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Abstract 

This paper presents a synthesis of cognitive architecture and 
visual imagery. Visual imagery is a mental process that relies 
both on cognitive and perceptual mechanisms and is useful 
for tasks requiring visual-feature and visual-spatial reasoning. 
Using visual imagery as motivation, we have extended the 
Soar cognitive architecture to support the construction, 
transformation, generation, and inspection of visual 
representations for general problem solving. This paper 
presents the high-level architectural design and discusses 
initial results from two domains.  

Keywords: Cognitive architecture; visual imagery; multi-
representational reasoning. 

Introduction 

Cognitive architecture research focuses primarily on 

abstract, symbolic representations and computations. Non-

symbolic representations are used, but for control, and not 

for representing or manipulating task knowledge. There is, 

however, significant evidence that visual imagery plays an 

important role in many cognitive tasks (Kosslyn, et al., 

2006; Barsalou, 1999). Our work seeks to investigate the 

synthesis of and interactions between cognition and mental 

imagery by extending the Soar cognitive architecture with 

visual imagery. In addition to Soar’s native symbolic 

representation, visual imagery in our architecture uses a 

depictive representation as well as an intermediate, 

quantitative representation for images. 

Our major result is a computational implementation of 

visual imagery and integration within a cognitive 

architecture. Functionally, this provides a computational 

advantage and additional capability for visual-feature and 

visual-spatial reasoning. Although our design is based on 

psychological and biological constraints, at this point, visual 

processing algorithms are ad hoc, and do not model the 

details of human performance. Our results illustrate the 

functional value of visual imagery and the challenges of 

creating complete models of such complex processes.  

Related Work 

Two of the most prominent cognitive architectures, EPIC 

(Kieras & Meyer, 1997) and ACT-R (Anderson et al., 

2004), incorporate models of human perceptual and motor 

systems. However, rather than specifying and implementing 

the low-level details of perception and motor processing, 

(e.g. edge detection, joint coordinates), these systems focus 

on the timing and resource constraints between perception, 

cognition, and motor processing. Moreover, neither system 

has a long-term perceptual memory, which is necessary to 

gain access to a remembered object’s visual features (i.e. 

shape representation). Neither system has any mechanism to 

support visual imagery.  

Previous efforts to build computational models of 

imagery have not included the constraints that arise in 

integration with a general cognitive architecture. Kosslyn 

composed a detailed mental imagery model and created a 

computational implementation to simulate and test his ideas 

(1980). Glasgow and her colleagues built a computational 

model of imagery for a molecular scene analysis application 

(Glasgow & Papadias, 1992). While Glasgow incorporated 

psychological constraints in her model, such as the inclusion 

of three separate representations (descriptive, spatial, and 

visual), their implementation is application specific.  

The CaMeRa model of Tabachneck-Schijf’s et al. (1997) 

uses multiple representations and simulates the cognitive 

and visual perceptual processes of an economics expert 

teaching the laws of supply and demand. Their system 

includes both visual short-term and long-term memories that 

complement verbal memories, but the generality of the 

overall architecture is unclear. Visual STM includes a 

quantitative (node-link structure) and a depictive (bitmap) 

representation that is similar in design, although not in 

implementation, to our representations. Their shape 

representation is limited to algebraic (i.e. lines and curves) 

shapes and their spatial structure only models an object’s 

location while ignoring orientation and size. 

Barkowsky (in press) proposes that any model of mental 

imagery must include the following: 

 

(1) Hybrid representational formats to include 

propositional and visual structures involving shape. 

(2) Coupling between imagery and visual perception.  

(3) Construction of images from pieces of knowledge. 

(4) Processing with or without external stimuli. 

(5) Multi-directional distributed processing and control. 

 

Our architecture addresses (1) – (3) and our future plans 

include incorporating visual imagery processing in the 

presence of perceptual stimulus (4). Our control structure 

initiates and controls imagery processes in a top-down 

manner while perceptual mechanisms process results in a 

bottom-up fashion. In Soar, the contents of working 
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memory determine which memories and processes are 

active without any centralized control (5). We also propose 

that the architecture must support transformation and 

generation of a depictive representation. The following 

sections discuss our initial implementation.  

