
Extending Cognitive Architectures with Spatial and Visual

Imagery Mechanisms

by

Scott D. Lathrop

A dissertation submitted in partial fulfillment

of the requirements for the degree of

Doctor of Philosophy

(Computer Science and Engineering)

in The University of Michigan

2008

Doctoral Committee:

Professor John E. Laird, Chair

Professor George W. Furnas

Professor Richard L. Lewis

Associate Professor Thad A. Polk

© Scott D. Lathrop

All rights reserved

2008

 ii

For Susan, Sarah, and Stephanie

 iii

Acknowledgements

I would like to thank Sue, my wife and best friend, who encouraged me to pursue a PhD

and then backed those words of encouragement with tremendous love and support. Thank

you for supporting me by doing more work than a mom should ever have to do. I would

not have accomplished this goal without you! Thank you, Sarah, my five-year-old

daughter, who while setting the table for dinner one night, gave me the idea of how a

child may use imagery to perform such a task. Sarah always kept my research in

perspective with her many questions such as whether the ―story‖ I was writing had

anything to do with the ―game‖ I made, and whether or not I was going to talk about it at

―show-and-tell‖. To Stephanie, my two-year old daughter, who despite instructions not to

enter the study when the door was closed, entered anyway, ran to me, and give me a big

hug. Those moments are precious and always brightened my day even when I had not

accomplished much. Sarah and Stephanie‘s games of ―hide-and-go-seek‖ also inspired

some of my thoughts. To my parents, thanks for always encouraging me to ―climb the

next mountain‖, work hard, and persevere.

A special thanks to my advisor, John Laird, who helped cultivate these research ideas and

then provided me with the latitude to develop them. As a ―nontraditional‖ graduate

student, John respected my professional background and kept me on track by

encouraging me to focus on the most important ideas, start simple, and always evaluate.

To my committee members, George Furnas, Rick Lewis, and Thad Polk, thank you for

encouraging me to think about depictive representations (George) and to consider the

psychological and neurological constraints (Rick and Thad). I enjoyed the discussions

and learned a lot at the biologically inspired cognitive architecture (BICA) meetings. I

appreciate my fellow Soar graduate students--Andy, Bob, Jakub, Joseph, Nate, Nick, and

YJ--for the friendship, stimulating discussions, and letting an ―old guy‖ hang around the

research lab.

 iv

Table of Contents

Dedication ... ii

Acknowledgements .. iii

List of Figures .. vi

List of Appendices ... ix

Chapter 1 Introduction .. 1

Chapter 2 Spatial and Visual Imagery Representations .. 8

2.1 Symbolic, Quantitative, and Depictive Structures .. 8

2.2 Functional and Computational Tradeoffs ... 11

2.3 Mental Imagery Debate... 15

2.4 Discussion ... 20

Chapter 3 Design Space Constraints and Theory ... 24

3.1 Behavioral and Biological Constraints ... 25

3.2 Functional Constraints .. 28

3.3 Computational Constraints.. 30

3.4 Theory Summary .. 32

Chapter 4 Related Work.. 35

4.1 Cognitive Architectures .. 35

4.2 AI Systems .. 37

4.3 Computational Models .. 42

Chapter 5 Tasks and Environments .. 45

5.1 Characteristics of Tasks and Environments .. 45

5.2 Geometry Gymnastics ... 51

5.3 Alphabet Soup ... 52

5.4 Scouts Out ... 53

Chapter 6 Architectural Design .. 56

 v

6.1 Soar ... 57

6.2 SVI .. 60

6.2.1 Memories .. 60

6.2.2 Processes ... 67

6.3 Summary ... 88

Chapter 7 Evaluation... 89

7.1 Evaluation Criteria .. 90

7.2 Geometry Gymnastics ... 91

7.2.1 Functional Capability .. 95

7.2.2 Computational Advantage .. 96

7.2.3 Geometry Problem Assessment .. 98

7.3 Alphabet Soup ... 100

7.3.1 Alphabet Results ... 101

7.3.2 Alphabet Experiment Assessment .. 105

7.4 Scouts Out ... 107

7.4.1 Simulation Environment ... 107

7.4.2 Task Decomposition ... 114

7.4.3 Computational Advantage .. 121

7.4.4 Functional Capability and Problem-Solving Quality 125

7.4.5 Scout Domain Assessment .. 133

7.5 Lessons Learned.. 133

Chapter 8 Summary and Conclusion .. 135

8.1 Research Contributions ... 135

8.2 Future Work .. 137

8.3 Conclusion .. 142

Appendices .. 143

Bibliography ... 188

 vi

List of Figures

Figure 1-1: Representations Involved in Spatial and Visual Imagery 4

Figure 2-1: Imagery Representations .. 9

Figure 2-2: Example of the Capability and Limitation of Representations 12

Figure 2-3: Examples Shepard and Metzler Used to Show ―Mental Rotation‖ 17

Figure 2-4: Fictional Island Map .. 18

Figure 2-5: Visual Cortex ... 18

Figure 2-6: X On/Off Letter Experiment. ... 19

Figure 2-7: Summary of Mental Imagery Debate ... 21

Figure 2-8: The Depictive Format of the Line, y=x.. 22

Figure 3-1: Design Space Constraints... 25

Figure 3-2: Shared Biological Mechanisms between Imagery and Vision....................... 26

Figure 3-3: Summary of Spatial and Visual Imagery Theory ... 33

Figure 5-1: Spatial and Visual Task Spectrum ... 48

Figure 5-2: Geometry Problem ... 51

Figure 5-3: Alphabet Experiment ... 53

Figure 5-4: Scout Domain ... 54

Figure 6-1: Architecture Overview ... 58

Figure 6-2: The Soar Decision Cycle.. 59

Figure 6-3: Visual Buffer is a ―Set‖ of Images ... 61

Figure 6-4: Scene-Graph Data Structure ... 63

Figure 6-5: Visual Long-Term Memory ... 65

Figure 6-6: Visual-Spatial Short-Term Memory .. 67

Figure 6-7: ―Bottom-up‖ Visual Processing and Data Flow .. 68

Figure 6-8: Example Short-term Memory Symbolic Structure .. 71

Figure 6-9: Spatial Properties ... 72

Figure 6-10: RCC-8 Topological Relationships ... 73

 vii

Figure 6-11: Visual Features ... 73

Figure 6-12: Imagery Construction ... 75

Figure 6-13: Imagery Generation.. 77

Figure 6-14: Imagery Transformation .. 78

Figure 6-15: Example Pixel-level Rewrite Rules ... 80

Figure 6-16: Imagery Inspection ... 83

Figure 6-17: ―Top-down‖ Imagery Processing and Data Flow .. 86

Figure 7-1: Evaluation Metrics ... 91

Figure 7-2: Geometry Problem ... 92

Figure 7-3: Example Geometry Problem Operators (Pseudocode) 93

Figure 7-4: ―Sense of Direction‖ .. 95

Figure 7-5: Empirical Time for Each Agent ... 97

Figure 7-6: Alphabet Features Experiment ... 100

Figure 7-7: Comparison of Response Times to Detect Alphabet Features 104

Figure 7-8: Time Required for an Imagery Operation in the Alphabet Experiment 105

Figure 7-9: Scout Domain (Scenario-1) .. 108

Figure 7-10: Simulation Architecture ... 110

Figure 7-11: Scout Domain Task Decomposition .. 116

Figure 7-12: Imagining an Enemy Path .. 117

Figure 7-13: Agent Imagining Its Coverage of One Enemy‘s Hypothesized Path 118

Figure 7-14: Execution Trace of Scout Agent‘s Analysis and Subsequent Decision 120

Figure 7-15: Comparison of Processing Times of a 16x16 Pixel Image 122

Figure 7-16: Time Required for an Imagery Operation in the Scout Domain 124

Figure 7-17: Measure of Information over Time (Scenario-1) 127

Figure 7-18: Number of Cumulative Observations (Scenario-1) 128

Figure 7-19: Scout Domain (Scenario-2) .. 129

Figure 7-20: Measure of Information over Time (Scenario-2) 130

Figure 7-21: Measure of Information on Enemy Scout-1 over Time (Scenario-2) 130

Figure 7-22: Measure of Information on Enemy Scout-3 over Time (Scenario-2) 131

Figure 7-23: Number of Cumulative Observations (Scenario-2) 131

Figure 7-24: Two Example Paths Imagined During Scenario-2 132

 viii

Figure 7-25: Number of Productions in the Scout Domain .. 133

 ix

List of Appendices

Appendix A Supporting Behavioral and Neuroimaging Experiments 144

A.1 Image Units and Relations.………………………. ………..…………………144

A.2 Detecting Implicit Object Features………………. ………..…………………146

A.3 Imagery Transformations...………………………. ………..…………………147

A.4 Combining Perception and Imagery....…..………. …………..………………148

A.5 Map and First-Person Perspective Recon...……… …………..………………151

Appendix B Algorithms .. 154

B.1 Hough Transform.………………………... ………..…………………………155

B.2 Depictive Manipulations.………………… ………………..…………………160

Appendix C Software Engineering and Implementation .. 170

C.1 Class Diagrams.……………….................. ………………..…………………172

C.2 Soar Symbolic Structures.………………... ………………..…………………180

 1

Chapter 1

Introduction

The generality and compositional power of sentential, symbolic structures has made it

central to knowledge representation and processing in cognitive architectures. General,

cognitive architectures have proven useful in modeling mental processes for both

scientific, psychological research and real-world applications such as simulation entities

and robots. However, cognitive architectures have failed to address and account for

inherently perceptual and modality-specific thought processes that some argue should

participate directly in thinking rather than serve exclusively as a source of sensory

information (Barsalou, 1999; Chandrasekaran, 2006). Spatial and visual imagery are

examples of such thought processes.

With a few exceptions (Kurup, 2008), there has not been a proposed coherent

system from the Artificial Intelligence or Cognitive Science community that integrates

and uses symbolic and perceptual representations for reasoning. Current cognitive

architectures use metric representations, but for control, and not for representing and

manipulating task knowledge (Anderson et al., 2004; Laird, 2008; Sun, Slusarz, & Terry,

2005). No architecture reasons with visual depictive representations. Metric and depictive

structures may serve as perceptual input but not as first-class knowledge structures that

an agent can use for inferring new knowledge.

In this research, we explore the utility of general-purpose, intelligent systems

supporting mechanisms to encode, compose, manipulate, and retrieve symbolic and

 2

perceptual-based representations. In addition to the traditional symbolic representation,

the resulting architecture uses quantitative spatial and visual depictive representations

that serve as a basis for spatial and visual imagery processing. Behavioral and biological

constraints, primarily derived from Kosslyn (1980; Kosslyn, 1994; Kosslyn, Thompson,

& Ganis, 2006), and computational constraints influenced by Newell (1990), inform the

architectural design. From a theoretical standpoint, we account for high-level vision, as

spatial and visual imagery are dependent on both cognition and visual perception (Finke,

1989; Kosslyn, 1994; Kosslyn, Thompson, & Ganis, 2006; Palmer, 1999; Peronnet,

Farah, & Gonon, 1988; Podgorny & Shepard, 1978). At this point, underlying visual

processing algorithms are ad hoc and do not model the details of human performance, but

modeling the interdependence facilitates an enhanced understanding of the constraints

imposed between the thought processes.

The work reflects a computational synthesis of spatial and visual imagery, visual

perception, and cognition within the computational constraints of the Soar cognitive

architecture (Laird, 2008). Empirical results from three different domains illustrate the

computational gain and functional value the resulting architecture achieves. The results

show how specialized, architectural components processing quantitative spatial and

visual depictive representations can achieve an order of magnitude (or more) speed up

over traditional symbolic processing without trading off generality. Furthermore, the

architecture demonstrates new functional capability and improved problem-solving

quality when using imagery in tasks rich with spatial and visual properties.

The psychological basis for the research is mental imagery processing. Humans

use mental imagery to assist them with reasoning, problem solving, decision-making,

creativity, learning, and motor rehearsal (Helstrup, 1988). Some attribute creativity to the

observation that one can combine objects in their mental images to reveal novel objects

and relationships (Finke, 1989). Athletes often report using imagery or ―visualization

techniques‖ to rehearse their motor skills prior to competition. People with certain forms

of autism report relying almost exclusively on imagery in their thought processes

(Grandin, 2006). Even to learn non-visual concepts, such as ―love,‖ they must have a

visual, concrete representation of the concept (e.g. a heart). This research focuses on

 3

using two forms of mental imagery, spatial and visual, for reasoning, decision-making,

and problem solving.

Spatial imagery assists humans with spatial reasoning tasks. For example,

imagine that you are facing south and we ask you to simulate the following movements:

step forward, turn right, step forward, turn right, and step forward. If we then ask you

what your final location and orientation is, most people can respond that they are to the

left of where they started facing north. This task requires you to infer a global spatial

relationship (i.e. your final location and orientation) from a set of local spatial

relationships provided in the task instructions. Your shape or contour characteristics as

well as the shape of the area you are stepping are not relevant to the problem.

Humans rely on visual imagery for the detection of spatial and visual properties

not previously encoded as symbols where the specific shape or color of object(s) is

necessary for the inference. For example, consider how you answer the following

questions. Does the letter ‗A‘ have an enclosed space? What is the shape of a dog‘s ears?

What is wider in the center, Michigan‘s lower peninsula or the state of Ohio? When

asked, most people respond that they create a visual depiction of the object(s) and then

―look at‖ the image to answer the question. This type of reasoning requires a depiction

because the inference is directed at a feature (e.g. enclosed space) or spatial property (e.g.

width) requiring specific shape to formulate an answer. On the other hand, if asked,

―What state is larger geographically, Alaska or Rhode Island,‖ most American adults can

formulate an answer without having to create an image. They know from previous study

that Alaska is the largest state and Rhode Island is the smallest state, which is a general

fact easily encoded with symbolic representations.

General problem solving may use all three types of representations. If you are at a

furniture store trying to choose a new sofa for your living room, you may imagine your

living room to see if the shape and color of the furniture matches your current decorum

(visual imagery) and possibly simulate moving your furniture around to ―see‖ where the

new sofa fits best (spatial and visual imagery). On the other hand, sometimes you use

spatial imagery to form a general answer and then, if given time (or prodding), use visual

imagery to form a more accurate inference. Consider another geography question. What

 4

city is further to the west, San Diego, California or Reno, Nevada?
1
 Initially, you might

build a quantitative spatial structure representing California and Nevada as geometric

shapes (such as rectangles). Then using symbolic, factual knowledge that California is to

the west of Nevada, arrange the geometric figures accordingly (Figure 1-1a). Again based

on your knowledge that San Diego is in the southwest corner of California and Reno is in

the west central section of Nevada, you place ―dots‖ in those locations. You then reason

that San Diego is west of Reno. This answer is a common mistake people make.

However, if you add more ―detail‖ by adding the specific shape of the two states (visual

depictive), you can correctly ―see‖ that Reno is west of San Diego (Figure 1-1b). Note

that even though we illustrate the quantitative spatial representation as a picture in Figure

1-1a, we can represent the objects (California, Nevada, San Diego, and Reno) as a set of

points in a Cartesian coordinate system—a picture is not required. However, when we

add shape to the specification (i.e. the shape of the states), an image is a more suitable

structure where space is inherent in the representation.

(a) Quantitative Spatial Representation (b) Visual Depictive Representation

Figure 1-1: Representations Involved in Spatial and Visual Imagery

What the previous examples illustrate is the power of being able to reason by

combining these representations through imagery processing. Of course, to perform these

tasks assumes:

1
 Example from (Stevens & Coupe, 1978)

 5

 You have previously encoded a representation of each object‘s shape and

color and stored it somewhere in memory (e.g. letter, states, or furniture).

 You have previously encoded local spatial relationships between pairs of

objects (e.g., California is west of Nevada, Reno is in Nevada, your sofa is

in front of the T.V.). Note that the types of spatial relationships include

direction (west, in front of), distance (number of steps), orientation (the

orientation of the objects), topology (in), and size (sofa is larger than

chair).

 You recognize your current state and goal (e.g. determine if the letter ―A‖

has an enclosed space, determine what direction you are facing, decide

what furniture you should purchase, etc.).

 You are able to combine these different forms of knowledge and retrieve

the desired information.

 You can access the results of your retrieval to make a decision and form a

response.

These issues are the types we explore in this research to determine the computational

mechanisms underlying spatial and visual imagery. The goals and relevant questions of

our research follow:

(1) To incorporate spatial and visual imagery within the context of a cognitive

architecture inspired and constrained by behavioral, biological, functional, and

computational evidence.

 What are the representations and processes that are architectural?

 What knowledge is necessary to create these representations and control

the processing?

 What is the relationship between spatial imagery, visual imagery, and

visual perception? What underlying structures and mechanisms do they

share? What components are unique to imagery?

 Where is information stored and in what representational format?

 Where is the information processed?

 What information is transmitted between the architecture‘s functional

components?

(2) To understand spatial and visual imagery‘s capabilities and limitations.

 6

 How does cognition use spatial and visual imagery to solve problems?

What are the types of problems?

 What are the environment and task conditions where spatial and visual

imagery processing provides additional functional capabilities?

 What types of tasks are computationally more efficient using a

quantitative spatial or visual depictive representation versus using a

symbolic representation? What are the tradeoffs?

(3) To expand the integration between perception and cognition. We are focused

specifically on how cognition uses perceptually based representations for

reasoning and problem solving rather than how the system processes bottom-up

perception into symbols (e.g. computer vision, robotics) or how perception

constrains the timing, processing, and control behavior of the architecture (e.g.

EPIC, ACT-R).

(4) To determine and build appropriate tools for debugging and evaluating a spatial

and visual imagery component within a cognitive architecture (software

engineering aspect).

As further clarification, the following is a list of what are not our research goals.

(1) Detailed modeling of human behavior (Cognitive modeling). We are using

psychological theories, experimental evidence, and neuropsychological results as

inspiration in our architectural design. We would like the system to exhibit the

general behavior and be plausible in accordance with how we believe humans

solve problems using spatial and visual imagery. At this time, however, we are

not concerned with matching human experimental results.

(2) Building a stand-alone model of mental imagery. We are not trying to model

mental imagery without taking into consideration how it fits into the overall

architecture. Our goals are much more general in that we want to discover how

the different representations are used for problem solving. The system has to work

together as a whole with spatial and visual imagery processing as one of

cognition‘s possible tools.

