
 Proceedings of the 2003 IEEE
 Workshop on Information Assurance
 United States Military Academy, West Point, NY June 2003

e

Abstrac
detectio
shelf w
Linux
point f
detectio
identifi
functio
is pres
wireles
Implem
system
necessa
intrusio

Index
Detecti

Increa
wireles
protoc
these
insecu
passiv

Standa
ensurin
higher
lower
wires.
to wir
such n
wireles
(layer
require
provid
necess
attemp

This p
wireles
respon
wireles
popula
may b

ISBN
Wireless Intrusion Detection and Respons

Yu-Xi Lim, Tim Schmoyer, Snr. Member, IEEE, John Levine, Member, IEEE, and Henry L. Owen, Member, IEEE

School of Electrical and Computer Engineering
Georgia Institute of Technology

Atlanta, Ga. 30332-0250
t – A prototype implementation of a wireless intrusion
n and active response system is described. An off the
ireless access point was modified by downloading a new
operating system with non-standard wireless access

unctionality in order to implement a wireless intrusion
n system that has the ability to actively respond to
ed threats. An overview of the characteristics and
nality required in a wireless intrusion detection system
ented along with a review and comparison of existing
s intrusion detection systems and functionalities.
ented functionality and capabilities of our prototyped
are presented along with conclusions as to what is
ry to implement a more desirable and capable wireless
n detection system.

terms – Network Security, Wireless Intrusion
on

I. INTRODUCTION

sing numbers of organizations are deploying
s networks, mostly utilizing the IEEE 802.11b

ol. Even though attempts have been made to secure
networks, the technology used is intrinsically
re and still highly susceptible to active attacks and
e intrusions.

rd tools for monitoring wired networks and
g their security examine only network (layer 3) or

 abstraction layers based on the assumption that the
layers are protected by the physical security of the
However, this assumption cannot be extrapolated

eless networks because of the broadcast nature of
etworks. Ideally, an intrusion detection system for
s networks should function at the datalink layer
2) or even lower if extremely high security is
d. Yet, to go beyond mere detection and to actually
e useful protection for the network, it might be
ary to actively disable unauthorized clients
ting to access the network.

aper briefly surveys wireless intrusion methods,
s intrusion detection, and wireless intrusion
se and discusses a practical implementation of a
s intrusion detection system. The focus is on the
r IEEE 802.11b standard but methods discussed
e extended, to varying degrees, for the other IEEE

802.11 standards. The paper does not detail other means
of attacking wireless networks which do not exploit
weaknesses in the protocol or other inherent weaknesses,
for example, by compromising the clients or by trying
default passwords on poorly configured equipment.

II. BACKGROUND

A. Intrusion Methods

Signals from wireless networks are usually omni-
directional and emanate beyond the intended coverage
area. Such properties make the physical security of the
network mostly impractical. Many passive and active
intrusion methods quickly arose to abuse this weakness.
Passive methods use radio frequency (RF) monitoring and
do not broadcast any signals. Active methods may merely
broadcast signals to query the status of the network, or
they may even insert malicious data into the network to
cause disruptions. This is a description of the most
common methods and is by no means exhaustive,
especially since new exploits and tools appear every
week.

The most common wireless intrusion method is
“Wardriving”. This is usually done using a Windows
laptop running Wardriving software, such as
NetStumbler, and equipped with an IEEE 802.11b adapter
and external antenna. The “Wardriver” drives around
high-tech neighborhoods hoping to detect IEEE 802.11b
signals that have leaked out onto the street. NetStumbler
looks for beacon frames from the access points (APs).
From these beacon frames, it is typically possible to
determine the encryption strength, channel, and type of
hardware used. If the network is unsecured, the Wardriver
may also record other details of the network like the
Service Set Identifier (SSID). In many cases, this is
performed by hobbyists and no further invasive action is
taken. Such hobbyists would generally combine the data
with Global Positioning System (GPS) information to
produce geographic maps of wireless networks in the area
and their configurations. There are other less common
software available for Wardriving, depending on the
platform used. dStumbler runs on BSD systems,
MiniStumbler runs on PocketPC handhelds, Kismet runs
on several platforms, and Wellenreiter runs on Linux
systems. Depending on the software used, Wardriving

0-7803-7809-1/03/$17.00  2003 IEEE 68

 Proceedings of the 2003 IEEE
 Workshop on Information Assurance
 United States Military Academy, West Point, NY June 2003

may be passive or active. Active software like
NetStumbler, dStumbler, and MiniStumbler actually
broadcast probe request frames to elicit responses from
APs [1]. This improves their chances of detecting APs,
especially when the Wardriver is in a moving vehicle.
Passive methods merely perform RF monitoring to detect
chance signals from the APs.

