terminal hosts, so only the LODES agents
managing these hosts need to be and should be coordinated.

In the description of agent’s knowledge, other coordinat-
ing agents are denoted by the functional organization
instead of by agent names or IDs. For example, in Fig. 7,
the definition of hypothesis No-routing-data-in-
local-Host, which is an IP-related problem, is strongly
supported by the data indicated by the variable Echo-
Reply-from-the-Remote-Host in the agent mana-
ging the other end of the network segment which is denoted
‘Remote-Net agent’ in this figure. Note that when an agent
sends its hypothesis to other agents during inference, infor-
mation on the functional organization (role) of the destina-
tion agent from the viewpoint of the sender is also attached.

In diagnostic knowledge, agents to coordinate with are
always expressed by their roles in the functional organiza-
tion. The role assignment process is necessary for actual
coordination and communication. This process is invoked
on demand, that is, when a message is about to be sent or
just arrives. For this process, an operation sequence for
assigning/verifying roles is generated using organizational
knowledge and has priority over the normal plan.

5. Example of cooperative diagnosis and performance

An example of cooperative diagnosis is described in this
section. The problem, which was briefly explained in Section

"% The logical structure of a network is, for example, reflected by its

routing. As another example, a problem occurs when the primary DNS is
out-of-operation and the secondary DNS operates instead of it. So, in
general, the roles of agents should be decided dynamically.
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Fig. 12. Functional organization in LODES.

2,is caused by incomplete routing definitions in a host that uses
a static routing table. The symptom of this example problem is
that although a user, from local host host;, has tried to establish
a telnet connection with a remote host h0st,, it cannot be estab-
lished (normally the message from the telnet program is ‘time-
out’) in the environment shown in Fig. 1. After this problem is
reported by the user, the local LODES agent, agent,, starts the
diagnosis. It sends a diagnosis request to remote agent agent,
because this may not be a local problem. "’

Agent; see no indication of the problem except that
host,’s response to a test packet cannot be found; thus, it
thinks that the problem’s cause is not in the local network.
All the consistent hypotheses in agent; have a low certainty.
Note that an agent can have a number of hypotheses about
the causes of problems in non-local networks. These
hypotheses, however, have low certainties because the
remote agents that manage the problematic network
segments can verify these at lower cost. Agent, also sees
no indication of the reported problem; that is, host, correctly
responds to any kind of test packet sent by agent,. There-
fore, agent, creates a number of hypotheses; two in particu-
lar have higher certainties: (H1) it might be a TCP- or
application-level problem or (H2) heavy (burst) traffic
might be temporarily preventing host; from communicating

" NoC cannot detect this problem because it detects problems by obser-
vation, and no problematic packet from host, is observed. Strictly speaking,
it is logically possible to detect this type of problem, but the process for
detecting it is inefficient because a timeout process, which does not suit a
realtime process, is required. Furthermore, this problem does not seriously
affect other communications, so it is reluctantly give up trying to detect it.

with host,. For H2, agent, investigates the history of
messages from NoC that convey information about conges-
tion. However, such messages cannot be found. To verify
H1'" agent, sends a telnet request to host, instead of host,
but observes a correct response from host,. Therefore,
agent, thinks that this TCP- or application-problem occurs
only when host; and host, begin to communicate. However,
the plan for verifying this is costly because it requires that
the user of host, reproduces the problem for packet observa-
tion. So, this plan is generated, but its execution is post-
poned. Agent; also generates a number of hypotheses,
such as (H3) heavy traffic in an intermediate network.
Unlike agent,, agent; does not raise the certainty of H3
because it still cannot observe host,’s response to test pack-
ets, but it can communicate normally with agent,. Then
because both agents have only low-certainty hypotheses,
they enter D-level coordination.

By exchanging the possible but low-certainty hypoth-
eses, agent; does not raise the certainty of H1 in agent,
because agent; still cannot observe any response to ping
packets from host,. Then, their hypotheses related to IP-
level (or link-level) problems are given priority. Further-
more, because agent; discovers that the condition support-
ing No-Routing-Data-in-Local-Host (see the
definition of No-Routing-Data-in-Local-Host)
is held, the certainty of the hypothesis increased. Agent,
sends this result (and an explanation for it) to the

2 H1 actually consists of a number of hypotheses, each of which corre-
sponds to a TCP- or application-level problem. These hypotheses are veri-
fied in turn.
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originator of the hypothesis, that is, agent,, who selects it
next to verify.

Agent,’s plan for verifying it (more specifically, the
operations to compute the value of Sync-Ping-Obser-
vation) contains collaborative synchronized work with
agent;; agent; sends host, a number of ICMP echo-request
packets; agent, observes them and host,’s response to them.
During this operation, agent, observes that the request
packets from agent; arrive, but host, never replies to
them, thus the value of Sync-Ping-Observation is
‘arrive-but-no-response’. This result may raise
the certainties of other hypotheses, such as (H4) a host,
interface failure and (H5) host, is running in single-user
mode. However, these are easily rejected by simple testing.
Agent, then determines that only No-Routing-Data-
in-Local, which means that host,’s definition for routing
to the remote network is incorrect or missing, is a high-
certainty hypothesis and the verified one.