(3) Designing and evaluating specific algorithms or attempting to claim we have all

imagery functionality implemented. As a follow-up from the previous point, the

scope of this work is general so that attempting to analyze, design, and evaluate

the details of specific algorithms would take away from our focus.

We organize the remainder of this dissertation as follows. Chapter 2 and 3 present

our design space constraints and theory. We devote Chapter 2 to the discussion of the

quantitative spatial and visual depictive representations, as they are central to our theory.

 7

The chapter includes a summary of the mental imagery debate and its influence on our

decisions. Chapter 3 presents the remaining design space constraints and summarizes our

theory. Appendix A provides additional background on the relevant psychological and

neuroimaging experiments supporting our theory.

Chapter 4 compares previous work in Artificial Intelligence and Cognitive

Science. Included in this chapter are computational approaches that have either modeled

mental imagery or used it as motivation for a specific application. Chapter 5 summarizes

task and environmental characteristics where spatial and visual imagery is useful. The

chapter also presents an overview of our three experimental domains to facilitate the

architectural discussion in Chapter 6. The three experimental domains include an agent

using spatial imagery to solve a geometry problem, visual imagery to recognize features

on individual alphabet letters, and both spatial and visual imagery to inform its decision

making in a simulation of an Army small-unit leader. Chapter 6 discusses the memories

and processes associated with the architecture that include Soar and its Spatial-Visual

Imagery (SVI) component. Appendix B and Appendix C provided more details on the

design and implementation of the system. Chapter 7 provides the subjective and objective

evaluation of the architecture across the three experimental domains. The evaluation

metrics include behavioral, biological, functional, and computational design space

constraints; computational gain; functional capability; and problem-solving quality. We

conclude with our research contributions and future work in Chapter 8.

 8

Chapter 2

Spatial and Visual Imagery Representations

A key result from mental imagery experiments is that humans use multiple types of

representations during imagery processing. As the distinction between these

representations is central to our theory, we focus exclusively on them in this chapter. We

begin by summarizing the three representations that support spatial and visual imagery

processing and discuss their functional and computational tradeoffs. We then summarize

the mental imagery debate. The debate is important to understand as it directly influences

the decision as to whether a cognitive architecture should include separate mechanisms

for spatial and visual imagery. The alternative is to assume that symbolic cognitive

architectures are sufficient for imagery processing and what an agent requires is simply

additional knowledge.

2.1 Symbolic, Quantitative, and Depictive Structures

From a functional and computational perspective, our hypothesis is that spatial and visual

imagery use at least three distinct representations to include (1) a symbolic, (2) a

quantitative spatial, and (3) a visual depictive representation (Figure 2-1). The symbolic

representation (first row of Figure 2-1) is the amodal, stable medium useful for general

reasoning (Newell, 1990). Symbols may denote an object, visual properties of that object,

and spatial relationships between objects. They are sentential, or sentence-like, in that

their meaning is dependent on context and interpretation rather than their spatial

 9

arrangement. The power of symbols comes from their composability using universal and

existential quantification, conjunction, disjunction, negation, and other predicate

symbols. For example, the right-hand column of Figure 2-1 represents two objects, a can

and a box with symbols denoting visual features (e.g. (can, yellow)) and spatial properties

(e.g. on(can, box)). In addition to visual and spatial properties, symbols can represent

non-visual or non-spatial content, which is necessary for associating an object with other

modalities and concepts.

Representation Aliases Modality Processing Uses Example
Symbolic

 Visual Properties

(optional)

 Spatial Properties

(optional)

Sentential

Propositional

Descriptions

P-Symbols

Amodal Symbolic

manipulation

Logic

Entailment

General

Reasoning

Explicit

visual

feature

recognition

Qualitative

Spatial

Reasoning

object (can)

feature (can,curve)

color (can, yellow)

object (box)

feature(box,corner)

color (box, blue)

on (can, box)

Quantitative spatial

 Visual Properties

o General Shape

(inferred from

size dimension)

 Spatial Properties

(mandatory)

o Direction /

Distance

(location)

o Orientation

o Size

o Topology

Sentential

Metric

Diagrams

P- and I-

Symbols

Perceptual

Symbols

Amodal Mathematical

manipulation

Laws of

Dynamics

(motion)

Spatial

Imagery

Spatial

Reasoning

(General

shapes)

can

 location <2,1,2>

 orientation 0

 height 5, radius 1

box

 location <0,0,0>

 orientation -10

 length 10

 width 6 height 4

Visual depictive

 Visual Properties

o Shape, Color

o Explicit

features

o Explicit empty

space

 Spatial Properties

o Direction /

Distance

(location)

o Orientation

o Size

o Topology

Iconic

Analog

I-Symbols

Perceptual

Symbols

Visual Mathematical

manipulation

Depictive

manipulation

Visual

Imagery

Visual

Feature

Recognition

Spatial

Reasoning

(Specific

shapes)

Figure 2-1: Imagery Representations

 10

The quantitative spatial representation (second row of Figure 2-1) is also amodal,

but is perceptual-based. That is, it is an interpretation of visual, auditory, proprioception,

and kinesthesis senses based on a fixed frame of reference that asserts an object‘s

location and orientation in space. The frame of reference can be relative to an agent‘s

viewpoint (egocentric) or another object (allocentric). Computationally, the structure uses

scalar values and vectors in a three-dimensional Euclidean space to represent information

with symbols labeling the objects. The processes that infer information from this

structure use sentential, mathematical equations.

Spatial imagery uses the representation for spatial reasoning and simulating

motion through linear transformations (i.e. translating, rotating, and scaling) or laws of

dynamics. The second example in Figure 2-1 represents the metric location, orientation,

and size dimensions of the can and the box. Location is a combination of direction and

distance from a fixed frame of reference. One may infer rough estimates of size and

topology based on the general convex shape, or dimensions, of the objects.

In contrast to symbols or quantitative spatial representations, both of which are

sentential structures, space, including empty space, is inherent in the visual depictive

representation (third row of Figure 2-1). The depiction is from a privileged viewpoint,

and the spatial structure of the patterns resembles the objects in a perceived or imagined

scene (Finke, 1989). Computationally, it is an image data structure where the processing

uses either mathematical manipulations (e.g. filters, rotation, and scaling) or algorithms

that take advantage of the topological structure and color of the representation (Funt,

1976; Furnas, 1990; Furnas et al., 2000).

Visual imagery uses the depictive representation for extracting an object‘s visual

features (e.g. lines, curves, enclosed spaces, corners) or for spatial reasoning where non-

convex shapes are inherent to the problem. It also facilitates the identification and

location of empty space between objects, exits between scenes, and topology between

objects. Similar to spatial imagery, visual imagery can use the depictive representation to

simulate physical processes. For example, visual imagery processing can simulate

moving the can in Figure 2-1 to the right to determine where it falls off the box (Funt,

1976).

 11

Even though we only label the top structure in Figure 2-1 as a symbolic

representation, each of the representations are symbols in the sense that each is a pattern

denoting something where ―denotation is a mapping of patterns onto their meanings‖

(Simon, 1996). Although we typically think of symbols as linguistic patterns and

reasoning as logic or mathematical equations, non-linguistic patterns, such as depictions,

are also symbols, but the reasoning processes that infer information from it are not based

on logic. In symbolic terms, the distinction between the representations is that some are

pointer symbols (P-Symbols), such as what we call symbolic representations, and some

are information symbols (I-Symbols), retinal input, for example, being an extreme case.

Pointer symbols do not contain raw information, but rather serve as an abstraction of

more detailed information. Information or perceptual symbols (Barsalou, 1999), are

carriers of information where the encoding pattern is primarily raw information such as in

the depictive representation. Hybrids, such as the quantitative spatial representation,

contain both P- and I-symbols.

2.2 Functional and Computational Tradeoffs

So why does a cognitive system use these three representations during thought

processing? In short, each structure has functional and computational tradeoffs. From a

functional perspective, there are tradeoffs between the representations that a specific task

often highlights even when the environment remains constant. For example, given

appropriate inference rules and the symbolic representation in Figure 2-1, one can infer

that there is a yellow object (can) on a blue object (box). However, one cannot infer that

the top of the can is a circle. One can infer visual properties from a symbolic

representation only when the property is encoded explicitly as a symbol or when task

knowledge supports the inference (e.g. if two lines intersect then there is a vertex).

Consider another example from Ullman (1996). Figure 2-2 shows two enclosed

regions. Assume that the region in Figure 2-2a is a quantitative spatial representation

rather than the image shown for presentation purposes. That is, assume the region is a set

of x, y points with indices specifying the connections, or line-segments, between the

points. One way to determine if the dots in the figure lie inside or outside the enclosed

region is to imagine a ray (again as a quantitative representation) from the point to

 12

―infinity‖ and then count the number of intersections between the ray and the line-

segments making up the region. If the count is odd, then the point is inside the region;

otherwise, it is outside the region.

(a) (b)

Figure 2-2: Example of the Capability and Limitation of Representations

Now consider the situation in Figure 2-2b where the environment is the same, but

the task is to determine whether the two points lie in the same region. Using the same

ray-based methodology will not provide the desired information as the number of

intersections only tell you whether the point is in a region or not. It does not tell you what

region (if there is more than one region). Rather than using rays to determine the region,

assume now that the figure is a visual depictive representation (as presented). Start at one

of the points and imagine ―coloring‖ all the white area red until you reach a black

boundary. If after coloring, red pixels surround the other point, then the two points are in

the same region. Such a coloring or activation scheme is similar to the depictive

algorithms we use in our architecture. In this example, the environment remains the same,

but the task changes requiring a different representation to achieve the desired functional

capability.

From a computational perspective, the tradeoff is between scope (what it can

represent) and processing cost (Newell, 1990; Simon, 1996) or alternatively, what

Norman (2000) categorizes as discretion and assimilability. Symbolic representations are

high in terms of discretion as they convey only the intended information required for

general reasoning, nothing more or less. They purposefully leave certain aspects of the

description indeterminate. The predicate description, ―on(can, box),‖ is sufficient for

general inferences used in logical reasoning. That is, you can assert very general

statements such as ―if the can is on the box then grasp it.‖ In terms of capacity alone,

symbolic representations transmit much less information than visual depictions. The

 13

symbolic representation in the right-hand column of Figure 2-1 is roughly 2
9
 (512) bits

while the picture of the can on the box is 2
19

(512K) bits—three orders of magnitude

more.

Symbols may then provide a much more compact structure allowing us to retain

context while reasoning and bring in details as required.

Symbols can also represent uncertainty such as ―the can is on the box or on the

floor,‖ and negation as in the statement ―if the can is not in the hand but is on the box or

on the floor then grasp it.‖ The quantitative spatial and visual depictive representations

have to commit to a particular configuration and so cannot convey these general

statements. Over specification is a disadvantage for perceptual representations as any

learning may apply only to the particular situation. It is difficult to generalize and transfer

to other tasks. A simple example illustrates this point. Assume an agent learns by

imagining an ‗A‘ that does not have any curves. Now it can assert that the particular ‗A‘

it imagines does not have a curve, but it cannot assert that all ‗A‘s‘ do not have curves

(e.g. consider a cursive letter, A).

At the other extreme, depictive representations are low in terms of discretion (i.e.

they provide many details), but for visual and spatial properties are computationally

easier to assimilate. For example, from the picture in Figure 2-1, information such as the

top of the can looks like a circle and covers about an eighth of the box is directly

accessible. What we lose in representational scope, or expressiveness, we often gain in

fewer processing cycles as we can exploit the space and color in the image to infer the

visual and spatial properties.

In terms of discretion and assimilation, the quantitative spatial representation falls

in between the symbolic and depictive representations. It provides more details than the

symbolic representation (i.e. direction, distance, orientation, size, and general topology)

but less information (i.e. specific shape and color) than the depictive structure. A strip

map of the New York City subway system is a good example. It leaves out the details of

every turn and provides you with the general topological structure, direction, and distance

information. In the middle, quantitative spatial example from Figure 2-1, you can infer

the direction and distance between the center of the can and the center of the box, the

location where the bottom of the can touches the box, and the relative size between the

 14

two objects. The depiction also provides this information but at the cost of requiring

greater capacity.

There are two other computational reasons why the quantitative spatial

representation is useful. First, there are some general spatial reasoning tasks where

reverting from symbolic to metric information is necessary to infer new information

(Edwards & Moulin, 1998; Forbus, Tomai, & Usher, 2003; Mukerjee, 1998). Forbus,

Neilsen, and Faltings (1991) coin this lack of a general, purely qualitative representation

of spatial properties as the poverty conjecture. Second, Marr (1982) stresses that bottom-

up visual processing uses incremental, increasingly abstract levels of representations.

This rationale is also pertinent to imagery but in the ―opposite‖ direction. Visual imagery

cannot generate a depictive representation directly from qualitative symbols without first

specifying metric properties, such as the location, orientation, and size of objects as the

generation process requires this information to project the shapes to a depiction.

The power of imagery processing emerges from the ability to combine the

symbolic, quantitative, and depictive representations, taking advantage of the

representation that provides a computational advantage or a specific functional capability.

The support for this ability in a general, cognitive architecture is a major contribution of

this research. One of the difficulties, however, is deciding when to use the appropriate

representation. Although we provide hints throughout this thesis of where each

representation is useful, we do not offer a conclusive theory. Therefore, our theory states

that an agent, through procedural knowledge, decides which representation to use based

on its current state and its estimate of the total cost of using the representation (to include

transforming to that representation, using it, and then transforming back) is less than an

alternative.

One of the main criticisms of theories advocating the use of multiple

representations is exactly this issue. As Simon (1996) articulates:

"Transformation from one symbolic representation to another, in order to find one

that is computationally efficient in dealing with a particular class of problems, is

an essential, and little understood process in much problem solving."

 15

The mental imagery debate highlights this criticism, so we will look at the issue from this

perspective and articulate our reasons for incorporating both spatial and visual

representations into the resulting architecture.

2.3 Mental Imagery Debate

Although to the casual observer the mental imagery debate may seem ludicrous (of

course we have ―mental images‖), it is actually quite complicated once one investigates

the details. Few deny that when we engage in imagery we seem to be forming pictures in

our heads. The question is, are we really?

Philosophy and psychology have a long history of mental imagery theories (Tye,

1991). Past theories have cast the role of mental imagery in thought processing at both

ends of a spectrum. At one end, philosophers such as Aristotle, Descartes, and Hobbes,

advocated visualization as the focal point of thought. They believed mental images were

models of the external world. Introspection, or the process of explaining your internal

thought processes, was the dominant method in the formulation of these ideas. In the

early twentieth century the behaviorist movement, led by Watson (1913), rejected

introspection as a valid methodology, arguing that imagery is simply a dramatization of

what is actually occurring in a person‘s mind. He concluded that introspection is not

evidence of mental structures and processes.

As cognitive psychology emerged in the 1960s, some began to argue that there

must be mental representations used in imagery to explain the results of so many

experiments. Hebb (1968) asserted that descriptions of someone‘s imagery experience is

not necessarily introspection. As an example, he used the case of amputees, who after

removal of an extremity, report pain and sensation in their ―phantom limb.‖ This

reporting of sensation is not introspection, he argued, but an imagined experience where

the perception originates in a higher brain process rather than from the extremity. Hebb

described imagery as the activation of cell-assemblies previously formed during

perception. According to Hebb, vivid imagery is the activation of the lower order cell

assemblies while higher order cell assemblies are the basis for ―less specific‖ imagery.

The separation between vivid and ―less specific‖ imagery is analogous to our theory of

visual depictive and quantitative spatial representations.

 16

This change in attitude concerning the relevancy of reported imagery experiences

coupled with behavioral experiments that were more scientific, solidified imagery‘s role

in cognition. The major question that remains, and what psychologists and neuroscientists

have debated for over three decades is the representation of these internal images. The

debate focuses primarily on visual imagery although the discussion of spatial imagery has

recently emerged as the theorists refine their theories. Kosslyn is the protagonist for the

depictive theorists who embrace the notion that visual images are quasi-pictorial, have an

inherent underlying spatio-analogical representation, and share similar mechanisms with

vision (Kosslyn, 1980; Kosslyn, Thompson, & Ganis, 2006). At the other end of the

representational spectrum, there are those, such as Pylyshyn (1973; Pylyshyn, 2002), who

argue that there has not been enough evidence to reject what he calls the ―null

hypothesis.‖ That is, visual imagery uses the same propositional (i.e. symbolic)

representations and processes as general, higher-level reasoning. The only difference, he

contends, is that the content includes visual and spatial information such as shape, color,

direction, and distance. Throughout the debate, cognitive scientists such as Anderson

(1978) also raise the key point that a representation is dependent on the computational

processing. Any theory must articulate how the representation facilitates the processing

and what the tradeoffs are in terms of functional capability and computational efficiency.

The modern debate began after Shepard and Metzler (1971) published their

seminal work on mental rotations. Their experiments showed subjects pairs of three-

dimensional, non-standard objects and asked them to determine if the objects were the

same shape (Figure 2-3). Some pairs were identical but with one of the objects rotated at

a different angle than another. Other pairs were mirrored reflections of one another so

could not be matched by rotating. After being shown a pair of objects, subjects responded

as to whether they thought the objects were the same. Shepard and Metzler found that

response times were linear with the rotation angle. Furthermore, the subject‘s post-

experiment reports claimed that in order to make the comparison they had to ―mentally

rotate‖ one of the objects. These two pieces of evidence lead Shepard and Metzler to

hypothesize that there is some sort of an imagined mental rotation process in three-

dimensional space. Some psychologists began describing the phenomena using a

 17

―picture‖ metaphor to describe the representation and a ―mind‘s eye‖ as the process that

―looks at‖ the ―picture‖ to infer information.