Another popular intrusion method concerns the infamous
weakness in the Wired Equivalent Privacy (WEP)
encryption used by IEEE 802.11b networks [2, 3]. This is
usually the second stage of an intrusion following
detection of a secured AP by Wardriving. The most
commonly used tool for WEP key extraction is the Linux
program AirSnort [4]. An intruder using AirSnort would
surreptitiously collect wireless network traffic of the
target network. When enough frames have been collected
from the network, AirSnort can determine the WEP key
of the network by examining the “weak” frames. It
usually takes only a few hours to collect enough frames.
Manufacturers have released updated firmware that
addresses the transmission of such weak frames; however,
a network remains vulnerable if a client continues to use
an outdated wireless network adapter. A less common
alternative to AirSnort is WEPCrack [5], but this program
has less features and lower accuracy. AirSnort is a passive
monitor and does not emit any signals.

On many networks, intrusions are not limited to
unauthorized clients but could include unauthorized APs.
Often, these “rogue” APs might be installed by valid users
attempting to increase the range of the network but doing
so without proper authorization. This usually results in a
security hole that may be exploited by intruders. A more
relevant scenario would have an intruder planting an AP
with a higher than normal broadcast power to masquerade
as a legitimate AP. Unknowing clients would attempt to
associate with this AP believing it is valid. The intruder
could then use information collected from these
association attempts to determine network security
settings and other aspects of the network.

Also possible is a denial-of-service (DoS) attack on the
network. This could occur in several ways, the most
primitive being the use of radio equipment to broadcast
noise at the 2.4 GHz operating frequency of the network.
This would cause the network to drop frames, eventually
to the point of total collapse. A more refined method
would be to broadcast invalid frames to either clients or
APs, or even to both. The clients or APs would respond to
these invalid frames and, if present in sufficient number,
these invalid frames could interrupt the flow of normal
traffic.

A few other methods are proof-of-concept and have not
been observed frequently in real networks. The first is the
man-in-the-middle attack using Address Resolution

Protocol (ARP) poisoning [6]. This uses a known
vulnerability on Ethernet networks concerning
unauthenticated ARP messages. Many systems have been
developed for wired networks to counteract such
poisoning but administrators often forget to extend this
protection to wireless bridges which could also serve as
entry points for such attacks.

A different method was demonstrated by 802.11ninja
during DefCon in 2001 [7]. Using a program called
Monkey Jack, management frames were sent to wireless
clients at the convention forcing them to disconnect from
valid APs and re-associate instead with a bogus AP
managed by the attackers. The attackers also offer code
on their website to exploit other vulnerabilities even in
wireless Virtual Private Networks (VPNs). All these rely
on unauthenticated message vulnerabilities on IEEE
802.11b networks.

B. Existing Systems

There currently exist a few products that perform the
intrusion detection and active response roles for the above
attacks. However, none provide adequate protection for
wireless networks, especially for larger deployments.

AirDefense [8] is a complete hardware and software
system consisting of sensors deployed throughout the
network, which are interfaced to a management appliance,
and adminstered by a management console. Their starter
kit provides five sensors and can guard up to ten APs.
AirDefense detects intruders and attacks and also
diagnoses potential vulnerabilities in the network like
misconfigurations. The manufacturer claims that
AirDefense can detect most of the threats mentioned
above. Also, AirDefense offers other management
functions such as fault tracking and inventory auditing.
The company is also launching a new product that offers
active responses to intrusion attempts and can integrate
with the AirDefense product. Their system forces an
intruder to dissociate from the valid network and
optionally re-associate with a “honey pot” AP. The
combined AirDefense and ActiveDefense systems would
come closest to our ideal system described later.