This system runs on FreeBSD/Linux/SUNOS. LAND is
implemented in KCL (Kyoto Common Lisp) or GCL (GNU
Common Lisp) and C. Other components are fully imple-
mented in C. NoC can capture and analyze more than 2000
packets per second, but this number varies depending on the
traffic pattern and types of packets. The bottleneck in NoC
performance seems to be not in the CPU but is likely to be in
performance of its network interface and its driver. The
LAND component can diagnose the ISR problem described
above in around 60 s (elapsed time, not CPU time). This
type of problem does not consume CPU resources but is
time-consuming because the agent has to wait for the
responses to test packets, observe the packets, and commu-
nicate with local gateways/routers and collaborating
agents.13

This system currently works over Ethernet and fast
Ethernet. The performance of NoC may, however, be
insufficient for broader-band datalink networks, such as
Gigabit Ethernet, FDDI (fiber distribution data interface)
and ATM (asynchronous transfer mode). Furthermore,
this system is implemented on a non-dedicated UNIX
(FreeBSD) machine. NoC may, therefore, be swapped
out or placed in the sleep state, causing it to sometimes
drop a few packets. However, even in a faster datalink
network, its performance is practical because the full use
of a network’s bandwidth is infrequent. This system also
assumes that IP packets are not fragmented into smaller
non-IP frames/cells. NoC would have to re-assemble frag-
mented frames/cells to check the IP and TCP/UDP head-
ers in this type of network, leading to poor performance.
We also have to consider networks using switching hubs.
Fortunately, a number of switching hubs have a function
to set up a watch-dog-mode interface via which all pack-
ets can be monitored. This may not enable the LODES
agent to capture all packets, but if an agent can monitor

" Especially in this example, agent, has to wait for agent,’s responses to
the ICMP echo-request packets, although they are never observed.

packets to/from routers, it can diagnose link-level non-
local problems.

6. Consideration and discussion

A distributed configuration has a number of desirable
features for network management and diagnosis (see also
Section 1 of Ref. [2]).

Reliability. A fault in the management system does not
mean a failure in managing the entire network; other
systems can partially compensate for the losses caused by
the fault.

Fault tolerance. Even if the network segments are sepa-
rated due to a network problem, each connected network has
an operating network management system.

High performance. Network data can be concurrently
captured and analyzed. Additionally, management data
can be stored in and maintained with distributed local
management systems. These features increase the efficiency
of network management.

Lower communication cost. Distributed systems do not
send raw data but communicate by using high-level
messages for coordinating activities. This drastically
reduces the amount of communication. In a non-distributed
system, all packet data must be sent to a centralized system
node for analysis and diagnosis. This increases the network
traffic load and may worsen the network condition.

Secure network management (Security). Distributed
systems send only high-level messages. This feature is
strongly required in institutions or agencies that deal with
secret or confidential information, e.g. financial and military
data. It may also be required within a company. For exam-
ple, source programs and digital dictionaries are often
allowed to be used by a restricted group of users, and
their data should be kept from other people.

All of these features are quite important and indicate that
cooperative distributed systems are suitable for network
applications.

There are a number of issues concerning the topics in this
paper. For example, agents should sometimes take into
account multiple aspects of a functional organization. For
example, a host connected to a third party’s network
segment can unexpectedly cause a problem; thus the agents,
in parallel, have to form and maintain another functional
organization involving a new agent to manage the third
party’s segment. In the current version, this type of problem
is recognized as two independent problems. Similarly, a
problem may cause symptoms at different points, so the
agents may start and finish their diagnoses independently.
It is necessary to generate a more global domain model for
relating these independently observed symptoms.

Another related issue is to introduce the concept of proxy-
like services. For example, a dedicated SSL node is placed
between a client and a server and takes on SSL encoding and
decoding instead of the server for load sharing. In the
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current LODES, communication between the client and
server like this is recognized as two dependent connections,
namely the connection between the client and the SSL-node
and the connection between the SSL-node and the server.
However, it is better if these connections are recognized
collectively as the involved communication. For this issue,
we plan to add new knowledge for more a flexible commu-
nication model for diagnosis.

7. Conclusions

We have shown that a multiagent approach to network
management is quite appropriate when we consider such
network features as the geographical and functional distri-
bution of networks. This approach also improves the fault
tolerance of network management. We presented a multia-
gent application system called LODESv2. A LODES agent
is attached to each network segment and these agents diag-
nose problems in cooperation with each other, with each one
being responsible for its own network segment. An agent
can identify the configuration of the local network structure
and obtain management data by analyzing the flow of pack-
ets. These configuration data differ between networks and
are difficult to maintain manually because of changes over
time, so this identification of configuration is effective and
useful. An agent can detect problems based on analysis of
this data and gain knowledge of computer-network
problems. This ability enables timely packet captures and
detections of intermittent and potential problems. Then with
the detection of a problem or with a problem report from a
user (network manager) the LODES agents diagnose the
problem to isolate the problem’s cause. The diagnostic
activities of these agents are coordinated for non-local
problems based on the concepts of coordination levels and
functional organizations. An example of cooperative diag-
nosis showed the benefits of using cooperation in this type
of network management system.
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