Figure 2-3: Examples Shepard and Metzler Used to Show “Mental Rotation”

Leveraging Newell and Simon‘s (1972) ideas that human problem solving uses

symbolic computations, Pylyshyn, wrote a strong argument against the ―picture‖

metaphor for mental imagery. He suggested that imagery, like other thought processes, is

amodal and symbolic. In the same vein as Watson (1913), he questioned experiments

relying on introspection stating that the images in our head are epiphenomenal. He also

questioned the notion of a ―mind‘s eye‖ arguing that it is really a question of infinite

regress. That is, if there is a ―mind‘s eye‖ then does that imply there is a ―brain‖ for the

―mind‘s eye?‖

Kosslyn and Pomerantz (1977) countered Pylyshyn‘s arguments using empirical

evidence and theoretical comparisons between their depictive account of visual imagery

and a propositional account. For example, in one of the experiments subjects were

presented with a map of a fictional island and seven objects (lake, well, beach, etc.)

located at various places on a map (Figure 2-4). They asked subjects to study the map,

close their eyes, mentally picture it, and compare their visual image with the map. Once

the subject had the map adequately memorized, they were instructed to close their eyes

and imagine one of the locations (e.g. ―well‖). Kosslyn and Pomerantz then named

another object (e.g. ―tree‖), and the subjects were instructed to ―scan‖ to the named

object. Kosslyn and Pomerantz measured response times and found that the time to scan

between pairs of objects was linear with respect to the distance between objects. They

concluded that a visual image preserves distance and space. Symbolic accounts, Kosslyn

and Pomerantz argued, cannot adequately explain these findings.

Later, Kosslyn shifted the basis of his argument for depictive representations from

behavioral experiments to neuroimaging evidence (Kosslyn, 1994; Kosslyn, Thompson,

 18

& Ganis, 2006). In monkeys it is known that the primary visual cortex
2
 (Figure 2-5)

roughly preserves the spatial structure of the image on the retina (Tootell et al., 1982).

That is, space on the cortex represents space in the world. Kosslyn and others asserted

that if the visual cortex shows similar activation patterns during visual perception and

visual imagery, then there is a strong indication that visual imagery, similar to vision, is

using the topographically mapped or depictive, areas of the brain.

Figure 2-4: Fictional Island Map

Figure 2-5: Visual Cortex

The typical methodology used during these neuroimaging experiments consisted

of two groups of subjects. One group would perform a task using vision, and the second

group would perform the same task using imagery. During evaluation, response times and

brain activity was measured using positron emission tomography (PET) or functional

magnetic resonance imaging (fMRI).
3
 For example, Kosslyn et al. (1993) had subjects

either view (vision group) or imagine (imagery group) a letter in a grid (Figure 2-6). An

‗x‘ then appeared on the grid and subjects had to indicate (by pushing a button) whether

2
Also known as the striate cortex, V1, or Brodmann area 17. It is the first area of the brain to receive

information from the retina.
3
Positron Emission Tomography (PET) and functional magnetic resonance imaging (fMRI) are medical

imaging techniques used to measure neural activity in the brain.

 19

the ‗x‘ fell on or off the letter. They also had a baseline group (sensory/motor group) who

simply pushed a button when the ‗x‘ disappeared from the grid to rule out any activation

effects caused by sensing and responding. The results showed greater activation of visual

cortex during the visual imagery task than during the visual perception task. They also

found more activation in other brain areas
4
 indicating that there were additional

mechanisms involved in generating the image.

Figure 2-6: X On/Off Letter Experiment.

Subjects either saw a letter in a grid (visual perception task), visualized the letter in the grid

(imagery task), or waited for the „X‟ mark to be removed (sensory/motor task).

During this time Pylyshyn (Pylyshyn, 1981, 2002) was also active in the debate

asserting that tacit knowledge and not architectural constraints (in the sense of another

representation) explained depictive theorists behavioral experiments. For example, he

argued that the reason response times for scanning between various imagined objects on

the island map were linear with respect to distance was not because the imagery medium

uses space to represent, but rather because the participants were instructed to ―scan‖

between pairs of objects. To test his theory, Pylyshyn ran a similar ―island map‖

experiment. First, he instructed subjects to memorize a map and refer to their mental

image of the map. Next, they were instructed to close their eyes and imagine one of the

locations. Pylyshyn then named another object on the map and instructed the subjects to

determine the compass direction (NE, N, NW, W, SW, S, SW, and E) from the second

object to the first object. The task instructions did not provide an indication as to how the

subjects were to determine the direction (i.e. there was no instructions to ―scan‖).

4
Specifically Broadmann area 44, 45, and 46. Area 46 is functionally part of a group known as the

dorsolateral prefrontal cortex (DLPFC) and hypothesized to be responsible for executive functions.

 20

Pylyshyn‘s results showed no correlation between response time and distance between

the objects.

Pylyshyn argued that if the task demands (i.e. ―scan‖) alter the behavioral pattern

(in this case the response time), then knowledge explains the results, not the underlying

architecture. He calls this phenomena cognitive penetrability. When we are told to ―scan‖

our image, he argued, it takes a certain amount of time until we arrive at the next object

because knowledge of how long it takes to scan a specified distance controls, or mentally

simulates, our scan rate. The intrinsic properties of the architecture are not involved, only

knowledge.

Furthermore, Pylyshyn claimed that there was not enough evidence to show

conclusively that a human‘s visual cortex is a topographically mapped representation

during imagery. He claimed that most imagery studies only showed activation in the

latter posterior cortex areas (such as the parietal cortex and inferior temporal lobe) rather

than in the visual cortex. He claimed that for the few imagery studies showing activation

on the visual cortex, none presented conclusive evidence of a topographically mapping.

Although Pylyshyn conceded that reasoning using imagery is different from logical

reasoning, he concluded that ―spatial displays‖ (i.e. visual depictive representations) are

inadequate for the representation of knowledge.

2.4 Discussion

Figure 2-7 summarizes the positions between the two camps. As the last column

indicates, the theorists explain the experimental results as being either architectural

mechanisms or knowledge. In order to design a general, computational system

incorporating imagery capabilities, one must make a commitment as to whether imagery

processing requires specific architectural mechanisms or can be realized with general,

symbolic computations and knowledge. Again, our hypothesis is that spatial and visual

imagery use at least three distinct architectural representations. We back this assertion

with the following arguments and with our evaluation in Chapter 7.

 21

Imagery

Theorist

Representations Behavioral

Experiments

Neuroimaging

Experiments

Explanation

Depictive

Symbols,

Depictions

Response times

linear with

distance of

transformation

Visual cortex

active during visual

imagery tasks

Architecture

Propositions Symbols only No correlation

between

response times

and distance

between objects

None, argue that

most neuroimaging

experiments do not

activate visual

cortex or show

topographical map

Knowledge

Figure 2-7: Summary of Mental Imagery Debate

First, Kosslyn and others propose a cohesive and consistent theory. Propositional

theorists do not offer any compelling, competing theories to embrace their viewpoint and

cannot always explain the major phenomena (e.g. rotation) without resorting to ad hoc

arguments. Even they agree that some of their theories require excessive computations

(Pylyshyn, 2002). Even though the propositional theorists disagree with the neurological

evidence, they do not provide alternative explanations as to why the visual cortex is

activated during some imagery experiments. If visual imagery is truly using only higher,

amodal symbols, then why is there any activity in the visual cortex?

Second, we agree with Pylyshyn‘s argument that tacit knowledge explains some

imagery results as behavior emerges from a combination of the environment, knowledge,

and the architecture. However, we disagree that this explanation implicates propositions

as the exclusive structure for imagery processing. In addition to the ―island map‖

experiment, there have been many other behavioral experiments providing evidence that

visual imagery representations use space. These experiments include image

transformations, image size, and visual angle (Kosslyn, 1980). As further evidence

neuropsychologists, such as Farah, Soso, and Dasheiff (1992) have shown that there is a

visual field of view in both perception and imagery when, for medical reasons, they had

to remove a patient‘s occipital lobe from one cerebral hemisphere. After removal, they

found that the horizontal visual angle was reduced in half for both perception and visual

imagery. However, the vertical visual angle remained intact. Tacit knowledge alone

cannot explain this result.

 22

Third, one of the shortcomings in the mental imagery debate, and possibly a cause

of confusion in the interpretation of whether knowledge, architecture, or a combination

explains an experimental result, is that the focus of the theorists‘ arguments is on visual

imagery. Spatial imagery receives less attention yet there appears to be distinct brain

structures, such as the parietal cortex, that are active during such tasks (Mellet et al.,

2000). As Grush (2004) articulates, a reason for the confusion is that spatial imagery does

not fit either the propositional or depictive metaphors. As with propositions, spatial

imagery representations are sentential and consist of objects with properties such as

direction, distance, size, and motion. However, transformations between states does not

follow logic or entailment but rather mathematical (e.g. translation, rotation, scaling) or

dynamic (e.g. force, torque) manipulations. On the other hand, it is not a depiction either,

such as an image or topographically organized visual cortex. The distinction between the

two representations is difficult to appreciate because one can reinterpret the spatial

representation into a depictive format. For example, a line can be represented in its

algebraic, sentential format (y = x) or a depictive format (Figure 2-8).

Figure 2-8: The Depictive Format of the Line, y=x

We argue that the difference in the results between Pylyshyn‘s and Kosslyn‘s

island map experiments are attributed to the type of imagery task (spatial versus visual).

Pylyshyn‘s version of the island map experiment is clearly a spatial reasoning task as the

subjects were to determine the absolute, cardinal direction between two objects. Our

theory offers the following explanation. As the subjects were memorizing the map, they

encoded the qualitative directions between the pairs of objects (e.g., the well is left-of the

tree, see Figure 2-4) and used this information to infer the cardinal direction. Note that

encoding these local spatial relationships facilitates rebuilding a depictive representation,

but it is not required to complete this task.

In Kosslyn‘s version of the experiment, the task was to ―scan‖ between the two

objects. Therefore, even if the subjects had tacit knowledge that it takes longer to scan

 23

between objects further apart, the subjects have to account for the distance between the

objects. As it is unclear whether this is a spatial and/or visual task (individual preferences

may be a factor in this determination), our theory offers two explanations. Either the

subject, using a previously encoded or measured distance, builds a quantitative spatial

representation and ―simulates‖ scanning between the two objects, or the subject generates

a depictive representation and scans between the two objects by imagining a ―path.‖ In

either case, perceptual-based representations and processes are in use.

Our final thoughts are that depictive theorists, such as Kosslyn, have not denied

that there are symbolic computations involved in imagery processing. On the contrary, he

specifies how symbolic, associative memories are required to build or generate an image.

Past research with Soar has focused almost exclusively on symbolic computations.

However, as Newell (1990) stated in Unified Theory of Cognition, imagery may be a

component with a different representation existing outside of central cognition. We have

pushed Soar to its limits using symbolic computations. With mental imagery as our

motivation, it is time to explore others.

 24

Chapter 3

Design Space Constraints and Theory

As discussed in the previous chapter, the use of multiple representations is a core

constraint of our theory. In this chapter, we discuss the remaining core constraints

influencing the architectural design space. Our theoretical commitments closely follow

the evidence provided by the depictive imagery theorists, specifically Kosslyn (1980;

Kosslyn, 1994; Kosslyn, Thompson, & Ganis, 2006).

Figure 3-1 categorizes our design space constraints into three areas:

behavioral/biological, functional, and computational. We derive behavioral and

biological constraints from a literature review of the theory and mental imagery

experiments measuring behavioral or neural responses through neuroimaging techniques

(i.e. PET, fMRI). Appendix A summarizes the notable experiments influencing our

theory. Functional constraints emerge from the behavioral and biological constraints so

there is some overlap. As we are extending the Soar cognitive architecture (Laird, 2008),

we derive the last three computational constraints from Soar‘s computational model

(Newell, 1990). The integration of the functional constraints with a cognitive architecture

and the computational support for efficient processing of the representations are the

major contributions of this research.

 25

Behavioral/ Biological Functional Computational

 Integrate and use multiple

representations

 Share mechanisms with

vision

 Organize by parts

 Composability

 Transformation

 Inspection / ―Visualize‖

 Quantitative spatial and

visual depictive structures

 Construction

 Transformation

 Generation

 Inspection

 Maintenance

 Efficient processing of

the representation

 Clear separation of

knowledge and

architecture

 Support reactive and

deliberate behavior

 Problem space

computational model
Figure 3-1: Design Space Constraints

3.1 Behavioral and Biological Constraints

There are many studies showing that vision and imagery share similar characteristics to

include visual and spatial structure, resolution limits, field of view, laws of motion

dynamics, motion aftereffects, short-term and long-term memories, and interference

patterns (Farah, Soso, & Dasheiff, 1992; Finke, 1989; Gilden, Blake, & Hurst, 1995;

Kosslyn, 1980; Palmer, 1999; Peronnet, Farah, & Gonon, 1988). Finke (1989) calls this

the perceptual equivalence principle.

―Imagery is functionally equivalent to perception to the extent that similar

mechanisms in the visual system are activated when objects or events are

imagined as when the same objects or events are actually perceived.‖

The primary difference between vision and imagery is the source of information

(i.e. retinal input versus memory activation) and the initiation of the processing (i.e. top-

down versus bottom-up).
5
 Imagery may build spatial and visual representations entirely

from the combination of activated object and spatial memories or by augmenting a

perceived scene with objects and their spatial configurations from these memories. Thus,

the interpretation of an imagined representation can occur in the presence or absence of

perceived stimulus. This design space constraint requires that spatial and visual imagery

share components associated with vision rather than having their own, separate

mechanisms.

5
 However, most present theories of visual perception include substantial, ―top-down‖ processing that

employs knowledge about objects to facilitate segmentation, recognition, and classification. Spatial and

visual imagery are considered part of this top-down processing.

 26

Neurological evidence shows imagery‘s integration with vision begins at the

visual cortex. The visual cortex is the region of the occipital lobe (Figure 3-2a) that

processes visual information received directly from the lateral geniculate nucleus (LGN).

The LGN, in turn, receives information from the retina. From a biological perspective,

the visual cortex is the ―lowest‖ area of the brain where imagery experiments have shown

activation. From a functional perspective, this area is associated with the visual depictive

representation.

(a) Human brain lobes (b) Ventral (“what”) and dorsal (“where”)

pathways
Figure 3-2: Shared Biological Mechanisms between Imagery and Vision

Two pathways emanate from the visual cortex (Ungerleider & Mishkin, 1982).

The ventral, or ―what‖ pathway, extends from the visual cortex to the inferior temporal

lobe while the dorsal, or ―where‖ pathway, runs from the visual cortex to the posterior

parietal lobe (Figure 3-2b). The ventral pathway includes processes that extract an

object‘s visual features and attempt to recognize the object by matching the features to an

object in a long-term memory (Kosslyn, 1994; Palmer, 1999; Ullman, 1996). This long-

term object memory, assumed to be in the inferior temporal lobe, encodes the shape and

color of objects. Some researchers advocate a 3D model (Finke, 1989; Marr, 1982;

Pinker, 1988). Others suggest a population code (Kosslyn, Thompson, & Ganis, 2006).

We are non-committal in this regard, as it remains unclear from our research how

information in this memory is encoded.

What is clear is that the system is able to reacquire shape and color. The shape

may be a prototypical representation of the object (e.g. a prototypical chair), or in some

cases, where one is exposed to the object through multiple repetitions, a very specific

 Ventral

 Dorsal

Temporal

lobe

Parietal

lobe
Frontal

lobe

Occipital

lobe

 27

shape that represents the exact object (e.g. the chair in my dining room) (Weaver, 1993).

Although the shape and color representation in this memory is unique, our theory does

not address it as a separate representation as it is not directly used in reasoning (i.e. there

are no processes that directly manipulate it). Rather, the representation is instantiated

during imagery to support constructing the quantitative spatial or generating the visual

depictive structure.

As the processes along the ventral pathway are extracting visual object features,

the dorsal pathway processes are extracting spatial properties from the visual cortex, such

as an object‘s location, orientation and size, and transmitting this information to a short-

term spatial memory in the parietal lobe (Kosslyn, 1994; Palmer, 1999). This short-term

spatial memory is associated with quantitative spatial representation. During perception,

it is an egocentric representation (i.e. relative to the head direction), and during imagery,

the representation can be either from an egocentric or allocentric viewpoint. Long-term

memory for spatial representations are encoded as allocentric representations in the

medial temporal lobe (Byrne, Becker, & Burgess, 2007).

One of the problems with the ―what‖ and ―where‖ analogy is that there appears to

be little understanding on how perceived objects are reconciled between the two

pathways. That is, how do ventral path processes associate objects they are recognizing

with objects from which the dorsal path processes are deriving spatial properties?

Pylyshyn (2001) offers some insight here. In addition to a set of ―what‖ and ―where‖

processes, there seems to be a ―which‖ process responsible for indexing and tracking

objects in the perceived scene even though their location and properties change. Pylyshyn

calls his theory, visual indexing. As an analogy he compares it to a demonstrative in

natural language, such as ―That is red,‖ where ―that‖ is the visual index we picked out

from our visual field.

In Pylyshyn‘s theory, there is a preprocessing phase where a process selects and

indexes a few objects (4-5) in the scene. This phase is distinct and precedes object and

spatial recognition. How the preprocessing selects the salient objects is beyond the scope

of Pylyshyn‘s theory, but Itti (2000), Marr (1982), and Ullman (1996) suggest that

contour, color, motion, and orientation patterns from the depictive representation

contribute to the determination of salient objects. Pylyshn states that only indexed visual

 28

objects enter subsequent processing and argues that such an indexing scheme facilitates

recognition and tracking the objects. This ―binding‖ issue also has ramifications for

imagery. That is, in order to inspect the features of a specific object or a spatial

relationship between two objects there has to be an index, or referent, to the object(s) in

question.

Once we have adequately understood the visual and spatial memories and

processes perception uses, we can begin to understand how imagery leverages these

mechanisms. A commonly demonstrated phenomenon in behavioral imagery experiments

is that the time to generate an image is linearly dependent on the number of parts, or

objects, in the representation. The construction of mental images arises from the

amalgamation of metric shape and descriptive, symbolic knowledge. The ease of

visualizing an object is dependent on the number of parts composing the object and how

the parts are arranged in the symbolic description (Finke, 1989; Kosslyn, 1980, 1994;

Kosslyn et al., 1983; Kosslyn, Thompson, & Ganis, 2006).

Another common behavioral phenomena, made famous by Shepard‘s and

Metzler‘s (1971) ―mental rotation‖ experiment, is the ability to imagine the

transformation of objects in a scene. One can change either their viewpoint from

egocentric to allocentric or translate, rotate, or resize imagined objects. Finke (1989) calls

this the transformational equivalence principle.