Visual Representations 

We assume visual imagery uses three distinct visual 

representations to include (1) an abstract symbolic 

representation, (2) a hybrid symbolic and quantitative 

representation, and (3) a depictive representation (Table 1). 

Each visual representation becomes more specific and 

committal as you move down the hierarchy. 

 

Table 1:  Visual Representations 

 

Representation Uses Example 
Abstract symbols  

 

General, qualitative 

visual-feature and 

visual-spatial 

reasoning 

object (can) 

object (box) 

color (can, yellow) 

color (box, blue) 

on (can, box) 

Hybrid abstract and 

quantitative 

symbols  

Quantitative visual-

spatial reasoning 

 

 

 

can  

   height 5 

radius 1 

location <2,1,2> 

box 

length 10 

width 6 

height 4 

location <0,0,0> 

Depictive symbols Visual-feature 

recognition 

 

Quantitative visual-

spatial reasoning 

 

 

The abstract symbolic visual representation is the neutral, 

stable medium useful for general reasoning (Newell, 1990). 

Symbols denote an object, some visual properties of that 

object, and qualitative spatial relationships between objects. 

The meaning of the symbols is dependent on their context 

and interpretation rather than how the symbols are spatially 

arranged. The symbols are composable using universal and 

existential quantification, conjunction, disjunction, negation, 

and other predicate symbols. 

The hybrid, intermediate representation labels objects 

with abstract symbols and denotes each object’s location, 

orientation, and size with quantitative, vector-based values. 

The computational processes that infer information from 

this representation are sentential, algebraic equations.  

The intermediate representation does not receive much 

attention in the imagery representational debate (Kosslyn, et 

al., 2006; Pylyshyn, 2002). However, it is important for the 

following reasons. First, neurological evidence shows that 

during visual-spatial imagery tasks, the visual cortex, or 

depictive representation, is not active (Mellet et al., 2000). 

However, the parietal cortex is active signifying a visual 

format distinct from the depictive representation. 

Second, Marr stresses that bottom-up visual processing 

uses incremental, increasingly abstract levels of 

representations (Marr, 1982). This rational is also pertinent 

to visual imagery but in the “opposite” direction. Visual 

imagery cannot generate a depictive representation directly 

from qualitative, abstract symbols without first specifying 

metric properties, such as location, orientation, and size. 

Finally, from a computational perspective, there are some 

spatial reasoning tasks where reverting from qualitative 

symbolic representations to quantitative information is 

necessary for either efficiency or simply to infer new 

information (Forbus, Neilsen, & Faltings, 1991).  

The depictive representation is useful for detecting object 

features (e.g. “does the letter ‘A’ have an enclosed space?”) 

and spatial properties where the objects’ topographical 

structure is relevant (e.g. “which is wider in the center, 

Michigan’s lower peninsula or the state of Ohio?”). Space 

implies spatial extent within and between objects in a visual 

scene. Each point in the representation can have variable 

color and intensity, and the spatial arrangement of the points 

resembles the object(s) specific shape. Computationally, the 

depiction is a pixel-based data structure and the algorithmic 

processes are either algebraic or ordinal algorithms that take 

advantage of the topological structure. 

Architecture 

There are two software components in our architecture, 

(1) Soar and (2) Soar Visual Imagery (SVI). Soar provides 

the underlying control (via its procedural production 

memory and its decision procedure) and state representation 

(via its symbolic memories). SVI encompasses both visual 

perception and visual imagery mechanisms. Figure 1 shows 

the architecture with Soar (not to scale) across the top and 

the visual mechanisms inherent to SVI underneath. We will 

refer to this figure as we explain the architecture and 

elaborate on the specific visual imagery processes not 

shown in it. The architecture makes a distinction between 

memories (rectangles) and processes (rounded rectangles). 

The terminology is either Kosslyn’s et al. (2006) or our 

own. We will start by explaining the memories and 

processes associated with visual perception working from 

the bottom to the top of Figure 1. Then we will discuss 

visual imagery from a top-down perspective.  