Another commercial product is AirMagnet [9] which runs
on laptops or handhelds and also includes a Cisco
wireless card in the package. Like AirDefense, it
incorporates detection of vulnerabilities and intrusions.
For intrusions, AirMagnet detects unauthorized APs and
clients and DoS attacks by flooding. A similar product is
Surveyor Wireless [10]. These software products require a
technician to move around the network to detect possible
security threats. Interestingly, this software may also be
used by an intruder, though such use is unlikely because
of the high price.

ISBN 0-7803-7809-1/03/$17.00  2003 IEEE 69

 Proceedings of the 2003 IEEE
 Workshop on Information Assurance
 United States Military Academy, West Point, NY June 2003

B. Intrusion Detection
One non-commerical product is Fake AP [11]. Fake AP is
a simple Linux program that simulates a user-specified
list of APs by broadcasting IEEE 802.11b beacon frames.
This potentially confuses an intruder passively sniffing
the network. The program is available freely under the
GNU Public License (GPL).

The primary function of our proposed new device would
be intrusion detection. This would happen at different
levels. The most basic level would be to track the Media
Access Control (MAC) address of network adapters
attempting to associate with the network. If the MAC
address does not occur in the whitelist or is blacklisted, it
is flagged as a possible intruder. Such a procedure is
commonly known as MAC filtering and might not be
practical in a large organization where users may employ
their own wireless cards. Fortunately, MAC addresses are
not totally random. The first three bytes are specific to
each manufacturer and manufacturers usually utilize only
a small range of the available addresses. By checking
each MAC address against such patterns, it would be
possible to determine forged addresses randomly
generated by intruders. It is possible for users or attackers
to change MAC addresses reducing the effectiveness of
using patterns.

AirSnare [12] is a program for Windows that detects
DHCP requests or unauthorized MAC addresses
attempting to connect to an AP. Intrusion response
consists of an alert to the administrator and optional
message is sent to the intruder via Windows netmessage.
AirSnare has a non-commercial license.

III. PROPOSED NEW ARCHITECTURE AND CAPABILITIES

An ideal system combines the functionality from the
products described above and also implements some
novel features. The proposed system described below is
intended for IEEE 802.11b networks but could be
extended to other specifications with some modification.

It may also be possible to dectect passive intruders using
the IEEE 802.11b Request to Send (RTS) and Clear to
Send (CTS) frames. Normally these frames are used to
determine if the medium is clear and to reserve a block of
time to send the data. RTS is acknowledged with a CTS
by firmware and is usually beyond the control of the
user’s software. The RTS and CTS relationship may be
used as a means of detecting intruders that are present on
the network. For example, if an active Wardriver is
detected, the MAC address could be logged.
Subsequently, RTS messages could be sent to that MAC
address. If the intruder is now passively collecting data
the card may still respond with a CTS, revealing its
presence.

A. Physical Specifications

In the complete system a number of devices would be
deployed throughout a wireless network. Each device
should be located near existing APs to provide similar
coverage. The device would be a single unit with a form-
factor similar to a conventional AP. These devices would
be connected to a standard wired network to allow for
secure remote management. Since these devices are
intended to be cheap to deploy and simple to maintain,
they would be limited in capabilities and instead rely on a
central server on their wired network to perform
additional tasks like logging, similar to the AirDefense
system.

Stateful monitoring of traffic could provide clues about
intrusions. Unusual data like unsolicited random
responses could indicate an intruder probing a network.
Such anomaly tracking has already been implemented on
higher network layers. This technique may be extended to
the IEEE 802.11b protocol on events like authentication
and association, or even RTS/CTS layer 2 messages.

Each device would ideally be an integrated system
running on low-cost, low-power embedded processors
and using standard hardware. While the capability to
simultaneously monitor all channels used by IEEE
802.11b would be useful, it is not possible using a
standard wireless card. Simultaneously monitoring of all
channels would require multiple cards or a specialized
card with a fast digital signal processor to decode the
signals. Practical applications would rarely require multi-
channel capability. NetStumbler and similar programs
broadcast on all channels, and thus can be detected by
monitoring any given channel. Also, most of the
interesting traffic occurs on the channel used by the valid
network.