“Imagined transformations and physical transformations exhibit

corresponding dynamic characteristics and are governed by the same laws

of motion.‖

3.2 Functional Constraints

The functional constraints emerge from the behavioral constraints. The architecture must

account for how imagery processing constructs, transforms, generates, inspects, and

maintains the spatial and visual representations. These functional constraints must show

through the architecture in the following ways. First, the descriptive representations of

the objects, or parts, must be organized in a compositional manner. Objects may be

composed of other objects (―has-a‖ relationship), which in turn may be composed of

more primitive objects. For example, a village is composed of buildings and roads.

 29

Buildings in turn are composed of many rooms, which are composed of chairs, tables,

beds, etc. Local spatial relationships between objects and their parts, such as the chair‘s

arm is above and to the right of the seat, are similarly organized. This organization occurs

when the information is stored during perception rather than when it is retrieved from

memory and is a result of the temporal or spatial sequence from which it was originally

perceived in the environment (Kaplan & Kaplan, 1982).

Second, imagery is an incremental addition or deletion of objects or shapes. It

may involve a novel combination of objects (e.g. an elephant on top of a house), a

previously seen object or scene (e.g. my living room), or novel patterns (e.g. imagining a

path on a map) (Kosslyn, 1994). Object information, such as its shape and color originate

from the long-term object memory. Spatial properties, specifying the location and

orientation between objects, are activated from a declarative long-term memory and can

be qualitative (i.e. left-of, above, disconnected) or quantitative. If in a qualitative format,

the system must interpret the qualitative representation and convert it to a quantitative

representation. In such cases the specification may be under constrained (e.g. imagine

―A‖ to the left of ―B‖) and open to multiple interpretations. In these cases, task

knowledge or default heuristics, such as the notion of an influence area (Kettani &

Moulin, 1999) can define the distance between objects.

The third way the architecture must reflect these functional constraints is to

support the transformation, or manipulation, of a quantitative spatial or visual depictive

representation. The quantitative spatial representation and associated processes must

provide the ability to modify the viewpoint or change the location, orientation, or size of

one or more objects in the scene. Manipulating visual depictive representations may be

with mathematical processing (e.g. rotation, scaling, and filters) or algorithms that take

explicit advantage of the topological structure and color.

The fourth functional constraint, generation of a visual depictive representation,

requires the architecture to provide mechanisms to render a scene from a privileged

viewpoint. Again, rendering must be efficient and support the acquisition of an image. In

Chapter 6 we will discuss how the transformation and generation constraints together

influence our choice to use a scene graph for the quantitative spatial representation.

 30

The ability to ―visualize,‖ or inspect, a quantitative spatial or visual depictive

representation to infer spatial or visual properties reflects the primary purpose for spatial

and visual imagery. Imagery does not have its own set of inspectors, or feature and

spatial detectors. It simply relies on those mechanisms it shares with vision. Therefore,

after the system constructs and, if necessary, transforms and generates the image, the

flow of information proceeds as in bottom-up perception.

Finally, since visual imagery and visual perception coexist, sharing the same

region of the visual cortex, the architecture must support maintenance of the visual

depictive representation. Our resulting architecture does not support image maintenance

in the sense that the visual depictive representation must continually be ―refreshed‖ or it

begins to fade (Kosslyn, Thompson, & Ganis, 2006). However, we do include

architectural mechanisms that inhibit additional incoming stimuli from disrupting the

focused representation. Otherwise, perception always trumps imagery, never allowing it

to finish.

3.3 Computational Constraints

A cognitive architecture is the fixed set of memories and processes underlying an agent

(Newell, 1990). The motivation behind a cognitive architecture is that with the addition

of knowledge, it can support intelligent behavior across a wide variety of tasks and

environments. The architecture must support knowledge acquisition through perception

and learning and provide mechanisms to encode, store, retrieve, and process the

knowledge to enable planning, coordinating, and executing actions in the world.

Cognitive architectures have traditionally represented knowledge as symbolic

(e.g., rules, semantic nets, frames) structures. Perceptual-based representations have

received less attention as a form of knowledge representation. One of our motivations,

reflected by our first two computational constraints (Figure 3-1), is the possibility that an

agent can achieve a computational gain using perceptual-based representations while

maintaining clear separation between knowledge and the architecture.
6
 As we will

6
 In a depictive representation, some of the ―knowledge" is tacitly in the architecture -- the grid geometry

embeds knowledge of the plane that would have to be explicitly encoded in a purely symbolic system. That

is one of the strengths of the depictive representation.

 31

demonstrate through our architecture description and evaluation, specialized,

architectural components processing these representations can achieve an order of

magnitude (or more) gain over symbolic processing without trading off generality.

Supporting reactive and deliberate behavior, our third computational constraint,

is a hallmark of Soar and one that we wish to maintain with the addition of spatial and

visual imagery. That is, the computations that the imagery subsystem performs must meet

practical computational requirements. The computational cost of a single ―step‖ of

building, transforming, generating, or inspecting a spatial or visual representation should

work within the time constraints of one Soar decision cycle that is hypothesized to be 50

milliseconds in humans. Otherwise, the system is not responsive to changes in the

environment. Note that this constraint is different from the first computational constraint

(support efficient processing of the representation). A specialized perceptual process

could be more efficient relative to performing the same operation with symbolic

computations, but not responsive. For example, one of our implemented feature detectors

for identifying curves in a depictive image is much more efficient than trying to detect

curves using symbolic computations (in fact, we are not sure if it is even possible).

However, it requires too many computational cycles (~6 seconds real CPU time) to be

considered reactive to the environment. This shortfall may be a result of the wrong choice

of an algorithm, poor implementation, or non-parallel hardware, but as it is currently

implemented, it is not reactive and thus violates this constraint.

The final computational constraint (Figure 3-1), the problem space computational

model (PSCM), provides the control constraint necessary for imagery processing. PSCM

is a paradigm for realizing intelligent behavior and is the basis for Soar (Newell et al.,

1991). A problem space consists of a set of states and a set of operators. An agent, by

iteratively selecting and applying operators, effectively conducts a search through its

problem space. During each cycle, the agent executes a knowledge search to bring all the

relevant knowledge to bear in deciding what operator to choose next.

In this computational model, imagery is a special problem space using specialized

mechanisms for general spatial and visual processing. The architecture maintains control

 32

with operators for constructing, transforming, generating, and inspecting a quantitative

spatial or visual depictive representation. During each imagery cycle, the agent conducts

a knowledge search of its memories to build a quantitative spatial representation,

generate a visual depictive representation, or transform or inspect either representation to

facilitate further reasoning. The imagery process is conditional and iterative. The agent

may add more detail to its representation(s) and inspect it to refine the search.

3.4 Theory Summary

Figure 3-3 summarizes the theory. What Newell describes as central cognition

encodes knowledge in the form of amodal, symbolic representations (Newell, 1990).

Some of the knowledge is a representation of objects in the world or visual objects.

During perception or memory retrieval, the architecture creates visual symbols

representing these visual objects. The visual symbols denote either a prototypical object

(e.g. a chair), a specific instance of an object (e.g. the chair in my dining room), or

multiple objects (e.g. my dining room).

Imagery is the combination of the imagery problem space and the specialized

imagery subsystem. The agent initiates the imagery problem space when there is an

impasse in problem solving and wants to resolve the impasse using spatial or visual

imagery. Task operators direct the imagery problem space that in turn controls and

communicates with the imagery subsystem through its operators (construct, transform,

generate, inspect).

The construct operator triggers the construction of a quantitative spatial

representation. The imagery subsystem builds the structure by combining the general,

metric shape of objects from a long-term object memory with qualitative or quantitative

spatial information from a symbolic memory and encodes the resulting representation in a

spatial short-term memory (STM). The transform operator controls the transformation of

the spatial representation by manipulating its viewpoint or specific objects within it. An

imagery generate operator creates a visual depictive representation in a visual STM by

combining the quantitative spatial representation with each object‘s specific shape and

color from the object LTM and renders it from a specified viewpoint. A transform

operator manipulates the depictive representation by activating specific regions. During

 33

inspection, perceptual visual and spatial processes perform reasoning by searching the

visual STM or spatial STM for visual and/or spatial properties. The results of the

inspection are transmitted to central cognition where the imagery problem space

operators build the internal symbolic memories. Central cognition uses the inspection

results to continue progress through the current task‘s problem space.

Figure 3-3: Summary of Spatial and Visual Imagery Theory

Note that although we have assigned the symbolic representation to central

cognition‘s associative memories, the quantitative spatial representation to the spatial

STM, and the visual depictive representation to the visual STM, this is not to claim that

each memory contains that type of representation exclusively. Symbolic memories in

central cognition may have quantitative representations; the spatial and visual memories

may contain symbols, and so forth. What we do claim, however, is that each memory has

specialized processing mechanisms for their primary representation, and these

mechanisms are what distinguishes the memories. Therefore, although a symbolic

computation in central cognition may be able to process a quantitative or depictive

representation, it cannot do so as efficiently. Although it is not an established part of our

LEGEND:

Operator

Symbols

Visual

Symbols

Shape,

Color

Object LTM
Imagery

Subsystem
Quantitative

Spatial STM

Spatial
Properties

Depictive

Visual STM

Combine Visual

Properties

Central Cognition

Goals

Current State

Symbolic Task Operators

Imagery Operators

Inspect

Generate

Transform

Construct

 34

theory or resulting architecture, what it does indicate is that there is some redundancy so

if one component is resource-constrained or incapacitated, alternate memories and

processes can assist.

In summary, decision-making proceeds by combining perceptual representations

with task specific knowledge to construct an imagined scene. Analysis emerges through

the manipulation of both sentential and depictive representations. Retrieval or inspection

of the resulting representations provides new information that the agent uses to reason

and produce action in the environment. We will reiterate how these design space

constraints influence the architectural design in Chapter 6. First, however, we turn to

describe previous computational approaches.

 35

Chapter 4

Related Work

4.1 Cognitive Architectures

Although cognitive science and artificial intelligence (AI) researchers have made

enormous progress in peripheral disciplines, there has not been a previous effort to

support spatial and visual imagery processing within a cognitive architecture. Until

recently, architectures such as Soar (Laird, 2008) and ACT-R (Anderson et al., 2004)

focused on higher-level cognition, or what Newell calls central cognition (Newell, 1990)

and typically ignored perceptual and motor mechanisms. There is strong evidence,

however, that the environment plays a key role in cognitive processing and the perceptual

and motor systems serve as the link that integrates the environment to higher-level

cognition (Barsalou, 1999; Kaplan & Kaplan, 1982) .

From its inception, the EPIC architecture (Kieras & Meyer, 1997) emphasized the

perceptual and motor systems. However, rather than specifying and implementing the

low-level details of perception and motor processing, (e.g. edge detection, joint

coordinates), EPIC focuses on temporal constraints between perception, motor, and

cognitive components to account for human dual-task performance. Perception provides

symbolic input to cognition and cognition sends symbolic output to the motor system.

There are no quantitative or depictive representations involved in the reasoning.

 36

Following EPIC‘s lead, Soar and ACT-R extended their architecture to include

integrated perceptual and motor systems. EPIC-Soar (Chong & Laird, 1997) integrated

EPIC‘s perceptual and motor processor modules with Soar to evaluate the performance

and acquisition of executive process knowledge that is required to support the execution

of two concurrent tasks (i.e. dual-task). The architecture was similar to our approach in

the sense that EPIC provided perceptual input to Soar, and Soar sent motor commands to

EPIC. However, the EPIC-Soar hybrid architecture was two independent processes and

not integrated where one component can take advantage of another‘s mechanisms.

The current version of Soar takes a more functional approach, using an external

module that translates an environment‘s perceptual information into a symbolic

representation Soar can use for reasoning. Likewise, a module external to Soar,

transforms the symbols Soar sends from its working memory into a format that produces

behavior in the environment. Using these perception and motor modules, Soar has

demonstrated success in modeling human behavior in dynamic environments to include

military simulations with pilots flying fixed-wing or rotary-wing aircraft and soldiers

conducting Military Operations on Urban Terrain (MOUT) (Jones et al., 1999; Tambe et

al., 1995; Wray et al., 2005). Again, however, these modules do not perform any type of

cognitive functions.

Similar to EPIC, ACT-R‘s perception and motor modules focus more on the

timing and content of modalities rather than the representational format and low-level

processing capability (Anderson et al., 2004). In the case of perception, productions

request the visual module for information based on constraints. For example, a

production may request the ―red‖ object or the object that is located ―on-top‖ of the

current scene. One of ACT-R‘s important extensions to EPIC‘s model of the visual

system includes breaking visual perception into two modules each with a short-term

memory (buffers in ACT-R terminology). The visual-object, or ―what,‖ module holds the

symbolic features of the object currently being attended to by the visual-location, or

―where,‖ module. The visual-location module maintains the location of all the objects in

the current scene. However, there is not long-term perceptual memory enabling the

persistence of an object‘s shape or color and no short-term memories for manipulating

perceptual representations and drawing inferences from them.

 37

Gunzelmann and Lyon (2007) have recently proposed an extension to ACT-R that

includes a module specialized for spatial information processing. The proposed module

contains processes to perform both qualitative and quantitative, mathematical

comparisons of spatial relationships between objects, such as direction and distance.

They recommend that the spatial module have connections to the visual and motor

modules (contrary to ACT-R theory of no direct connections between modules) for the

purpose of extracting spatial properties from perceptual input and executing motor

control. Their proposal appears to be similar to our theory of spatial imagery and

corresponding implementation. Their proposal does not include plans for incorporating

depictive representations and processing.

Wintermute‘s and Laird‘s (2007) Soar Spatial Reasoning (SRS) system focuses

on how the architecture projects qualitative predicates into a quantitative spatial

representation, providing a more detailed implementation of the capability than our

current system provides. Kurup and Chandrasekaran (2007) have also argued for multi-

modal architectures and augment Soar with their diagrammatic reasoning system. We

will discuss the similarities and differences between our approaches shortly.

There have been several other efforts to extend the perception and motor

capabilities of each of these architectures (Hill, 1999; Hill, Han, & Van Lent, 2002; St.

Amant et al., 2005). Each contribution effectively pushes the architecture closer to the

environment. The problem with these approaches, however, is that they assume the

cognitive system abandons the perceptual representations rather than using them to

participate in problem solving. Discarding these representations adversely affects the

system‘s ability to perform visual and spatial reasoning and requires ad-hoc, bolted-on

components that are tailored for specific domains (Best, Lebiere, & Scarpinatto, 2002;

Wray et al., 2005). What we are missing from these architectures is the ability to

amalgamate the cognitive and perceptual representations in a general-purpose way and

then use the resulting information for reasoning.

4.2 AI Systems

There have been several AI diagrammatic reasoning systems built that use both symbolic

and quantitative representations. Gelernter‘s (1959) geometry theorem proving machine

 38

is perhaps the earliest. Kurup‘s and Chandrasekaran‘s (2007) biSoar (discussed below) is

the most recent and is the closest parallel with our work. With the exception of Funt‘s,

(1976) WHISPER system, there have been few systems that reason with depictive

representations. Funt argued that people solve problems on four levels, and AI was

ignoring the last level. The levels were (1) the goal-oriented approach where the system

searches for a solution; (2) the mathematical level where sentential equations enable

progress; (3) the relational level where a complete structure of the explored search space

is used for reasoning; and (4) the image level where representations were analogues of

the situation. Funt argued that depictive representations overcame the ―frame problem‖

because objects move together so the system does not have to use computational cycles to

infer new features and relationships. Empty space and new shape just emerge. Despite

Funt‘s seemingly convincing arguments, the mainstream AI community has continued to

ignore the use of depictive representations as a form of knowledge representation and

reasoning.

The specific problem WHISPER solved was determining the stability of a stack of

arbitrarily shaped rigid bodies. WHISPER consisted of symbolic qualitative physics rules

(―if a block is on a slant, it will slide‖), an image of the situation, encoded as a two-

dimensional array, and basic algorithms for modifying the image. The rules directed a

simulated parallel processing ―retina‖ capable of extracting basic, domain independent

features (e.g. object contact, object symmetry, finding the center area of an object). Each

unit in the retina was constrained to communicate only with its immediate neighbors and

a ―retinal supervisor‖ that consolidated each unit‘s inspection results for a particular

query. The local communication constraints between retinal units resulted in algorithms

similar in spirit to Furnas‘ (1990; Furnas, 1991; Furnas et al., 2000) pixel rewrite system

that we use as motivation for some of our depictive processing.

Marr (1982) addressed many of the underlying issues of how the visual system

recognizes object features in a scene with his seminal work in computational vision His

work influences our design space in two important ways. First, we apply his notion that

visual processing produces incremental, increasingly abstract levels of representations

(i.e. the pixel image, raw primal sketch, 2 ½ D sketch, 3D model, symbols). In a similar

manner, but in the opposite direction, imagery starts with the symbolic representation,

 39

combines it with stored perceptual memories to produce increasingly concrete

representations. Marr stressed how certain formats made certain types of information

explicit and accessible. From the perspective of top-down cognitive processing, we can

also make this argument,—which is a primary reason for pursuing quantitative spatial

and visual depictive representations in problem solving. If certain representations are

useful for extracting features such as surface contours, object orientations, or spatial

relationships in bottom up visual perception, then these representations are also useful in

top-down processing when the information is not explicitly encoded as symbols. This

principle is in accordance with Newell‘s theory that intelligent systems should bring all

knowledge to bear in solving a problem (Newell, 1990).

Second, Marr‘s theories concluded that visual perception stores an object‘s 3D

model, so it can recreate its shape if required. An important part of our architectural

assumptions is that we assume the system does not just throw this shape information

away after it recognizes the object. At a minimum, it must be encoded for subsequent

recognition. In the case of spatial and visual imagery, it is activated to support further

reasoning.

Tolman (1948) articulated how rats represented spatial knowledge, or cognitive

maps, to assist them in finding food in a maze. The cognitive map metaphor, or the

representation of large-scale space, provide a psychological theory of how we acquire an

object‘s location, orientation, and size relative to other objects in the currently perceived

scene (Kaplan & Kaplan, 1982). The theory also specifies how we connect individual

scenes together. Cognitive map theory says that as you explore the world, you begin

building up representations of the relationships between static objects or landmarks in the

environment and the relationships between objects in individual scenes. Cognitive maps

provide important concepts for spatial imagery because they provide a starting point as to

how spatial knowledge is organized. Spatial imagery can rebuild scenes by composing

objects together using the same local spatial relationships derived from cognitive maps.