Visual Perception 

The Visual Buffer is the SVI short-term memory associated 

with the visual cortex. It maintains the depictive 

representation (Kosslyn, et al., 2006). A Refresher process 

activates the depiction based on information received from 

visual perception. Two sets of processes in SVI correspond 

to the ventral or “what” pathway and the dorsal or “where” 

pathway that extend from the visual cortex (Ungerleider & 

Mishkin, 1982). The “What” Inspectors are responsible for 

extracting object features, shape, and color from the Visual 

Buffer. They store each object’s shape and color in a Visual 

long-term memory (LTM), neurologically believed to be in 
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the region of the inferior temporal lobe. SVI stores the 

shapes as a mesh topology in the Euclidean space, R
3
. 
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Figure 1:  Architecture overview 

 

The “Where” inspectors extract the location, orientation, 

and size of the objects in the Visual Buffer and store this 

information in the Object Map short-term memory. The 

Object Map roughly corresponds with the posterior parietal 

cortex and maintains the quantitative visual representation 

from Table 1. SVI implements this representation with a 

scene-graph data structure.  

The VisualLTMListeners and the ObjectMapListeners 

consolidate the inspectors’ results and create an abstract 

symbolic format for Soar’s working memory. The Visual 

LTM Listeners provide an object’s qualitative features 

along with a symbol (visual-id) denoting the object’s shape 

and color in Visual LTM. Likewise, the Object Map 

Listeners create the qualitative spatial relationships between 

objects in the Object Map. Visual operators in Soar’s 

production memory attend to the listeners input and 

associate it with existing knowledge.  

Visual Imagery 

For illustration, consider a Soar robot setting the table for 

dinner. Its current goal is to set one place setting, and in 

order to accomplish the goal it has to set each individual 

object (napkin, fork, plate, etc). It prefers to set the center 

object (i.e. plate) first so it can place the other objects 

relative to the center. The robot’s working memory contains 

the symbolic representation of the place setting (Figure 2).  

Each object’s symbol structure is associated with the 

current state in Soar’s working memory via a visual-object 

attribute. The place setting structure includes the primitive 

visual objects napkin, fork, plate, knife (not shown), and 

spoon (not shown) objects. Primitive visual objects have a 

visual-id attribute. Composite visual objects (i.e. place 

setting) denote an object containing other visual objects. 

Composites are augmented with has-a and spatial-

relationship attributes defining how the object is composed. 

Spatial relationships indicate an object’s location and 

topology in relation to other objects. For example, the fork 

is above (location) and connected (topology) to the napkin 

and left-of and disconnected from the plate. A viewpoint 

attribute specifies the spatial relationship perspective. Note 

that primitive objects may be associated with many 

composite objects and task knowledge may rearrange the 

spatial relationships or even synthesize composite objects to 

enable the creation of novel visual images.  
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Figure 2:  Soar working memory visual representation 

 

Although the symbol structure in Figure 2 encapsulates a 

lot of information, it does not indicate the place setting’s 

center object—either directly or through inference. When 

there is a lack of visual-feature or visual-spatial knowledge, 

an impasse occurs and Soar creates a special, visual imagery 

state. The state’s initial knowledge consists of the symbolic 

representation of the object in question and the goal is to 

determine the desired information. 

As a first step, visual imagery, processing has to re-

encode Soar’s symbolic representation into the intermediate, 

quantitative representation. To support this, general-purpose 

operators for constructing the metric representation (Figure 

1) are encoded in Soar’s production memory. Construction 

derives from a commonly demonstrated phenomenon in 

behavioral imagery experiments showing the time to 

generate a visual image is linearly dependent on the number 

of parts in the visual representation (Kosslyn, et al., 2006).  

Within SVI, there are functional processes specific to 

imagery. The Imager receives the operator’s command and 

symbolic information from Soar, interprets it, and passes the 

required information to a Constructor process (Figure 3). 

The Constructor builds the quantitative representation in the 

Object Map by combining each object’s general shape 

information from Visual LTM with its qualitative spatial 

knowledge from Soar’s working memory. For example, to 

build the place setting, visual imagery may first compose 

the fork and the plate by locating the fork to the left of the 

plate. In a similar fashion, processing adds the other objects 

to complete the quantitative representation.  
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Figure 3:  Construction, transformation, generation 

 

The transformation operator (Figure 1) and the 

Manipulator process (Figure 3) emerge from another 

common behavioral phenomenon, made famous by 

Shepard’s and Metzler’s “mental rotation” experiment 

(1971). The operator changes the location, orientation, or 

size of a specific object or the perspective of the scene.  