It should be possible to determine unique signatures for
each kind of attack. Even within a class of active attack,
like Wardriving, signatures can be used to identify the
specific software used. Such signatures have been
described for common Wardriving software and include
characteristics from sequence numbers, control types and
subtypes, destination MACs, Service Set Identifiers
(SSIDs), Organizationally Unique Identifiers (OUID),
Logical Link Control (LLC) protocol types, LLC protocol
identifiers, and even data payload [1].

To improve detection accuracy, it should be possible to
utilize any number of algorithms to profile the attack,

ISBN 0-7803-7809-1/03/$17.00  2003 IEEE 70

 Proceedings of the 2003 IEEE
 Workshop on Information Assurance
 United States Military Academy, West Point, NY June 2003

including rule-based algorithms, expert systems, or even
artificial neural networks that “learn” the normal behavior
of the network. To minimize the requirements of each
device and to improve detection accuracy by polling more
devices, additional intrusion detection logic could take
place on the central server where more information and
more processing capabilities are available.

If several devices are used and are connected to a central
server, it would be possible to triangulate the position of
an attacker or rogue access point. The position and even
the motion can be taken into account in determining if the
source is merely a valid user with an unregistered MAC
address or an intruder outside the premises. The central
server could also correlated wireless authentication with
authentication on other security systems. For instance,
authentication and association on the wireless network
could be cross-referenced with Remote Authentication
Dial-In User Service (RADIUS) authentication to
establish if a valid interface card is actually being used by
its assigned user and not someone else.

C. Intrusion Response

Standard passive responses are typical of intrusion
detection systems. They include logging of the intrusion,
real-time notification, or even disabling the entire
network. The proposed intrusion detection system would
include such passive responses.

However, effective intrusion response on wireless
networks goes beyond merely passive responses to the
intrusion attempt. Additional deterrents are required
because of the reduced physical security on such
networks. Of course, it would be still be necessary to log
intrusion attempts for analysis, even with effective active
countermeasures. Thus, the ideal wireless intrusion
detection system would respond actively to threats.

The most effective defense against intruders would use
the previously described threats against the attackers
themselves. This would work against attackers that have
configured their network interfaces to authenticate on the
network. Both ARP poisoning and disassociation-
reassociation would work well in such cases.

DoS attacks against the intruder by flooding would have
an adverse effect on the overall network performance.
Even if the intruder is on a different channel from the rest
of the network, interference can still occur between
channels. Thus flooding DoS attacks are not
recommended against an intruder.

A possible alternative to flooding DoS attacks are to
utilize specially crafted malformed frames directed
specifically at the intruder. These could exploit poorly

defined or implemented aspects of the IEEE 802.11b
specification which may result in crashing the software on
the intruder’s computer. If the intruder has authenticated
successfully on the network and is actively receiving and
transmitting data, it might be possible to attack the
intruder using various techniques. By fingerprinting an
active intruder during the intrusion detection phase, the
operating system and software configuration of the
intruder can be determined. This can be supplemented
with information obtained via TCP/IP fingerprinting and
port scanning. In this way, the intruder can be profiled for
known vulnerabilities and these can then be exploited
against the intruder. The details of these vulnerabilities
are beyond the scope of this paper.

Passively listening cards are placed in monitor mode and
transfer virtually all received frames to the software for
processing. So a passive intruder could merely log frames
without acting on them and the frames would have no
effect on the network configuration of the intruder.
Techniques that exploit unauthenticated ARP messages or
IEEE 802.11b management frames are thus rendered
useless when the intruder uses monitor mode and chooses
to ignore these messages or frames.

It is still possible to confuse an intruder using decoys.
Adopting Fake AP’s functionality, the device we have
proposed and prototyped will broadcast falsified AP
information to an intruder running NetStumbler or similar
programs. If the intruder uses WEP key extraction
software, the device would broadcast weak frames
containing random data, thus confusing the algorithm
used in the WEP key extraction. Other means of
deceiving passive attackers include broadcasting false
management information that may contain specific details
like fake IP addresses. If the intruder later attempts to use
the falsified information to connect to the network, it
would be easier to identify the intrusion. Tools developed
to perform such functions on higher network layers could
also be used.