This provides a methodology for reconstructing representations of previously seen

objects to infer new global spatial relationships. Cognitive map theory also advocates the

idea that there is a viewpoint associated with the stored spatial relationships. Some have

 40

hypothesized that these maps are stored from a first-person, egocentric viewpoint with

gateways, or exits, separating the scenes (Chown, Kaplan, & Kortenkamp, 1995).

Cognitive map theory differs from spatial and visual imagery in that it does not

address how specific knowledge about an object (i.e. shape) is stored or later retrieved.

The theory also does not address how task knowledge, information from other modalities,

or dynamic objects are combined to form new spatial representations. For example, using

cognitive map theory, you can recall the main intersection in the center of a small town.

Your scene may contain the roads, buildings, and traffic signs but does not include

dynamic objects, such as cars or people walking. The scene is ―remembered‖ from one

particular vantage point. Spatial imagery enables one to imagine the scene, add dynamic

objects to it, transform either the viewpoint or specific objects, and then inspect the scene

for specific knowledge.

Kuipers, leveraging the cognitive map metaphor, developed the Spatial Semantic

Hierarchy (SSH) with the goal of explaining how a robot learns the spatial structure of

the environment. Each hierarchical layer has qualitative and quantitative representations

with global knowledge of the environment increasing as you move up the hierarchy from

very specific control laws to topological maps of places, paths, and regions. At the

highest level, or what Kuipers calls the global metrical map, SSH combines the

qualitative (symbolic) topological relationships with the local, two-dimensional geometry

to form a structure with one global, allocentric frame of reference. Whereas Kuipers

focuses on how spatial structures are acquired, we concentrate on how the spatial

structures are used in general problem solving.

The closest parallel to our work, is that of Kurup (2008) and Chandrasekaran

(Kurup & Chandrasekaran, 2007). Their system, biSoar, combines the Soar cognitive

architecture with their diagrammatic reasoning system (DRS) and reasons using both

symbolic and diagrammatic representations. Similar to imagery construction,

transformation, and inspection, their system has a set of action routines to add

diagrammatic elements and perceptual routines to extract spatial relationships from the

diagram.

There are a few key theoretical and implementation differences between our

approaches, perhaps because they have focused more on diagrammatic reasoning and we

 41

have considered the psychological and neurological constraints of imagery. First, they

propose a single, working memory containing both symbolic and diagrammatic

representations while we advocate separate symbolic and perceptual memories where the

symbolic, procedural memory does not have direct access to perceptual-based

representations. We base our decision on evidence that modality-specific representations

(i.e. spatial, visual, auditory) are distinct posterior neural systems (see (Jonides et al.,

2008) for a review of working memory theories). From a computational standpoint, a

primary reason for having a multi-representational system is to gain a computational

advantage using processes that are specific to the representation. By embedding the

perceptual representation into a symbolic computational system, you lose this efficiency

without mechanisms to distinguish the two. Although the two implementations are

similar (i.e. their diagrammatic reasoning system is outside of Soar), Kurup and

Chandrasekaran base their theory on the notion that by having a single, multimodal

working memory, automatic learning of both symbolic and diagrammatic representations

can occur using Soar‘s chunking mechanism. We currently do not have such a theory of

how results from imagery processing are learned (except, perhaps as an encoded

episode), and are not clear as to how such a theory would be realized from a practical

standpoint.

Second, their diagrammatic reasoning theory specifies the type of objects (point,

curve, and region) a diagram can contain while we leave the type of object open-ended to

any shape and color the agent experiences in the world, imagines by composing known

objects, or emerges from the manipulation of a depiction (i.e. a new shape). Our approach

leaves the complexity, detail, and richness of an imagined scene much more open where,

in addition to specifying distance, direction, and topology our representations and

processes also consider the orientation (i.e. front), specific shape, and color of an object.

 Finally, they are noncommittal as to whether diagrams are quantitative, algebraic

equations or depictive, image representations. Their current implementation uses

sentential, metric structures. For example, points are two-dimensional, Cartesian

coordinates, lines are composed from two points, a curve is a sequence of straight lines,

and a region is a closed curve. We make a distinction between the two representations, as

there are different types of reasoning that can be performed on each (e.g. extracting visual

 42

features from a depictive representation). In the end, however, we are both motivated by

how a task-independent architecture uses amodal symbolic and perceptual representations

in reasoning.

4.3 Computational Models

Previous efforts to build computational models of either spatial or visual imagery have

not included the constraints of a general cognitive architecture. Kosslyn (1980) composed

a detailed computational model of visual, depictive imagery. Although the model

clarified his theories, Kosslyn did not build it with the intent of incorporating it into a

cognitive architecture.

Baylor (1971) implemented a computational model of the block visualization

task.
7
 What is interesting about his approach is that he divided the knowledge into two

problem spaces. The symbolic space manipulated generic information about blocks, and

the image space (implemented with symbolic representations) had specific operators that

manipulated visual information. This problem space division is similar to our

computational theory.

Moran built a computational model of spatial imagery using a production system

(Moran, 1973). The task he chose to model began with the agent at a specific location.

The agent is then issued a series of directions (e.g. move north one-step, turn east, move

forward one-step, etc.) and is to ―report‖ its final location and direction. Moran raised

some valid points such as how these representations are constructed and controlled.

However, we disagree with his hypothesis that imagery is entirely symbolic in nature.

Since the task was spatial, rather than visual, depictive representations were not required.

Moran argued that pictorial representations are uneconomical, as they require a large

amount of information to be stored. We agree that recording every scene would quickly

exceed our memory capacity. That is why an object long-term memory only stores

compact shape and color representations. It is the task of imagery to recreate the picture.

7
The task requires a subject to start by visualizing a three-inch cube and imagine one of its side‘s red. Next,

the experimenter instructs the subject to imagine two sides blue. The blue sides are adjacent to the red side

but opposite each other. Finally, the subject imagines breaking the cube into one-inch cubes and deciding

how many of the resulting cubes have exactly one red and one blue face.

 43

Glasgow and Papadias (1992) built a molecular scene analysis application using

mental imagery as motivation. Their system uses three separate representations

(descriptive, spatial, visual) and the visual representation (occupancy array) is similar to

our depictive representation with the exception that they only render convex shapes.

Their long-term memory, where they store descriptive representations is similar to our

symbolic representations in Soar. There are, however, three major differences. First, they

built a specific application while we are taking a more general approach. While Glasgow

and Papadias took significant strides to incorporate key findings in mental imagery, they

did not design it with the overarching constraint of a cognitive architecture. Second, they

represent spatial information using symbolic arrays rather than a quantitative format.

Finally, they make no commitment as to how the visual representation is constructed,

where the shape information is stored, or how more than one object is arranged in the

visual representation.

Tabachneck-Schijf‘s et al. (1997) CaMeRa model uses multiple representations

and simulates the cognitive and visual perceptual processes of an economics expert

teaching the laws of supply and demand. Their system includes both visual short-term

and long-term memories that complement verbal memories. Visual STM includes a

quantitative (node-link structure) and a depictive (bitmap) representation that is similar in

design, although not in implementation, to our representations. The architecture‘s overall

generality is unclear although it appears to be their intention. Their shape representation

is limited to algebraic shapes (i.e. points and lines) and their spatial structure only models

an object‘s location while ignoring orientation and size.

Barkowsky‘s (2002) MIRAGE application relies on mental imagery evidence to

reason about space in a geographic context. It focuses primarily on how mental images

are constructed from qualitative geographic spatial relationships. Barkowsky (in press)

proposes that any model of mental imagery must include the following:

(1) Hybrid representational formats to include propositional and visual structures

involving shape.

(2) Coupling between imagery and visual perception.

(3) Construction of images from pieces of knowledge.

 44

(4) Processing with or without external stimuli.

(5) Multi-directional distributed processing and control.

Our architecture addresses (1) – (4). Our control structure initiates imagery

processes in a top-down manner while perceptual mechanisms process results in a

bottom-up fashion. In Soar, the contents of working memory determine which memories

and processes are active without any centralized control (5). In addition to Barkowsky‘s

list, we also propose that the architecture must support transformation and generation of a

depictive representation.

 45

Chapter 5

Tasks and Environments

When does an agent use spatial and visual imagery? How does it know which

representation to use? This chapter begins by summarizing characteristics of the tasks and

environments where spatial and visual imagery is useful. The characteristics include a

discussion and examples of general tasks and specific sub-tasks requiring spatial or visual

imagery. We then provide three concrete examples by introducing the tasks and

environments we use to evaluate the architecture. The first two tasks are primarily

internal problem-solving tasks where there is limited interaction with an external

environment. The final task extends the first two tasks to a dynamic and continuous

environment where the agent must interpret and act upon information from multiple

sources and perception and imagery must interact and share the same resources.

5.1 Characteristics of Tasks and Environments

In general, spatial and visual imagery is useful in tasks requiring the inference of spatial

relationships (direction, distance, orientation, topology, size) between two or more

objects or detection of an individual object‘s spatial (e.g. width, height, orientation) or

visual (e.g. shape, color) properties. In both cases, imagery is useful because the spatial

or visual information required to make a decision is not directly accessible from either

perceptual input or memory retrieval. These situations include circumstances where

vision would normally perform the analysis, but the relevant objects or spatial

 46

configurations are hypothetical, missing details, or not present. However, by combining

the information into a quantitative spatial or visual depictive representation, one can infer

the relevant spatial or visual detail. The external environment may have many spatial and

visual characteristics or none at all, but the task is such that imagining the situation helps

clarify its spatial and/or visual properties.

As an example, consider a young child playing hide-and-go-seek with a parent

inside their home. The parent, playing the role of the ―hider‖ may provide audio clues to

assist the child‘s search. The child, having inadequate perceptual input (he or she does

not see the parent), may use spatial imagery to retrieve a stored representation of the

spatial layout of each room and combine it with the parent‘s audio signal to guide the

search. As the child ―seeks,‖ she may use visual imagery to focus in on specific locations

where the parent might ―fit.‖ In this example, both the environment (rooms in house) and

the task (hide-and-go-seek) have many spatial and visual characteristics. The rooms have

direction, distance, and topological relationships, hiding places have size, and the task

requires filling in the missing spatial and visual details (e.g. what direction should I move

to next? Will daddy fit in the closet? In the cupboard?)

On the other hand, the immediate environment may not always include spatial or

visual features. Consider when you read a story or someone is giving you verbal

directions. In these examples, you may create an imagined scene to achieve a better

understanding of the spatial and visual properties of the task. However, the surrounding

characteristics of the environment are irrelevant. Even if the environment includes many

spatial and visual features, imagery may not be useful if the task is repetitive and highly

learned (e.g. driving to work).

We suggest there are four general tasks where using imagery is useful to infer

spatial and visual properties.

 Filling in missing details of a situation

 Recognizing novel shapes and spatial properties if not present visually

 Analyzing or rehearsing an outcome of an action before executing the

action

 Replay of a previous event to inform a future decision

 47

The previous two examples (hide-and-go-seek, imagine a scene from a story) are

instances of the first two tasks where perception provides none or only part of the spatial

and visual properties required for reasoning. Our three experimental domains described

below are also instances of these first two tasks. The third general task uses imagery as a

simulator to analyze or rehearse the possible outcomes of future actions where simulating

actions involve moving imagined objects or looking at the scene from a different

perspective. We explore this general task in our third experiment. The last general task

also uses imagery as a simulator, but rather than simulating potential future states,

reasoning simulates a previous state or event to inform a future decision. This form of

reasoning requires the retrieval of previous experiences from an episodic memory. We do

not evaluate this task but will address it as part of our future work.

Each of these general tasks will include specific spatial and visual subtasks, some

of which we describe next. Schultheis et al. (2007) have suggested the following criteria

to distinguish between tasks and environments requiring a spatial or visual representation.

The greater the number of criteria is an indicator that a visual depictive representation is

more likely required rather than a quantitative spatial representation. Although they

propose that these representations fall on a continuous spectrum, we ignore that for now

as our theory states that the agent must make a commitment to one or another

representation. The criteria are (with our slight modification):

(1) Number of different types of spatial relationships (direction, distance,

orientation, topology, size)

(2) Number of spatial relationships

(3) Specificity of the shape

(4) Specificity of the color

The following are the specific spatial and visual subtasks, one or more of which,

support a general task. We provide a figure to illustrate some of these subtasks. Before

looking at the figure, first try ―imagining‖ the situation.

 48

(a) Infer global spatial relationships (i.e. direction, distance, orientation, topology,

size) or visual properties (i.e. new shapes or color) derived from the combination

of objects and their perceived or retrieved local spatial relationships.

Example 1 (Figure 5-1a, NOTE: ―you‖ are the ―X‖): Target A is 500m to your left

front. Target B is 250 meters to your right. What is the direction between Target

A and Target B? What is the distance between Target A and Target B? In this

example, there are two different types of spatial relationships (direction and

distance) and three spatial relationships (X-A, X-B, A-B). Shape and color are not

required so a spatial representation is sufficient for this example.

Example 2 (Figure 5-1b): What is the angle between a ray from you to target A

and a ray between you and target B? In addition to the direction and distance

relationships, you now have an orientation to consider. This task is again spatial,

but with an increase in the type and number of spatial relationships moves it

closer to a task where visual imagery may be necessary.

(a) (b)

(c) (d)

Figure 5-1: Spatial and Visual Task Spectrum

A

X B

750 m

X

A

B

60

B X

A

B X

A

 49

Example 3 (Figure 5-1c): Add a triangle with a vertex at your location and a base

to your direct front. The interior angle of the vertex is 60 degrees and the height

of the triangle is 750 meters. Is target A inside the triangle? Target B? Again, we

have increased both the type of spatial relationships (triangle size and topology—

inside/outside) and the number of spatial relationships.

Example 4 (Figure 5-1d): Superimpose what you currently have imagined onto

the background in Figure 5-1d. Ignoring the triangle, are A and B in the same

topological space (i.e. can you get from A to B without crossing a gray area)? The

background contains non-convex shapes and more spatial relationships to

consider. Visual imagery and a depictive representation are likely to be necessary

for this task.

Example 5: Are there any parts of a head of Iceberg lettuce that are a darker green

than any parts of a Christmas tree? [Answer: yes – if the tree has some light green

ornaments on it.] In this example, you have to combine the two objects in a visual

depictive representation to make the specific color comparison.

(b) Infer results after a transformation.

Example 6 (Figure 5-1c Notice we are back to figure ―c‖): Rotate the triangle

counterclockwise 45 degrees. Is target A inside it? Now rotate the triangle

clockwise 90 degrees. Is target B inside it? Without specific shape, the spatial

representation is sufficient.

Example 7 (Figure 5-1d): Starting from the triangle‘s original orientation (i.e.

north), rotate the triangle clockwise 90 degrees. Is there an enclosed gray region

between you and target B? Similar to example 4, the task might benefit

 50

significantly from visual imagery because of the specific shape and multiple types

and number of spatial relationships.

(c) Retrieve the spatial or visual properties from an exemplar.

Example 8 (Figure 5-1d): Imagine a path from A to B avoiding all enclosed

regions. Is there a location where the path turns approximately 90 degrees?

Retrieving spatial or visual properties of an exemplar requires visual imagery as

the exemplar‘s specific shape and, possibly color, are involved. In this example,

the imagined path is a specific exemplar.

Example 9: In what hand does the Statue of Liberty hold the torch? A specific

instance of a visual object (i.e. Statue of Liberty) likely necessitates a visual

depictive representation.

(d) Retrieve a prototypical object’s spatial or visual properties when the property

was not explicitly encoded

Example 10: Does the letter ‗A‘ have an enclosed space? The letter ‗B‘? ‗X‘? In

these examples, the prototypical letter may have an explicit symbolic description

(e.g. the letter ‗X‘ is two intersecting lines), but not enough information to

perform the reasoning in the question. Since specific shape is involved, a visual

depictive representation is likely necessary for the task.

In summary, the previous discussion highlights the general tasks where imagery is

useful for reasoning to include filling in missing spatial and visual details of a situation,

recognizing novel visual features and spatial properties, analyzing or rehearsing the

outcome of an action before executing it, and replaying a previous event to inform a

future decision. One or more subtasks support these tasks and may require spatial or

visual imagery depending on the number and types of spatial relationships and the

specificity of the shape and color. The agent decides what representation is suitable for

 51

the task. Subtasks include, but are not limited to, inferring global spatial relationships or

visual features from perceived or retrieved local spatial relationships, inferring new

spatial and visual properties after a transform, and retrieving a spatial or visual property

from an exemplar or a prototypical object where the feature was not explicitly encoded.

The environment may or may not play a role in determining the characteristics of the

tasks. We now summarize our three experimental domains as concrete examples. We will

refer to these domains when we discuss the architecture in the next chapter and revisit the

tasks in more detail when we evaluate the architecture in Chapter 7.

5.2 Geometry Gymnastics

The geometry problem derives from Larkin‘s and Simon‘s (1987) work demonstrating

the computational advantage of diagrams. In one of the problems they investigate, the

agent must locate visual properties (e.g. vertices, line segments, triangles) and infer

relationships (e.g. angles) that initial task knowledge does not specify. The problem,

shown in Figure 5-2, consists of four lines (A, B, C, D). Line A is parallel to line B and

line C intersects line A. Line D bisects the line segment formed by the intersection of line

C with lines A and B. The goal is to show that the two triangles formed are congruent. To

prove congruency, the model must employ a basic geometry rule, such as the angle-side-

angle (ASA) rule. The ASA rule states if two angles and the included side of a triangle

are congruent to two angles and the included side of another triangle, then the two

triangles are congruent. In Figure 5-2, the model must show E1=E2, e1=e2, and c=b.

Figure 5-2: Geometry Problem

A

B

C D

E1

E2

c

e1

e2

b

 52

The environment is irrelevant in this task, as it only requires internal problem

solving. The general imagery tasks are to fill in the spatial and visual details and

recognize novel features and spatial relationships by combining objects (i.e. lines) based

on their local spatial (i.e. direction, distance, orientation) relationships. Another way to

look at the problem statement is that line B is in front of line A. Line C is in between line

A and line B and oriented counterclockwise some random orientation between 30 and 60

degrees from line A. Line D is also in between line A and line B oriented clockwise from

line A. Because the number and type of spatial relationships are more than a few but

specific shape and color are not required, this task only requires spatial imagery. In the

results chapter we will discuss the comparison between an exclusive symbolic and a

combined symbolic/quantitative spatial implementation.