If the original query refers to an object’s spatial 

orientation or relative size then the metric representation is 

sufficient. In the case of inferring the place setting’s center 

object, this is the case. However, if the robot finishes setting 

the plate and is ready to pick up the napkin, it may want to 

know the relative difference in width between the plate and 

napkin. In this case, a depictive representation with each 

objects’ specific shape is required. The generation operator 

initiates processing, and the Imager interprets the command 

and invokes the Refresher (Figure 3). The Refresher 

combines each object’s specific shape and color from Visual 

LTM with the Object Map information and generates the 

depictive representation in the Visual Buffer.  
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Figure 4:  Inspection 

 

After the system has constructed, transformed, and, if 

necessary, generated the depictive representation, the 

conditions are set for the inspection process (Figure 4). The 

inspect operator provides the Imager with the query. For 

example, “what is the center object of the scene?” or “which 

object is wider?” The Imager then activates the “What” 

and/or “Where” processes. These processes function as 

previously discussed with the exception that in visual 

imagery the Imager may direct the “where” inspectors to 

focus on the Object Map if the depiction is not required. The 

agent may iteratively add more detail to its visual 

representation and inspect it to refine its search. 

Results 

The results illustrate the functional and computational value 

of visual imagery in two distinct domains. The first domain 

derives from Larkin & Simon’s work demonstrating the 

computational advantage of diagrams (1987). In the 

problem they investigate (Figure 5), the model must locate 

object features, (e.g. vertices, line segments, triangles) and 

infer relationships (e.g. angles, congruency) that initial task 

knowledge does not specify.  

Although we doubt a human could solve the problem 

without an external diagram, we chose this task because it 

stresses the construction and inspection of a quantitative 

representation. The task does not require a depiction as 

initial knowledge specifies the main feature (lines) from 

which other features can be inferred. As either symbolic or 

metric representations are sufficient, we can compare them 

and determine computational and functional differences. 

The second domain derives from Kosslyn and Thompson 

(2007). In this experiment, the subjects hear a letter from the 

English alphabet and the experimenters ask them to 

visualize it in its uppercase format. Next, the subjects hear a 

cue, such as “curve”, “enclosed-space”, or “symmetry” and 

indicate whether the letter has the particular feature. For 

example, the letter ‘A’ has an enclosed space and vertical 

symmetry while ‘U’ has a curve. The Soar model also 

“hears” a question, visualizes the letter, searches for the 

desired feature, and then “verbally” responds  

We chose this visual-feature task because it involves all 

imagery processes and representations. Unlike the geometry 

domain, symbolic or quantitative representations cannot 

solve this task without explicitly encoding every feature. 

The task also includes an external environment that 

emphasizes the interaction of visual imagery and cognition.  

Although our initial goals are functionality driven, we 

also make comparisons with human data and discuss the 

shortcomings. Two reasons for these shortcomings include 

our uncertainty of the types of algorithms humans use to 

recognize features, and our architecture’s lack of “image 

maintenance” that occurs when the image’s vividness 

decays and must be refreshed (Kosslyn et al. 2006).  

Geometry Problem 

The problem states that there are four lines (A, B, C, D). 

Line A is parallel to line B and line C intersects line A. Line 

D bisects the line segment formed by the intersection of line 

C with lines A and B (Figure 5). The goal is to show that the 
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two triangles formed are congruent. To prove congruency, 

the model must employ a basic geometry rule, such as the 

angle-side-angle (ASA) rule. The ASA rule states if two 

angles and the included side of a triangle are congruent to 

two angles and the included side of another triangle, then 

the two triangles are congruent. In Figure 5, the model must 

show E1=E2, e1=e2, and c=b.  