An effective intrusion detection system should include
many types of decoys. Again, the broadcast of such decoy
frames on a shared medium could adversely affect overall
network performance so it should be used sparingly and
with caution.

IV. EXPERIMENTAL PROTOTYPE IMPLEMENTATION

An experimental prototype system was assembled using
commercially available parts and freely available
software. The basic hardware requirements (low-powered
processor and wireless and wired network connectivity)
meant that modification of a standard wireless access
point would be the easiest route. The USRobotics
USR2450 was chosen for this purpose, taking into

ISBN 0-7803-7809-1/03/$17.00  2003 IEEE 71

 Proceedings of the 2003 IEEE
 Workshop on Information Assurance
 United States Military Academy, West Point, NY June 2003

account that it was based on the Eumitcom WL1100SA-N
board, which in turn is supported by OpenAP [13].
OpenAP is a Linux distribution for the access point and
allows for a high degree of customization. Also, the
WL1100SA-N boards utilize an x86-compatible AMD
Élan SC400 and a standard PC Card IEEE 802.11b
network adapter. Thus, the software developed for this
access point could be easily ported to a more powerful
platform, like an x86 PC with a PC Card wireless network
adapter. The USRobotics USR2450 together with Open
AP’s Linux, allows us to download non-standard
functionality to the off-the-shelf commercial device.

For the prototype, only one unit was assembled and the
central management server was omitted. Management
was instead done on the unit itself via a web-based
interface. It was originally intended that the device retain
its AP functionality after modification. It was later
determined that, due to hardware and software
constraints, some original AP functionality had to be
sacrificed for the purposes of being able to easily
prototype some of our proposed concepts.

Due to limitations in the processing power and memory
available on the unit, the detection of only selected
intrusions was implemented. The focus was on
NetStumbler detection, since it is the most commonly
used tool. For response, the unit was capable of logging
intrusions and deploying active counter-measures
including decoy frames for AirSnort, fake AP probe
response frames, and a DoS attack against NetStumbler.

Another limitation that was encountered was that since a
standard IEEE 802.11b card was used, the prototype
could not monitor all channels at once. Instead, it had to
switch frequently between channels to achieve the desired
effect. Also, the firmware restricted the device to
functioning in monitor mode instead of Host AP mode as
was originally intended.

A. NetStumbler DoS

In the course of developing the module for fake AP
beacons and probe responses, a vulnerability was
discovered in the IEEE 802.11b implementation. Probe
responses contain a variable length list of tagged fields.
Each field contains a tag to identify the contents, the
length of the field, and the actual data itself. SSIDs in
practice may be set to null. However, when actually being
sent as a tagged field, a null SSID would be transmitted as
a single ASCII space character.

During testing the space character in the SSID was
mistakenly omitted and it was observed that this caused
the Windows PC running NetStumbler to lose its
connection to the wireless card. Depending on the version

of Windows used, the computer may even respond
sluggishly. Further investigation revealed that this effect
was the same even if another program other than
NetStumbler was used to scan the network for access
points. Furthermore, this vulnerability affected a variety
of systems, running both Windows and Linux and using
wireless adapters from several manufacturers. The DoS
effect we created varied from only requiring the wireless
card to be ejected and reinserted to hanging of the
software and causing the system to slow down. One setup
that was not vulnerable was a Windows XP PC with a
card using Intersil’s PRISM 3 chipset. PRISM 3 cards
were open to attack when used on PocketPC and Linux
platforms. Fortunately, Wardriving with a Windows XP
laptop requires the use of NetStumbler which
consequently requires the use of a wireless card using the
ORiNOCO chipset and this setup is susceptible.

As this technique could also affect valid clients
attempting to scan and associate with the network, it is
only used when NetStumbler has been detected. And even
if the intruder has associated with the network and is no
longer scanning, it would be possible to send a
disassociation frame to the intruder and cause it to resume
scanning. At this point, the malformed probe response
attack can be used.

Obviously, this vulnerability should be addressed by
manufacturers before it is exploited maliciously. We
decided to use this technique in our prototype systems to
actively prevent wireless intruders.

B. AirSnort Decoys

Examining AirSnort’s source code revealed that it uses a
simple algorithm to determine if a frame is weak. Weak
frames are then added to a pool to be analyzed later by
another algorithm to determine the WEP key.