5.3 Alphabet Soup

An experiment from Thompson et al. (in press) motivates the second domain. In

their experiment, the subject hears a letter from the English alphabet, and the investigator

asks the subject to visualize the letter in its uppercase format (Figure 5-3). Next, the

subject hears a cue, such as ―curve,‖ ―enclosed-space,‖ or ―symmetry‖ and indicates (by

pushing a button) whether the letter has the particular feature. For example, the letter ‗A‘

has an enclosed space and vertical symmetry while ‗U‘ has a curve and vertical

symmetry. The Soar agent also ―hears‖ a question, visualizes the letter, searches for the

desired feature, and then ―verbally‖ responds.

While there are environmental cues in this domain (i.e. the agent ―hears‖ a

question), like the geometry problem, it is primarily an internal problem-solving task.

The general imagery task is to fill in the visual details by retrieving a specific feature

from a prototypical, uppercase letter. As specific shape is necessary to infer the visual

features, this task focuses on the depictive representation. Unlike the geometry domain,

symbolic or quantitative representations may have significant challenges, both

computationally and functionally, solving this task without explicitly encoding every

feature.

 53

(a) (b)

Figure 5-3: Alphabet Experiment

5.4 Scouts Out

This evaluation environment is motivated by the U.S. Army‘s work in developing

robotic scouts to provide situational awareness for a mixed manned/unmanned military

force (Jaczkowski, 2002). Supporting intelligent tactical behavior, rather than serving as

a sensor platform on wheels, is one of the goals for the robotic scouts. That is, in addition

to autonomously maneuvering to a position and transmitting video data, we would like

the scouts to coordinate and attempt to improve their positions based on sound tactical

behavior.

In support of this effort, we built a simulation to model a section of two scout

vehicles that must cooperate to maintain visual contact with an approaching enemy‘s

three-vehicle reconnaissance element (Figure 5-4a). One scout, the section lead, is a Soar

agent. The other scout, the teammate, is scripted. The team‘s primary goal is to keep its

commander informed of the opposing force‘s movements by periodically sending

observation reports (through the lead) containing their best assessment of the enemy‘s

location. The agent cannot observe its teammate because of terrain occlusions. However,

the teammate periodically sends messages regarding its position. The teammate scans the

area in front of it and sends reports to its lead when it observes enemy vehicles (Figure

5-4b). The teammate also responds to orders from the lead to reorient its view. The agent

can look at the environment or its map (Figure 5-4c-d) and can reorient its view. We

assume the agent and its teammate can distinguish enemy vehicles from other objects.

However, the agent has to decide whether a sighted or reported enemy is a new or

previously identified entity.

 54

To motivate the capabilities of multiple-representations, consider how the agent

makes decisions in this domain. Typically, a scout leader follows these steps after initial

visual contact (Army, 2002).

(1) Deploy and report

(2) Analyze the situation

(3) Choose and execute a course of action

Analyzing the situation involves reasoning about known friendly and enemy locations

and orientations, terrain, and obstacles. If the scout lead does not know the locations of

all expected enemy, then he might hypothesize where other enemy vehicles are and

imagine their positions (Figure 5-4d). Based on the analysis, the scout leader then decides

if he should reorient himself, his teammate, or both.

(a) Actual Situation (b) Teammate‟s View

(c) Agent‟s View (d) Agent‟s Perceived Map / Imagined Situation

Figure 5-4: Scout Domain

 55

Analysis often involves visualizing the situation and mentally simulating

alternatives. Military leaders rely on imagery to assist with decisions in the ―fog of war.‖

The U.S. Army‘s doctrine even goes so far to state:

Visualize means to create and think in mental images. Human beings do

not normally think in terms of data, or even knowledge; they generally

think in terms of ideas or images—mental pictures of a given situation

(Army, 2003).

Using spatial and visual imagery, an agent can imagine each observed entity‘s

map icon on its external map. If the agent is confident in the information, it can write it

on the external map, in effect making it persist. As information changes the agent updates

the map, keeping its perceived map of the situation up to date. Note that the agent may,

but does not have to, keep the location and orientation in its head. It can simply ―look‖ at

its external map and ―read‖ the information. In this sense, then the map serves as an

external store. Using the external map as perceptual background, the agent can then

imagine key terrain (enemy objectives), hypothesized enemy, possible enemy paths, its

viewpoint, and its teammate‘s viewpoint. It can then imagine alternative course of action

by simulating different viewpoints.

This domain has environmentally rich spatial (e.g. relationships between entities,

obstacles, terrain, etc.) and visual (e.g. terrain‘s topological shape and color) properties.

In addition to the general imagery tasks of filling in the spatial and visual details and

recognizing novel shapes by combining perceptual input with retrieved memories,

imagery is used to analyze the outcome of an action before executing the action (e.g.

imagining different viewpoints for the teammate and self). The sub-tasks cover both

spatial and visual tasks with similarities to the examples provided in the beginning of this

chapter.

In summary, decision-making proceeds by combining perceptual representations

with task specific and declarative knowledge to construct an imagined scene. Analysis

emerges through the manipulation of symbolic, quantitative spatial, and visual depictive

representations. Retrieval or inspection of the resulting representations then provides new

information that the agent uses to reason with to produce action in the environment.

 56

Chapter 6

Architectural Design

The previous chapters present the background necessary to appreciate the architectural

design decisions. Although we introduce the theory and design space constraints at once,

our research strategy is an iterative process. First, we analyze specific behavioral

phenomena supporting a desired functionality. In our case, it was how humans use mental

imagery, or visualization techniques, to make decisions and solve problems. We then

determine plausible computational approaches motivated by the behavioral and biological

evidence. Next, we design and implement a complete (i.e. perception, cognition, action),

although rudimentary software system. Finally, we evaluate the system starting with

simple tasks and progress to more complex scenarios. The evaluation process drives our

future direction and requirements for subsequent iterations.

For example, we initially did not consider how perceptual mechanisms

constrained imagery. As we investigated the literature, however, it became clear that

imagery and visual processing are not disjoint components, but rather use and share

similar structures and processes. As part of that oversight, we did not include the visual

depictive representation, as it initially seemed odd to us that humans would resort to such

a low-level representation for reasoning after perception performed so much work

extracting abstract representations. It became evident, especially when we began

evaluating the requirements for the alphabet experiment, that a depictive representation

was not only useful, but appeared necessary to achieve the desired functionality. Finally,

 57

when we evaluated the system in a more perceptually demanding environment (i.e. the

Scout domain), where bottom-up, visual processing and imagery must cooperate and

share resources, we had to look at issues such as the differences between perceived and

imagined objects, synchronization of processes, race conditions between perception and

imagery, and truth maintenance issues. While we do not claim to have implemented all

functionality that humans show during spatial and visual imagery, the goal has been to

design and implement a complete and general architectural framework with a few

demonstrated capabilities that can motivate future work.

Soar and the Spatial-Visual Imagery (SVI) module are the two major components

in the architecture (Figure 6-1). Soar encompasses the symbolic representation and

computations. SVI includes the quantitative spatial and visual depictive representations

and processes. It encapsulates high-level visual perception, spatial, and visual imagery.

Our modeling of visual perception, to include the separation between ―what‖ and

―where‖ pathways, is theoretical and an approximation, but we include it for

completeness. The architecture makes a distinction between memories (rectangles) and

processes (rounded rectangles), and the terminology is either Kosslyn‘s et al. (2006) or

our own.

We present the architecture as follows. First, we provide an overview focusing

primarily on the memories and corresponding data structures associated with Soar and

SVI (Soar+SVI). Next, we suggest, primarily from a theoretical perspective, how

perceptual visual processing emerges. We then describe our implementation of spatial

and visual imagery processing. For more details, Appendix B illustrates some algorithms

for manipulating and inspecting the visual depictive representation. Appendix C details

the software engineering aspects and provides examples of the Soar symbolic structures

used to represent and control imagery processing.

6.1 Soar

Soar (Laird, 2008; Lehman, Laird, & Rosenbloom, 2006) provides a fixed set of

symbolic memories and processes (top of Figure 6-1). The symbolic memories include a

declarative, short-term memory (STM), a procedural long-term memory (LTM), two

long-term, declarative memories (episodic and semantic, not shown in Figure 6-1), and

 58

two learning mechanisms (chunking and reinforcement learning). The short-term memory

is a graph structure representing the agent‘s knowledge of its goals and current state. A

symbolic structure in Soar may represent many things, including concepts (e.g., cheetahs

run fast) or objects in the world. Within the Soar+SVI architecture, there are special

annotated symbols that represent an object and its explicit spatial and visual properties.

We call these symbols visual symbols. These symbols arise from perception, activation of

a previously stored memory, or results from an imagery inspection. Visual symbols may

be associated with other, non-visual symbols. We will discuss visual symbols in more

detail later.

Figure 6-1: Architecture Overview

Soar‘s procedural long-term memory is a set of productions that control behavior.

Each production has a set of left-hand side (LHS) conditions and right-hand side (RHS)

actions. If a symbolic pattern in STM matches with the LHS of a production, then the

production ―fires,‖ creating or removing symbolic structures in STM based on the RHS

 59

actions of the production. During each phase of Soar‘s processing cycle (described next),

all matching productions fire in parallel.

Soar‘s processing cycle is based on the problem space computational model

(PSCM) organizing an agent‘s knowledge into a set of states, and a set of operators,

instantiations of which move the agent to different states. An agent, by iteratively

selecting and applying operators, effectively conducts a search through its problem space.

The processing or decision cycle (Figure 6-2) is hypothesized to be approximately 50

milliseconds in humans, but is much faster in the actual implementation.

The decision cycle begins with an input phase where an agent‘s current

perceptions augment a fixed structure in STM called the input-link. The elaboration phase

provides an opportunity, through the matching and firing of productions or retrieval from

a declarative LTM, to elaborate all knowledge relevant to the current situation, propose

potential operators, and create preferences for those operators. After the elaboration

phase reaches quiescence, the operator selection, or decision phase, selects an operator

from the set of proposed operators. The selection is based on the operators‘ preferences.

If knowledge is inadequate to choose between the different operators, an impasse occurs

and the architecture creates a subgoal enabling further reasoning.

Figure 6-2: The Soar Decision Cycle

After the decision phase, if there is a selected operator it applies, again through

the firing of one or more productions, making persistent changes to short-term memory.

These changes either update the agent‘s internal model or create motor commands on a

fixed structure in short-term memory called the output-link. During the output phase, a

process external to Soar reads the commands placed on Soar‘s output-link and produces

action in the environment. In the Soar+SVI system, the SVI module filters all output-link

commands. If the command is an imagery action then it is transmitted to the appropriate

Input

Operator

Selection

(Decision)

Elaboration

Operator Proposal

Operator Evaluation

Operator

Application
Output

 60

SVI component handling the command. Otherwise, SVI passes it to the appropriate motor

module.

6.2 SVI

SVI encapsulates the fixed memories and processes to support high-level visual

perception, spatial imagery, and visual imagery (bottom of Figure 6-1). The memories

include short-term memories for the quantitative spatial (Object Map) and visual

depictive representations (Visual Buffer), a long-term memory (Visual LTM) that stores

the shape and color of prototypical objects or specific instances that the agent has

previously seen in the environment, and a short-term memory (Visual-Spatial STM) that

binds the ―what‖ and ―where‖ pathways.

6.2.1 Memories

6.2.1.1 Visual Buffer

The Visual Buffer (bottom of Figure 6-1) is a depictive, short-term memory activated

from either bottom-up, visual-perception or top-down imagery processing. Space is

inherent in the structure of the depictive representation and the encoding is of information

rather than a denotation of information. The depiction as a whole represents shape, size,

orientation, location, and color.

Computationally, the Visual Buffer is a set of 2D image data structures where a

single image, I, has a set of picture elements, or pixels, (x,y; I(x,y)). The first parameter,

(x,y), is the pixel location and the second parameter, I(x,y), is the pixel value of I at

location (x,y). There is always at least one image in the set, the base image or Visual

Buffer layer (vb-layer) zero, representing the perceived scene from an egocentric

viewpoint or an imagined scene from an imagined viewpoint. Visual perception or

imagery may create additional, ephemeral images in the set that extract a subset of the

base image (e.g. edges, marked regions). These subsequent image layers serve as an

attention mechanism to support further computations. Algorithms, encoded in the ―What‖

or ―Where‖ inspectors (bottom of Figure 6-1) or the VBManipulator (shown later)

process each image separately. The algorithms used to process the image(s) are algebraic

 61

(e.g. edge detectors, filter masks, rotation, scaling), or ones that take advantage of the

topological structure using pixel-level rewrites (Furnas, 1990, 1991; Furnas et al., 2000).

For example, in the alphabet experiment, a Hough transform is used to detect

curves on letters and pixel-level rewrites are used to infer enclosed spaces. Both

techniques require the instantiation of additional image layers to support reasoning. In the

scout domain, the system creates a separate image for each enemy and ―key terrain‖

toward which the agent hypothesizes the particular enemy is maneuvering. Figure 6-3

shows the agent‘s combined perceived and imagined scene inside the Visual Buffer box.

The middle image represents the agent‘s imagined representation of one enemy

maneuvering toward a piece of terrain along with a distance field flood and the

hypothesized path (shown in orange). The image serves as an attention mechanism in that

the agent is focused on a particular enemy/key-terrain pair and the path between them.

The third image in the figure‘s upper right corner represents the portion of that path the

agent hypothesizes it can view based on its current location orientation, and imagined

field of view.

Figure 6-3: Visual Buffer is a “Set” of Images

6.2.1.2 Object Map

The Object Map (middle right of Figure 6-1) is a short-term memory that

maintains the quantitative spatial representation of the objects in the currently perceived

 62

or imagined scene. This representation fixes an object‘s location (direction and distance

from a fixed frame of reference), orientation, and size in space and includes a viewpoint

to facilitate the generation of a depictive image. The computational processes that infer

knowledge from this representation are sentential, mathematical equations. It also serves

as an intermediate format when moving from a symbolic to a depictive representation.

The Object Map‘s structure is sufficient for reasoning about objects‘ relative direction,

distance, orientation, size, and general topology. However, if reasoning of spatial

properties involves a non-convex shape or the reasoning is about an object‘s visual

features, a depictive representation in the Visual Buffer is required.

A key design decision was determining the Object Map‘s data structure. The

structure had to support the quantitative spatial representation for spatial reasoning tasks

and the rendering of a rasterized image for the Visual Buffer‘s depictive representation.

For spatial reasoning, we desired a structure supporting hierarchical, containment

relationships (e.g., a line is part of a geometric figure, a gun is part of a tank) and spatial

relationships (e.g. line-C is in between line-A and line-B, enemy A is 500 meters to my

left front). Together, the hierarchical containment and spatial relationship properties

support spatial reasoning between objects and an object‘s parts (e.g. what is the

relationship between the front wheel of a car and the steering wheel? Between the

steering wheel and the stop sign?). Rendering to a rasterized image requires the ability to

combine specific shape (i.e. vertices and indices) and color, spatial relationships, and a

privileged viewpoint so that the image can be generated from a specific perspective.

We chose to implement the Object Map with a scene-graph data structure and a

viewpoint, or camera (Eberly, 2005). Every node in the scene-graph is an object or group

of objects representing a portion of convex space in the perceived or imagined scene with

the root node representing the entire space (Figure 6-4). The leaf nodes of the graph

contain an object‘s shape (i.e. three-dimensional mesh of vertices and indices) and color

(i.e. a red, green, blue vector) to support rendering to an image. Intermediate nodes

represent the composition of one or more objects. The structure is called a graph (rather

than a tree) because multiple leaf nodes may share the vertices and color.

As an SVI convention, the root node of the Object Map‘s scene graph represents

the current scene (Figure 6-4). The root‘s first child contains the agent‘s spatial

 63

information (location, orientation), the second child includes any perceived background

information, such as terrain, and the third child contains all the salient or visual objects in

the agent‘s scene. Figure 6-4 shows the number of visual objects to be N. From a

psychological perspective, N is hypothesized to be four to five objects based on working

memory capacity (Jonides et al., 2008; Pylyshyn, 2001). Note that there may be more

objects in the environment, but N simply represents those objects that perception has

determined ―salient‖ or imagery has added. Each visual object may be a single entity (i.e.

a tank) or several entities (i.e. a group of tanks).

Figure 6-4: Scene-Graph Data Structure

SVI distinguishes between primitive and composite objects. Primitive objects,

such as Visual-Object-1A‘s Node, have a single child encoding the vertices and color.

Composite objects are composed of one or more primitive objects. The general shape, or

―bounding volume,‖ of a primitive object is computed from its vertices. The general

shape may be a convex hull, an oriented-bounding box, or a sphere. Each intermediate

Viewpoint

Agent

Node

…

Current-Scene

Node

Visual-Objects

Node

Background

Node

Visual-Object-2

Node

Visual-Object-N

Node

Visual-Object-1B

Node

Visual-Object-1

Node

Visual-Object-1A
Vertices,

Indices, Color

Visual-Object-1A

Node

Some-other-

object’s-part

…

… … …

Local

Transform

l11 l12 l13

l21 l22 l23

l31 l32 l33

Xl , yl, zl

World

Transform

 64

scene-graph node, or composite object, captures the general, convex shape of an object it

represents based on the combined general shape of its child objects.

Every node in the scene graph encapsulates a local and world transformation

where a transformation includes a 1x3 translation vector and a 3x3 rotation and scale

matrix. A local transformation represents the direction, distance, orientation, and size of

an object relative to its parent object. A world transformation is relative to some fixed,

global frame of reference. For example, in Figure 6-4, Visual-Object-1‘s Node is

composed of two parts, Visual-Object-1A and Visual-Object-1B. Visual-Object-1A‘s and

Visual-Object-1B‘s local transformation represent the spatial relationship (i.e. direction,

distance, orientation, size) between them relative to Visual-Object-1. The two parts‘

world transformation represents their global location, orientation, and size computed

from Visual-Object-1‘s world transformation. That is,

WorldVisual-Object-1A = WorldVisual-Object-1 * LocalVisual-Object-1A

The general shape and transformations are computed recursively at run-time by

traversing through the graph. Note that the ―world‖ transformation does not necessarily

have to be ―global‖ coordinates. Rather, an alternative is to have the agent serve as the

―world‖ origin and the transformations computed relative to this origin. Of course, in

practice to compute an actual world location one would have to know the agent‘s

location, perhaps through localization techniques or a global positioning system.