 

 
 

Figure 5:  Geometry Problem 

 

We compared two models. The first uses only symbolic 

representations (Soar Only) and has operators to create and 

process geometric objects and relationships. For example, 

“if two lines intersect, then create a vertex”. The model 

creates these features until it can show the triangles are 

congruent. The second model (SVI) constructs a metric 

representation from the original description. It then inspects 

it for the desired features and relationships and uses the 

information along with the ASA rule to prove congruency.  

The SVI model requires less real and simulated time 

(Figure 6). “Soar Only” spent much of its time considering 

objects and relationships that were not required to solve the 

problem. The SVI model also requires less task knowledge 

(Figure 7). The “Soar Only” model requires knowledge 

about geometric structures inherent to SVI’s imagery 

operations. Functionally, this suggests that SVI decreases 

the amount of knowledge required to learn such a task.  

 

 
 

Figure 6:  Time for each agent.  

Simulated time is decision cycles x 50 ms. 

 

The model is not psychologically plausible because of its 

unrealistic ability to maintain arbitrary amounts of 

information in its visual buffer. We expect humans would 

require an external diagram and thus require more time to 

solve the problem. However, the task demonstrates 

imagery’s computational advantages and added capability. 

 

 
 

Figure 7:  Initial task knowledge for each agent 

Alphabet Experiment  

Our evaluation for this experiment focuses on three areas. 

First, the requirement for generating and transforming 

depictive representations forced us to reconsider the design. 

Our previous discussion reflects this evaluation. Second, we 

make a subjective comparison between the feature detection 

algorithms and note that even though the representation is 

depictive, the processing may not. For example, to detect 

curves we use a variation of the Hough transform (Mat Jafri  

& Deravi 1994). The algorithm maps edge pixels onto a 

parameter space and uses a “voting” algorithm to determine 

the parameters that indicate a curve. Although the algorithm 

has interesting perceptual characteristics in that it is 

parallelizable, it uses sentential, algebraic computations. For 

detecting enclosed spaces, we employ an algorithm using 

pixel rewrites to take advantage of the topological space and 

locality of neighboring pixels that is clearly more 

“depictive” (Furnas, et al., 2000).  

Finally, we compare the model’s response time
1
 (RT) 

with human data from Kosslyn’s experiment (2007). Figures 

8–9 show the comparison with the letters along the x-axis 

sorted from left to right according to human response time. 

Both humans and Soar show variability in the time to detect 

enclosed spaces
2
, but the average time is almost identical 

(Figure 8). In the case of symmetry, however, Soar shows 

little variability while humans show a lot (Figure 9).  

Again, we make no claim that the algorithms are similar 

to how humans recognize these features. Since the 

architecture does not incorporate image maintenance, the 

time required to recognize symmetry dominates the results. 

Our algorithm determines symmetry by transforming the 

original depiction around the axis of symmetry and 

comparing it with the original orientation. Rather than 

performing this operation in a single step, we hypothesize 

that humans must continuously rotate and regenerate the 

letter. This demonstrates that even if the overall architecture 

                                                           
1 Based on average CPU time over 30 trials and scaled for 

comparison with human data. 
2 Curves and enclosed spaces show a similar graph with the 

exception that the range of response times were spread out more 

for both the human (~600ms) and Soar agent (~500ms) data. 
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is correct (our hypothesis), the devil of modeling human 

behavior is in the details of low-level visual processing. 

 

 
 

Figure 8:  Enclosed space response time comparison 

Human 65:,604: σµ , Soar 14:,595: σµ  

 

 
 

Figure 9:  Symmetry response time comparison  

Human 104:,778: σµ Soar 12:,643: σµ  

Conclusion 

We have demonstrated that it is possible to extend a general 

cognitive architecture with a comprehensive model of 

imagery that includes using multiple visual representations; 

sharing mechanisms with vision; and incorporating 

construction, transformation, generation, and inspection. It 

also expands architectures by linking perceptual-based 

thought and cognition. This union provides new capabilities 

and computational efficiency for visual-feature and visual-

spatial reasoning. As we move forward, we desire to expand 

the inspection processes and evaluate the architecture in an 

environment where perception and imagery interact, spatial 

and depictive forms of imagery are necessary, and the 

overall task is not to answer a question but involves making 

decisions and executing them in a rich environment. 
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