The weak frame detection algorithm relies on simple
pattern matching of the initialization vector (IV) of the
frame. The IV itself consists of three bytes. AirSnort
considers a frame weak if the first byte of the IV has a
value between 2 and 16 inclusive and the second byte has
a value of 255. Each three-byte pattern is only added once
to the pool.

Creating decoys for AirSnort is a simple task. The decoy
frames contain mostly valid data except that the IV is a
randomly generated number that matches the criteria
described above. Also, at least one byte of “encrypted”
data should be randomly generated. AirSnort requires
only a few such frames and would cease capturing frames
when the key has been extracted. Our implementation
used sequential numbers for the third byte while the first
byte and encrypted data are a single random byte each.

ISBN 0-7803-7809-1/03/$17.00  2003 IEEE 72

 Proceedings of the 2003 IEEE
 Workshop on Information Assurance
 United States Military Academy, West Point, NY June 2003

Association and authentication are also monitored to
determine valid clients. Each client is identified by its
unique MAC address. For each MAC address, a state
machine tracks the current association/authentication
state. Clients that have fully associated and authenticated
with the network are assumed to be valid. If they were
previously flagged as NetStumblers, this flag would be
cleared and any intrusion response against them would
cease. The device would only consider authentication and
association frames intended for the valid network so as to
minimize false negatives.

Other required fields are also filled in. First, the frame is
marked as an encrypted data frame. The BSSID is the
actual one configured by the user and the source address
is also set from this value. The destination is randomized
since it is ignored by AirSnort. To prevent degradation of
the network, the decoy frames are only sent intermittently
at a user-controlled rate. Given that the system only has to
protect the valid network from intrusion, the decoys are
broadcasted only on the valid channel.

C. Fake Probe Responses

E. Results The functioning of this mechanism is similar to the Fake
AP program. Probe responses are broadcasted with bogus
access point information. For example, the Service Set
Identifier (SSID) and Base Station Set Identifier (BSSID)
would be randomized.

Tests were conducted with a network consisting of a D-
Link DWP900AP access point, the prototype device, a PC
with an ORiNOCO Gold wireless card running
NetStumbler, and two Linux PCs with Linksys WPC11
wireless cards acting as valid clients.

Attempting to flood NetStumbler by broadcasting
thousands of random responses is unrealistic and often it
is not difficult to pick out the real access point which
would be the only steady response. Our prototype mimics
Fake AP behavior and instead selects from a user-
specified list of SSIDs and MAC addresses. The use of
predefined MAC addresses as opposed to random ones
enhances the illusion since these MAC addresses can be
similar to valid ones with valid OUIDs. The SSID and
MAC are transmitted on the channel that a NetStumbler
probe request is detected. This appears as several
networks operating constantly on all channels that
NetStumbler scans. Since the probe response is destined
only for the intruder, valid clients should have no
problems connecting to the network.

The device was successful in detecting NetStumbler and
did not give any false positives with valid clients using
the default threshold of 30 probe requests per 10-second
interval. However, when the NetStumbler computer is
moving at some speed, as would happen if the intruder
were driving past an installation, the detection accuracy
diminishes. This is because of the reduced time in which
the intruder is present on the network. Fortunately, fast-
moving NetStumblers also suffer from reduced accuracy
while scanning networks. The detection accuracy was also
affected by NetStumbler’s scanning speed – the delay
between consecutive probe request transmissions. An
intrusion was detected when using the ORiNOCO
configuration utility to scan the network. Other active
Wardriving tools like dStumbler were not tested since
they function along similar lines and the system was
assumed to be able to detect them with at most slight
modifications to the threshold.

D. Detection and Response

The unit must first be configured for the valid network’s
parameters, including SSID and MAC address, also
known as the Base Station Set Identifier (BSSID), of the
AP through the web-based management console. The
range of responses can be toggled independently through
the console too. If AirSnort decoy frames are enabled, the
device would begin transmitting the decoys at user-
determined intervals.