6.2.1.3 Visual Long-Term Memory

The remaining memories in SVI are not associated with a particular

representation but are indirectly involved in reasoning. Visual long-term memory

(VLTM) contains prototypical objects and specific instances encoded from previous

experiences. VLTM is implemented as a hash table (Figure 6-5). A symbolic, visual-id,

indexes each object. Each entry in the table is an object‘s scene-graph representation. The

scene-graph in VLTM is distinct from the scene-graph in the Object Map as it is not an

instance in the current perceived or imagined scene but rather a memory of a prototypical

object‘s shape and color. Another distinguishing characteristic is that unlike an object

instance in the Object Map, a VLTM object does not have a fixed frame of reference in

 65

space relative to the agent (egocentric) or another object (allocentric). Rather the space

representation in VLTM serves only to specify an object‘s configuration properties. To

become an instance in the current scene, imagery activates this VLTM representation.

Figure 6-5: Visual Long-Term Memory

Similar to the Object Map, VLTM distinguishes between primitive and composite

objects. For example, VLTM stores a tank from the Scout domain as shown in Figure

6-5. The tank has a hull and a turret, the hull has road wheels and tracks. The advantage

of this representation is its compactness. Only the leaf-node entries store the vertices and

color of the primitive objects (i.e. road wheel). All other node entries are simply pointers

and transformations describing the composition and relationships between the object‘s

parts. Together the structure determines the object‘s shape. Details in the representation

that are missing are just missing. Someone not familiar with a tank may think of it as a

cylinder on top of a rectangle rather than containing all the features that a tank expert has.

Thus, the primitive parts simply have fewer vertices and color details that the agent may

elaborate as it experiences more objects in the world of a similar type.

12345

55432

98765

33221

77777

…

Tank

Road

Wheel

Vertices,
Indices, Color

Gun-tube

Vertices, Color

Hull

Road

Wheel-1

Track Road

Wheel-8
…

Turret

Cupola

…

…

 66

The VLTM structure enables an agent to imagine an object (i.e. tank) or an

object‘s parts (i.e. a tank‘s gun tube or road wheel) by simply traversing the nodes

indexed from the visual-id and instantiating (i.e. copying) each child node to the Object

Map. The vertices and color are shared between the instantiated objects in the Object

Map, and the objects in VLTM. The vertices are involved in computations when

determining the object‘s general shape for spatial imagery (e.g. computing the convex

hull) or generating the depictive image in the Visual Buffer for visual imagery.

6.2.1.4 Visual-Spatial Short-term Memory

Visual-Spatial short-term memory (VS-STM) is a shared memory that effectively

binds the ―what‖ and ―where‖ pathways and serves as a temporary symbolic store

between Soar and SVI (center of Figure 6-1). It is a hierarchical structure with the top-

level representing the sets of salient, visual objects, spatial properties, and visual features

that apply to the current scene--either perceived or imagined. Each salient object in the

visual object set may have subsequent levels in the hierarchy with its own feature, object,

and spatial sets (Figure 6-6). Visual processing expands the top-level sets and subsequent

layers as details in the scene are elaborated. During imagery, results of processing also

expand these sets in response to specific operations. Each visual-object in VS-STM has a

corresponding instance-id distinguishing it as a salient object in the scene. If the visual-

object is recognized it will also have a visual-id. Note that the Visual Object in VS-STM

is a separate structure from the Visual-Object Node in the Object Map‘s scene graph

(Figure 6-4). A VS-STM Visual Object has direct access to its corresponding scene graph

node but contains information not represented in this node such as any visual or spatial

properties elaborated during perception or imagery, whether it has been recognized (i.e.

visual-id), and a marking-color and vb-layer. Our description of visual perception

(discussed next) will discuss the marking-color and vb-layer. This VS-STM Visual

Object then binds the ―what‖ and ―where‖ pathways.

 67

Figure 6-6: Visual-Spatial Short-Term Memory

6.2.2 Processes

6.2.2.1 Visual Perception

Again, our theory of visual perception is theoretical, but we include it to emphasize

imagery‘s integration with visual mechanisms. Our implementation does model the flow

of information as described here. A Refresher process activates the Visual Buffer from

retinal stimulus (bottom right of Figure 6-1). Upon activation, a two-pass operation is

performed on the depiction. During the first step, a Saliency Inspector determines and

marks the salient regions, or objects, in the current scene by creating a separate image, or

vb-layer, for each object. Each image is ―colored‖ with a unique marking where the

colored region corresponds to the salient object‘s contour and interior in the perceived

image (Ullman, 1996). The Saliency Inspector creates a Visual Object structure in VS-

STM for each salient object and augments it with a unique instance-id, marking-color,

and associated vb-layer (Figure 6-6). The instance-id is similar to Pylyshyn‘s (2001)

concept of a visual index.

Current

Scene

Current Scene

Visual Feature Set

Current Scene

Visual Object Set

Current Scene

Spatial Set

Visual Object-1

instance-id: 12345

visual-id: 700

marking-color: 255 0 0

vb-layer: 0,1

Visual Object-2

instance-id: 877654

visual-id: 801

marking-color: 0 255 0

vb-layer: 0,2

Visual Object-N

instance-id: 32221

visual-id: 1002

marking-color: 0 0 255

vb-layer: 0,N

…

Features applicable to

scene as a whole

Spatial properties and

relationships between

visual objects

Direct access to the visual-
object’s node in the Object
Map’s scene graph

(Figure 6-4)
Visual Feature Set Visual Object Set Spatial Set

 68

Figure 6-7: “Bottom-up” Visual Processing and Data Flow

During the second pass, two parallel processes initiate a more detailed inspection

of the depictive representation, focusing their attention on the marked objects in the

images in the Visual Buffer layers (Figure 6-7). The What Inspectors are responsible for

extracting object features to support recognition by matching the features with a shape

and color representation in VLTM. If the object is recognized, its associated visual-id

from VLTM is stored in VS-STM (Figure 6-6).

Simultaneously, the Where Inspectors extract the egocentric direction and

distance (i.e. location), orientation, and size of the objects from the Visual Buffer, build

the Object Map‘s scene-graph, and update the VS-STM‘s current scene spatial set (Figure

6-6). Initially, the ―Where Inspectors‖ encode the general shape of the object in the scene

graph as a ―blob‖ based on the marked region in the Visual Buffer. If the visual object

has been recognized by the ―What Inspectors‖ (i.e. it has a visual-id in VS-STM), the

―Where Inspectors‖ associate the leaf nodes of the Object Map with their corresponding

vertices in VLTM.

Symbolic

LTM

SVI

Input Output

Symbolic STM

Soar

VLTM
Listeners

What
Inspectors

Where
Inspectors

Object Map
Listeners

Saliency
Inspector

VS-
STM

VLTM Object Map

Process Flow

Data Flow

Visual
Buffer Refresher

Stimulus

Pass-1

Pass-2
Pass-2

 69

A set of listeners along the ―what‖ and ―where‖ pathways (VLTM and Object

Map Listeners respectively) monitor updates to VS-STM and consolidate the results for

input to Soar (Figure 6-1 & Figure 6-7). Operators in Soar‘s procedural memory,

executing in a separate control path, attend to the listeners‘ input and associate it with

existing knowledge to identify the object. For example, a recognized tank object may be

associated with the fact that it is an enemy vehicle. If the visual object arriving on Soar‘s

input-link does not have an associated visual-id (i.e. it is not recognized), imagery

processing may commence in Soar to assist in recognition of the object. Soar encodes the

visual objects in the perceived scene along with their egocentric direction, distance, and

orientation. Note that these ―automatically,‖ extracted spatial relationships are relative to

the agent.
8
 They do not include the relationships between every pair of salient objects in

the scene. This type of inference requires imagery.

In practice, the simulation environment provides the Saliency Inspector a list of

scene graph nodes representing the ―salient‖ objects that the agent can currently observe.

The simulation makes the determination of what the agent can and cannot observe. The

first scene graph node in this list is always the ―background‖ node, which may represent

terrain and other ―non-salient‖ objects (i.e. trees, buildings), etc. The Saliency Inspector

instantiates the Visual Object structure in VS-STM and provides the ―What‖ and

―Where‖ Inspectors the list of scene graph nodes. The ―What Inspectors‖ recognition

process is a simple ―string match‖ and the ―Where Inspectors‖ build the internal Object

Map structure from the provided list of scene graph nodes. For debugging purposes, the

Refresher renders the internal scene graph from the agent‘s current viewpoint. The

remaining information flow proceeds as previously discussed. Although the

implementation of bottom-up visual processing is ad-hoc for now, it forces us to consider

how visual perception and imagery interact.

6.2.2.2 Spatial and Visual Imagery

Given the above discussion, we can now describe how the architecture supports spatial

and visual imagery processing. We will provide an overview of the processing, discuss

8
There may be some non-egocentric relationships automatically extracted during bottom-up perception

such as several objects falling in a line.

 70

the spatial and visual knowledge representation in Soar, and then elaborate on how SVI

processes each imagery operator (construct, transform, generate, and inspect). We will

use examples from both our experimental domains and the following ―place-setting‖ task:

A Soar agent is setting the table for dinner. Its current goal is to set one

place setting. In order to accomplish the goal it has to set each individual

object (napkin, fork, plate, etc). It prefers to set the center object (i.e.

plate) first so it can place the other objects relative to the center.

An agent uses imagery when, in the context of its current goal, a spatial

relationship or visual feature is not directly accessible from symbolic knowledge. For

example, in the ―place-setting‖ task the agent is trying to determine the center object; in

the geometry problem, the agent is trying to find vertices, line segments, angles, and

triangles; in the alphabet experiment, the agent is trying to determine if the letter has a

specific feature; and in the Scout domain, the agent is trying to determine where to orient

its team for adequate coverage of hypothesized enemy routes.

An agent invokes imagery through the application of an operator (construct,

transform, generate, and inspect) in Soar‘s procedural long-term memory (top right of

Figure 6-1). We use Soar‘s subgoaling mechanism to implement these operators.

Therefore, if the agent is in an imagery problem space and ―important‖ information

arrives (e.g., the teammate in the Scout domain sends the agent a report), the system is

responsive, interrupts imagery processing, attends to the incoming input, and incorporates

the new information.

Whether the task requires spatial or visual imagery, the system first must

construct the quantitative spatial representation by accessing and combining spatial

configurations from Soar‘s symbolic memory with general shape information in VLTM.

If a depictive representation is required, imagery generates a visual depictive

representation by combining the quantitative spatial representation from the Object Map

with each object‘s specific shape and color from VLTM. The agent may transform or

inspect the representation in the Object Map or Visual Buffer. As imagery proceeds, the

symbolic results of manipulations and inspections are stored in the VS-STM and

transmitted to Soar via the listeners. Although we discuss the imagery operators in a

sequence, the processing is conditional and iterative.

 71

6.2.2.2.1 Symbolic Representations

A symbolic structure in Soar is associated with a visual symbol via a visual-object

attribute. For example, an agent‘s symbolic, short-term memory represents the place

setting as shown in Figure 6-8 (only three objects shown). Each entity (napkin, fork,

place setting, plate) has a visual symbol associated with it (V23, V9, V7, and V12

respectively). A visual symbol with a visual-id (napkin, fork, plate) has an underlying

shape and color representation in Visual LTM. Alternatively, as in the case of the place

setting, a visual symbol may have a has-a attribute and a spatial description specifying

how it is composed of other visual symbols. Note that in addition to the visual symbols,

the symbolic representation enables one to associate other, non-visual, symbols to each

entity (e.g. a napkin is used to wipe your mouth, a plate holds food). A visual symbol

may arise from memory retrieval, perceptual input, or after imagery instantiates an

imagined object in the scene (which is the same as perceptual input from Soar‘s

perspective). An instantiated visual symbol will have an instance-id corresponding to the

instance-id in VS-STM (Figure 6-6) signaling that it is a salient object in the scene.

Figure 6-8: Example Short-term Memory Symbolic Structure

 72

The spatial structure describing the configuration of a visual symbol includes a

base visual symbol and a relative visual symbol so that a predicate relationship is defined

as <spatial-relationship> (<relative>, <base>) (e.g. above(fork, napkin),

disconnected(fork, plate)).
9
 The spatial relationships may be qualitative or quantitative

(Figure 6-9 and Figure 6-10). In the place setting example, the fork is above (direction)

and externally connected (topology) to the napkin and left-of and disconnected from the

plate. In the Scout domain, a map-icon may be located 500 meters southeast of the

agent‘s map-icon and above and externally connected to the background (i.e. place it on

top of the terrain). When there is a topological relationship, the direction specifies where

the topological relationship applies (e.g., fork is externally connected to the napkin in the

―above‖ direction). Task knowledge may rearrange the spatial relationships or even

synthesize composite objects to enable the creation of novel representations (e.g.

imagining an elephant on top of a house).

Type Qualitative Quantitative

Direction left-of, right-of, in-front-of, behind,
above, below, between,
center-of

3D vector <x,y,z>

Distance near, far scalar
or

3D vector (distance in each
direction)

Orientation north, northwest, west, southwest,
south, southeast, east, northeast

scalar
or

3D vector (orient towards
location)

Topology
(see Figure 6-10)

disconnected (DC), externally-
connected (EC), partially-overlaps
(PO), tangential-proper-part (TPP),
non-tangential-proper-part (NTPP)

None

Geometry parallel, perpendicular, intersect,
line-segment, triangle, angle,
congruent

None

Size smaller, larger, equal scalar (1D length)
2D vector (length,width)
3D vector (length,width,height)

Symmetry horizontal-symmetry, asymmetry,
vertical-symmetry

Figure 6-9: Spatial Properties

Bold font indicates that the property has been used in the experimental domains

9
Ternary spatial relationships (e.g. between) are also possible where there are two base objects (e.g.

between (plate, fork, knife)).

 73

Figure 6-10: RCC-8 Topological Relationships

(from (Cohn et al., 1997))

Type Qualitative Quantitative

Shape point, vertex, line, line-segment,
triangle, curve, curve-segment,
enclosed-space

3D vector <x,y,z> (set of
points)

Color red, green, blue, etc. 3D RGB vector <r,g,b>

Figure 6-11: Visual Features

Bold font indicates that the property has been used in the experimental domains

Similar to VS-STM‘s visual object structure, the visual symbol in Soar‘s symbolic

memory may have associated visual-features or spatial attributes encoded during

perception, retrieved during an imagery inspection, or declared in a symbolic memory.

For example, in the alphabet experiment, the initial, visual symbol for the letter ‗A‘ may

be described as being composed of three line-segments with a specified spatial

configuration (i.e. one line-segment has a counterclockwise orientation of 45 degrees,

another line-segment is the same size as the first line-segment but rotated clockwise 45

degrees, etc.). The agent, wanting to know if the letter A has an ―enclosed space‖,

constructs the quantitative spatial representation in the Object Map and augments the

letter A‘s visual symbol with an instance-id. After the visual depictive representation is

generated and inspected for the enclosed space, the letter A‘s visual symbol is augmented

with a shape visual-feature where the shape is an enclosed space. Figure 6-11 highlights

the visual features SVI currently supports.

SVI assigns a temporary emergent-id to shapes found during inspection so that if

the agent desires more information regarding the feature, it can be retrieved from VS-

STM. For example, the agent may want to know the size (i.e. length) of the letter A‘s

enclosed space and its direction and distance from the top of the ‗A‘. The emergent-id

supports this capability, binding the symbolic shape representation in Soar to its

underlying depictive representation in the Visual Buffer via VS-STM. In a similar

NTPPI = Non- Tangential Proper Part Inverse
TPP = Tangential Proper Part EQ = Equal

TPPI = Tangential Proper Part Inverse
EC = Externally Connected NTPP = Non-Tangential Proper Part

PO = Partially Overlaps

DC = Disconnected

 74

manner, retrieved spatial properties that apply strictly to the letter ‗A‘s‘ visual symbol

(rather than the entire scene) augment the visual symbol as a spatial attribute (e.g. the

letter ‗A‘ enclosed space‘s center is above its horizontal line-segment).

6.2.2.2.2 Construction

Although the symbolic structure of the place setting in Figure 6-8 encapsulates a lot of

information, it does not indicate the center object of the place setting or whether the fork

is wider than the spoon—either directly or through logical inference. When there is a lack

of spatial or visual knowledge relevant to the agent‘s current goal, an impasse occurs and

Soar creates a special, imagery state where the agent directs the processing. The first step

in imagery processing is to construct the desired scene. The imagery construct operator

has two sub-commands, compose, and add. The compose command is useful when the

agent is imagining a scene by initially composing two objects retrieved from memory and

adding them to a ―blank‖ scene. For example, the agent begins imagining the place

setting by composing the fork and napkin. The add command is useful when adding an

object to an existing perceived or imagined scene (e.g. add a knife to the right-of and

disconnected from the plate, add a hypothesized enemy icon to the map relative to the

existing enemy map-icon).

Functional processes within SVI respond to the specific imagery command. In the

case of construction, the Constructor receives the operator‘s symbolic information,

interprets it, and builds the quantitative spatial representation in the Object Map by

combining each object‘s general shape information from Visual LTM with spatial

knowledge from Soar (Figure 6-12). The symbolic information includes the visual-id and

spatial properties of the object(s) being composed or added. The visual-id enables the

constructor to access the object(s) general shape, or scene-graph, and instantiate it by

copying the structure.
10

 The spatial properties description includes a relative-visual-id

and a base-visual-id or a base-instance-id.
11

 The relative-visual-id is the visual-id of the

relative object in the spatial relationship (e.g. left-of (relative-object, base-object)). If

composing objects, then the base-visual-id identifies the base object in the spatial

10
The color and specific shape representation (vertices) are not copied. VLTM and the Object Map share

these structures and they are activated when generating a visual depiction.
11

There is also a base-instance-id-tert for ternary spatial relationships (e.g. between).