The DoS attack against NetStumbler was very successful
and would disable the system within a few seconds. The
AirSnort decoys also worked as expected. When the
device was configured to broadcast decoys every 30
seconds, AirSnort would extract an invalid key after less
than an hour. However, the impact of the AirSnort decoys
on network performance was to lower throughput by
about 1.9%. Fake probe responses were detected by
NetStumbler but appeared as intermittently functioning
access points, which is undesirable.

The device will be screening traffic on all channels and
keeping track of probe requests, association messages,
and authentication messages. If a computer running
NetStumbler is present, NetStumbler’s probe requests will
be detected on the device. When the frequency of probe
requests exceeds a user-defined threshold, the computer is
logged as a NetStumbler computer. Intrusion response
will be activated if enabled. Intrusion response includes
DoS and fake probe responses.

F. Discussion

The main limitation in our prototype device is the use of a
standard wireless network adapter. This adapter can only
examine traffic on one channel at a time and there is a
noticeable delay when switching channels. This limitation

ISBN 0-7803-7809-1/03/$17.00  2003 IEEE 73

 Proceedings of the 2003 IEEE
 Workshop on Information Assurance
 United States Military Academy, West Point, NY June 2003

V. CONCLUSIONS means that the unit can only detect NetStumbler if by
chance NetStumbler is transmitting on the same channel
as that which the unit is scanning. Because some probe
requests from NetStumbler are not detected, no probe
response is sent and thus NetStumbler flags the AP at that
channel as disabled. Thus, the bogus access points appear
active only intermittently on NetStumbler and this
behavior could be used to discriminate the actual access
point from the decoys. Also, the device might be scanning
another channel while a client is authenticating or
associating on the valid channel. This loss of information
makes it difficult to accurately track the association and
authentication states of each client. Channel hopping on
the prototype is user-configurable, since certain
administrators would prefer to collect full authentication
and association data rather than monitor all channels.

We downloaded a replacement Linux operating system
and modified functionality into an off-the-shelf
USRobotics USR2450 wireless access point with the
intent of prototyping our ideas. Even though the prototype
functioned nearly as intended, it still falls short of a
complete wireless intrusion detection and response
system.

The limitations of processing power and memory inside
our modified USRobotics USR2450 meant that only few
forms of intrusions could be monitored. To be effective
against the current repertoire of attacks, the processing
power of the device needs to be improved. Our prototype
used a processor that is equivalent to an Intel 486
processor and had only 4 megabytes of flash memory.
Since the device would ideally be low-cost and have low
power consumption, a cheap integrated embedded
processor is the most likely choice. There are many
processors available that provide the necessary IO
interfaces and greater processing power. Flash memory
and RAM are available at very low costs too, so memory
restrictions should be less severe in future devices.

As mentioned earlier, firmware limitations restricted our
choice of operating modes for the IEEE 802.11b adapter
in our prototype device. In Host AP mode, the device
would be able to function as an access point. However, in
this mode the card filtered out frames not destined for its
MAC address, which was an undesirable “feature”. In
monitor mode, the card would not be able to respond to
low-level frames and handling these frames in software
proved too slow to meet timing specifications. In the end,
we decided to use monitor mode, forgo AP functionality,
and to ignore low-level frames where possible.

The ability to receive or transmit on only one channel is a
more significant obstacle. One possible solution would
require the use of at least two cards. One card would
perform scanning of all channels while another card
would transmit and receive only on the valid channel.
Having multiple cards would also alleviate the problem of
having no traffic on the simulated networks since extra
cards could be used to transmit random or simulated
traffic to enhance the appearance of a complete and
functioning network.

In addition, the firmware limitations ruled out the
possibility of other DoS attacks against the intruder. One
possible DoS would require the use of malformed frames
with invalid duration or CRC values. Unfortunately, this
could not be completed on the prototype because the
firmware would not transmit such frames. Attempts to
send frames to non-existent MAC addresses were also
foiled because the firmware would require a CTS from
the non-existent MAC before sending the frame. With
modified firmware, it might be possible to confuse the
intruder with such out-of-range values. We did not pursue
accessing and modifying the firmware in this version of
our prototype.

The prototype was a standalone solution. Integration with
other similar units and a central server should pose little
problem. The threshold detection algorithm performed
satisfactorily under lab conditions, but on larger, ill-
defined networks, an adaptive algorithm would be
required and this could run on the server. Having multiple
devices to perform detection could also improve the
reliability of detecting fast-moving Wardrivers.

The impact of AirSnort decoys on network performance is
inevitable and is, in our opinion, within tolerable values.
On high throughput networks, the number of decoy
frames is insignificant compared to the overall number of
frames. On networks with less traffic, the transmission
frequency of the decoys can be reduced. This would not
affect their effectiveness as the decoys only have to
outnumber the similarly reduced number of actual weak
frames.

VI. ACKNOWLEDGEMENTS

The authors would like to acknowledge that this research
was initially completed as part of a design project by
Georgia Institute of Technology undergraduate students
Seng Oon Toh, Nitin Namjoshi, Varun Kanotra, and Yu-
Xi Lim.

ISBN 0-7803-7809-1/03/$17.00  2003 IEEE 74

 Proceedings of the 2003 IEEE
 Workshop on Information Assurance
 United States Military Academy, West Point, NY June 2003

ISBN 0-7803-7809-1/03/$17.00  2003 IEEE 75

VII. REFERENCES

[1] J. Wright, “Layer 2 Analysis of WLAN Discovery
Applications for Intrusion Detection,” [Online document],
2002 Nov 8, [cited 2003 Jan 30], Available HTTP:
http://home.jwu.edu/jwright/papers/l2-wlan-ids.pdf

[2] N. Borisov, I. Goldberg, and D. Wagner, “Intercepting
Mobile Communications: The Insecurity of 802.11,”
Proceedings of the 7th Annual International Conference on
Mobile Computing and Networking, 2001 Jul.

[3] S. Fluhrer, I. Mantin, and A. Shamir, “Weakness in
the Key Scheduling Algorithm of RC4,” 8th Annual
Workshop on Selected Areas in Crytography, 2001 Aug.

[4] Snax, “AirSnort Homepage,” [Website], 2002 Sep 25,
[cited 2003 Jan 30], Available HTTP:
http://airsnort.shmoo.com

[5] A. T. Rager, “WEPCrack – An 802.11 key breaker,”
[Website], [cited 2003 Jan 30], Available HTTP:
http://wepcrack.sourceforge.net/

[6] R. Fleck and J. Dimov, “Wireless Access Points and
ARP Poisoning,” [Online document], 2001 Oct 12, [cited
2003 Jan 30], Available HTTP:
http://www.cigitallabs.com/resources/papers/download/ar
ppoison.pdf

[7] 802.11ninja, “802.11ninja.net,” [Website], [cited Jan
14], Available HTTP: http://802.11ninja.net/

[8] Air Defense Inc, “Wireless LAN Security for the
Enterprise,” Air Defense, [Website], [cited 2003 Jan 30],
Available HTTP: http://www.airdefense.net/

[9] AirMagnet, “Air Magnet,” [Website], [cited 2003 Jan
30], Available HTTP: http://www.airmagnet.com/

[10] Finisar, “Surveyor Wireless,” Finisar, [Website],
[cited 2003 Jan 30], Available HTTP:
http://www.gofinisar.com/index.html

[11] Black Alchemy Enterprises, “Black Alchemy
Weapons Lab: Fake AP,” Black Alchemy Enterprises,
[Online document], 2002 Oct 12, [cited 2003 Jan 30],
Available HTTP:
http://www.blackalchemy.to/Projects/fakeap/fake-ap.html

[12] J. L. DeBoer, “Digital Matrix – AirSnare,” Digital
Matrix, [Online document], [cited 2003 Jan 30], Available
HTTP: http://home.attbi.com/~digitalmatrix/airsnare/

[13] S. Barber, J. Chung, D. Kimdon, D. Lopes, B.
McClintock, and D. Wang, “OpenAP,” [Website], [cited

2003 Jan 30], Available HTTP:
http://opensource.instant802.com/

	Introduction
	Background
	Intrusion Methods
	Existing Systems

	Proposed New Architecture and Capabilities
	Physical Specifications
	Intrusion Detection
	Intrusion Response

	Experimental Prototype Implementation
	NetStumbler DoS
	AirSnort Decoys
	Fake Probe Responses
	Detection and Response
	Results
	Discussion

	Conclusions
	Acknowledgements
	References