 75

relationship because the object has not yet been instantiated. Otherwise, a base-instance-

id, which is the instance-id of a visual object already in the Object Map, identifies the

base object.

Spatial properties may include any of the following: direction, distance,

orientation, size, topology, and geometry (Figure 6-9). If the spatial properties are

qualitative (e.g. left-of, northwest, externally connected), the Constructor converts the

symbol to a metric representation. For example, left-of becomes a vector (<-1, 0, 0>) and

northwest a scalar, absolute orientation (135 degrees). Topological information is

computed from the appropriate object‘s bounding box or convex hull in the direction

specified by the direction relationship (i.e. fork is externally connected in the ―above‖

direction). If direction is missing then the default behavior is to create the topological

relationship in a random direction. Note that this is only a ―rough‖ topological

interpretation and in order to determine a more accurate topological relationship requires

constructing the ―rough‖ topology, generating a depiction, inspecting it, projecting the

coordinates from 2D to 3D space, and making translation adjustments. We have not

implemented this functionality.

Figure 6-12: Imagery Construction

 76

As an example of building a quantitative representation from qualitative symbols,

consider the place setting where the agent first composes the knife and the plate by

locating the knife to the right of the plate. If the construction operator does not include

any distance constraints, as in this scenario, then the Constructor considers the general

shape of the objects and uses a heuristic based on an object‘s area of influence (Kettani &

Moulin, 1999). Locating the knife right of the plate without any distance constraints

implies placing the knife next to the plate (externally connected) and then adding ―a

little‖ empty space based on the length of the objects‘ convex hull in the direction of the

placement (right-of). In order for the Constructor to orient a visual object, the system has

to assume that each object stored in VLTM has a front and a canonical orientation. SVI

assumes that each object stored in VLTM is oriented ―north‖ (e.g., the prongs of a fork

face north).

After the Constructor finishes composing or adding the visual object(s) to the

Object Map, feedback to Soar proceeds in a similar fashion as automatic, bottom-up

visual processing. The Constructor creates a visual object symbolic structure in VS-STM

for each imagined object and augments it with an instance-id, thus fulfilling the role of

the Saliency Inspector and ―What Inspectors.‖ Since the object(s) added to the Object

Map has already been ―recognized‖ (that is the agent knows the object(s) it is

imagining
12

), this processing is all that is necessary. In the case of the where pathway, the

Constructor automatically invokes the ―Where Inspectors‖ to inspect the Object Map

(rather than the Visual Buffer) for the recently added visual object(s) direction, distance,

orientation, and size information relative to the current viewpoint. As in bottom-up

processing, the ―Where Inspectors‖ add this information to the spatial set of the current

scene (Figure 6-6). The VLTM Listeners and Object Map Listeners consolidate the

results for input to Soar on the subsequent input cycle (Figure 6-7).

In addition to constructing objects retrieved from Visual LTM, the Constructor

can also imagine or ―draw‖ simple shapes such as those listed in Figure 6-11. This

functionality is useful when the agent wants to imagine a shape it has never seen before

12
Although the agent ―recognizes‖ the objects added to the scene, it does not immediately recognize the

resulting, composite object(s). The inspection process has to be invoked to facilitate recognition. For

example, imagine a ‗D‘ rotated 90 degrees counterclockwise on top of a ‗J‘; the ‗D‘ and ‗J‘ are

immediately ―recognized‖, but an inspection process must recognize the ―umbrella‖.

 77

(e.g. a view frustum). Alternatively, the shape may be the result from an inspection of the

Visual Buffer that the agent wants to make a first class visual object. Making the shape a

first class object facilitates spatial reasoning (e.g. determining the direction between the

centers of the enclosed space and the letter A). In these cases, rather than sending a

visual-id, Soar sends the vertices and indices describing the shape or its emergent-id to

the Constructor.

6.2.2.2.3 Generation

If a depictive representation is required, the generate operator initiates processing (Figure

6-13). The Refresher interprets the command and combines specific shape and color from

Visual LTM with the Object Map‘s quantitative spatial representation to generate the

visual depictive representation in the Visual Buffer. Generation may render all or some of

the visual objects and, as previously discussed, create more than one image, or vb-layer,

as a form of cognitive focus (see section 6.2.1.1). The agent may optionally specify a

―generation color‖ for a visual-object to distinguish it as a unique object in the image.

After the image is generated, the Refresher updates the current scene‘s visual object set in

VS-STM with the generated vb-layer and its associated visual objects along with their

optional generation color. This information is transmitted to Soar via the Visual LTM

Listener during the next input-cycle.

Figure 6-13: Imagery Generation

 78

6.2.2.2.4 Transform

The transform operator manipulates the Object Map‘s quantitative or a Visual Buffer‘s

depictive representation through their respective Manipulator processes (Figure 6-14).

Manipulation of the Object Map includes transforming (i.e. translation, rotation, scaling)

a specified object in the scene or changing the viewpoint. The modification of the

viewpoint enables the agent to change its perceptually based egocentric view to an

imagined allocentric view in order to infer new spatial relationships. For visual imagery,

viewpoint manipulations can serve as an attention mechanism where, prior to generating

an image in the Visual Buffer, the system can transform the viewpoint to another

perspective, focus the viewpoint in or out, or shift it in any direction. These

transformations effectively focus attention on specific areas of the Object Map so that

when the Refresher renders the scene to the Visual Buffer the generated pixels are

representative of that viewpoint. Although we have implemented this viewpoint

transformation, we have only used it for changing an agent‘s ―frontal‖ view to a top-

down ―map‖ view and for debugging.

Figure 6-14: Imagery Transformation

 79

In the case of transforming a visual object node in the Object Map, the transform

operator sends the instance-id and desired transformation to the Object Map Manipulator.

The Object Map Manipulator accesses the visual object‘s scene graph node by looking up

its instance-id in VS-STM (Figure 6-6). It then modifies the local transformation of the

node (Figure 6-4) and recursively traverses children of the node to update their world

transformations (i.e. if you transform a car you want all of its parts to move with it). For

example, in the scout domain, the agent modifies the orientation of the teammate‘s and its

own imagined views to determine if they provide better coverage of possible enemy

routes. As the agent receives reports from its teammate or visually observes changes in an

entity‘s location or orientation it transforms the associated map-icon. When the agent or

its teammate loses visual contact with an enemy, it can imagine simulated movement

based on task knowledge of an enemy vehicle‘s velocity. Note that the ―simulation‖ in

this case is a one-step process. Future work will discuss transformations that use motion

models of a particular entity (such as a tank) to simulate movement over time.

After the Object Map Manipulator finishes transforming a visual object, feedback

to Soar proceeds in a similar fashion as described for the Constructor. The Object Map

Manipulator automatically invokes the ―Where Inspectors‖ to inspect the Object Map for

the modified visual object. The inspectors update the spatial information in the current

scene‘s spatial set (Figure 6-6), and the Object Map Listeners consolidate the results for

input to Soar (Figure 6-7).

For Visual Buffer manipulations, the VBManipulator receives a vb-layer identifier

and either a transformation command or a set of depictive rules from the transform

operator and manipulates the image(s) corresponding to the vb-layer(s) identifier (Figure

6-14). Image transformations include standard image processing techniques (e.g. rotation,

scaling, and kernel filters). Depictive manipulations are based on the pixel-level rewrite

system (Furnas, 1990, 1991; Furnas et al., 2000) and discussed in depth, to include

examples from the Alphabet experiment and Scout domain, in Appendix B. We briefly

summarize the details here.

Unlike sentential, mathematical-based processing such as Gaussian filters or the

Hough transform (Appendix B), pixel-level rewrites take advantage of the topological

structure and color of a depictive representation. Similar to a production system, there are

 80

a set of rules with a left-hand side (LHS) and a right-hand side (RHS), but rather than

predicate symbols, the LHS conditions and RHS actions are visual depictive

representations that operate on a shared image. The color and shape of each LHS

depiction, determines a match rather than the syntactic structure of the symbols.

Figure 6-15 illustrates an example of two depictive rules. The top rule is a 1x2

rule stating, ―if there is a black pixel adjacent to a gray pixel then change the gray pixel to

a white pixel.‖ Similarly, the bottom rule is a 2x2 rule that says, ―if there is a black pixel

diagonally adjacent to a gray pixel then change the gray pixel to a white pixel.‖ The

asterisks represent wildcard values, and a rule may specify alternate rotation orientations

(90, 180, 270 degrees) for matching. While there are rule matches, the processing iterates

over the image. When a rule matches a region of the image, the RHS action rewrites the

appropriate pixel(s). Each rule has a priority associated with it to facilitate sequencing, so

if two or more rules match, then the rule with the highest priority fires. Although the

matching and modifications are local in nature, the cumulative effects have global

consequences.

Figure 6-15: Example Pixel-level Rewrite Rules

We made three primary extensions to the pixel rewrite system to support

processing in the Soar+SVI architecture. First, the depictive rules are encoded in Soar‘s

production memory as a set of transform operator elaborations.
13

 If the operator is

selected, the rules are added to Soar‘s output-link and sent to the VBManipulator. The

VBManipulator receives the rules and executes the pattern matching over the image

specified by the operator‘s vb-layer(s).

13
An operator elaboration is a type of Soar production or rule.

*
= wildcard

*

*

*

*

LHS RHS

 81

Second, we have a notion of a rule-set and make a distinction between three types

of depictive rules: threshold, pattern, and mark. A rule-set contains a set of rules of the

same type (threshold, pattern, or mark). Similar to rules, a rule-set has an associated

priority to enable sequencing among rule-sets. Processing of threshold rules makes one

pass through the image, and, for each pixel, changes the value based on an exact match, a

minimum, a maximum, or a range of pixel values. In the Scout domain, we found this

rule type useful for marking known obstacles such as buildings and ―no-go‖ terrain. The

functionality of the pattern rule is exactly as the pixel-rewrite system where the

processing iterates over the image matching and firing rules until there are no more rule

matches. An agent uses this type of rule for determining enclosed spaces in the alphabet

experiment and creating a distance field flood in the Scout domain.

We chose to distinguish the mark rule type as a signal to the VBManipulator that

it should create a shape object for the marked region in VS-STM. Prior to processing the

mark rules, the VBManipulator instantiates a shape object and adds it to the current

scene‘s Visual Feature Set (or the appropriate Visual Object) in VS-STM (Figure 6-6).

The shape object includes an emergent-id, the marking color, and the set of points

marked during the processing. The subsequent Soar input cycle creates a symbolic shape

structure in Soar‘s STM and records the emergent-id. The points remain associated with

the shape in VS-STM to support inspection (e.g. what is the length of the shape?) and

possibly construction (e.g. add the shape as a first-class visual object to the Object Map).

Although we could achieve the same functionality with the pattern rule type, we

also chose to distinguish the mark rule type for efficiency purposes.
14

 The

VBManipulator processes mark rules in a similar fashion as the pattern rules, but the

processing starts at a location specified in the transform operator and proceeds in the

―active‖ direction based on the rule‘s RHS. Mark rules are either 1x2 or 2x2 diagonal

rules where the RHS pixel rewrite is always the center pixel and the other active (non-

wildcard) cell determines the next processing direction. If a rule has more than one active

match (i.e. by a rotation of the LHS), then the VBManipulator records other matching

pixel locations by pushing them on a stack. After the VBManipulator exhausts processing

in the chosen direction, the pixel locations on the stack are popped and, if not already

14
This type of processing may also be inherent to the pixel-rewrite system.

 82

marked,
15

 processed. We found the mark set of rules useful for recording the

hypothesized enemy paths in the Scout domain and propose that this form of processing

is useful for marking salient objects by the Saliency Inspector during bottom up visual

processing.

The final extension we made to incorporate the pixel-rewrite system is to create

an attention window (Kosslyn, Thompson, & Ganis, 2006) in order to keep the image size

manageable for computational efficiency. One of our computational constraints discussed

in Chapter 3 is that the processing of the representation must be efficient so that the agent

remains reactive to changes in the environment. In our implementation, the attention

window is a fixed, m x m region, where m is a multiple of two. The size of the attention

window and its shift direction is task knowledge transmitted from Soar to the

VBManipulator every decision cycle in which the manipulation is active. Note that this is

a shift of the cognitive focus and not a shift of the agent‘s ―eyes.‖

6.2.2.2.5 Inspection

After the system has constructed, transformed, and, if necessary, generated the

depictive representation, conditions are set for the inspection process (Figure 6-16).

Inspection may focus on the Object Map (spatial imagery) or the Visual Buffer (visual

imagery), and the appropriate ―What‖ or ―Where‖ inspectors process the representations

based on the query parameters. The inspect operator provides the symbolic query. For

example, ―what is the center object of the place setting?‖, ―what is the orientation angle

between line-A and line-B?‖, ―does the letter ‗O‘ have a curve?‖, or ―how much of the

teammate‘s view covers enemy-1‘s hypothesized path?‖

An Inspector process (not shown in Figure 6-16) intercepts the command from

Soar and dispatches the appropriate What or Where inspector based on the query type.

The query types are the same as the spatial and visual properties listed in Figure 6-9 -

Figure 6-11. Each query type has an associated inspector. For example, the ―Where

Inspectors‖ include a DirectionDistanceInspector, OrientationInspector,

TopologyInspector, GeometryInspector, etc. and the ―What Inspectors‖ include a

LineInspector, CurveInspector, ShapeInspector, etc. Each inspector maintains a reference

15
For example, when processing a closed region, the processing returns to the starting/ending point.

 83

to the master Inspector so if a query involves multiple parts (e.g. direction and topology)

the initial inspector handling the query can invoke another inspector as necessary. Each

inspector also maintains a reference to the Visual Buffer Manipulator in the case a

transformation of the Visual Buffer (e.g. detecting enclosed spaces) facilitates the

inspection. As with bottom-up visual processing, the results of the inspection(s) are

stored in the appropriate visual feature or spatial set in VS-STM, and the listener

processes consolidate the results for Soar‘s symbolic memories.

Figure 6-16: Imagery Inspection

Spatial imagery entails queries of visual objects in the Object Map or comparisons

between emergent shapes in VS-STM with visual-objects. ―Where Inspectors‖ receive at

a minimum a relative-instance-id and possibly a base-instance-id
16

(Figure 6-16). When

there is only a relative-instance-id and the spatial query is specified in qualitative terms,

the inspector‘s behavior is to return all the visual-objects in the current scene meeting the

constraints of the query (e.g. center-of (place setting), intersect (line-A), externally-

connected (napkin), southeast (agent-map-icon)). In the case where both the relative- and

16
Again, ternary spatial queries (e.g. between) include an additional base-instance-id.

 84

base-instance-ids are provided, the inspection is an assertion of the truth (e.g. in-front-of

(triangle, line-A), northeast (enemy-2-map-icon, agent-map-icon)). An agent signals a

request for quantitative results by including an empty vector or scalar attribute (e.g.

orientation (fork, scalar), intersection (line-A, line-C, vector), direction (enemy-1-map-

icon,key-terrain-A,vector)). For geometric and topological relationships, binary queries

may optionally specify the creation of an emergent shape object that satisfies the

geometry or topological relationship (e.g. intersect (Line-A, Line-B, create-vertex)).

Visual imagery requires inspection of the Visual Buffer for spatial or visual

properties. The appropriate inspector receives a vb-layer(s), a relative–instance-id (visual

object), or relative-emergent-id (retrieved shape) and possibly a base-instance-id or

base–emergent-id (Figure 6-16). The vb-layer(s) specifies the set of images involved in

the inspection process for shape features. The instance- or emergent-ids give the

inspector direct access to the visual-object or retrieved shape objects stored in VS-STM.

As previously discussed, these symbolic structures may contain the object‘s marking or

generation color and associated vb-layer(s) in which the object appears. The inspector

uses this information to perform the desired inspection. For example, in the Scout

domain, the visual depictive representation of the teammate‘s view is in one image, and

each imagined path (three, one for each enemy/key-terrain pair) is in a separate image.

Each image has an associated vb-layer identifier, each marked path has an associated

emergent-id, and the teammate‘s view has an instance-id as it is an imagined visual-

object.

Visual imagery inspections for visual-features (Figure 6-11) are implemented in

qualitative, unary terms only (e.g. curve(letter-A), enclosed-space (letter-C)). If the

appropriate inspector finds the feature, it creates an emergent shape object and stores it in

the appropriate visual-feature set in VS-STM. The Visual LTM listener transmits the

emergent-id of the shape to Soar. Inspection of spatial properties in the Visual Buffer are

similar to spatial queries involving visual objects in the Object Map as the query may be

qualitative or quantitative, and the number of instance- or emergent-ids in the query

parameters determine the type of results the inspector returns. As with spatial imagery,

unary queries return all visual objects (instance-ids) or shapes (emergent-ids) in the vb-

 85

layer(s) image satisfying the constraints. Binary or tertiary qualitative queries return a

truth assertion.

Similar to spatial imagery, for geometric and topological relationships, binary

queries may optionally specify the creation of an emergent shape object that satisfies the

geometry or topological relationship. For example, in the Scout domain the agent may

ask the inspector to determine the subset of a hypothesized enemy path shape that

satisfies the non-tangential-proper-part topological relationship with the teammate‘s view

frustum (e.g. non-tangential-proper-part (path-1, teammate-view, create-shape)). For

quantitative queries (e.g. size-of (path-1,scalar)), the inspector determines the specified

scalar or vector value in the two-dimensional image space and converts the metric

information into a three-dimensional space based on the current location and direction of

the viewpoint. This conversion insures that the reasoning from Soar‘s perspective is

based on the Object Map‘s three-dimensional Euclidean space.

6.2.2.3 Synchronization of Perception, Imagery, and Cognition

As discussed in section 6.2.2.1, bottom-up perceptual processing proceeds along two

simultaneous pathways while operators in Soar‘s procedural memory, executing in a third

processing path, attend to the listeners‘ input (Figure 6-7). Imagery processing initially

deviates from these processing paths in that it originates from the application of an

imagery operator in Soar and flows to the corresponding imagery process. This

processing diverges into five possible paths to include construction, manipulation,

generation, and inspection (two parallel paths). Figure 6-17 shows four paths emanating

from Soar‘s output as we have combined the construct/manipulate path and, as in bottom-

up visual processing, the ―What‖ and ―Where‖ inspectors could process in parallel. The

imagery process performs its function (i.e. construction, transformation, generation,

inspection), and returns to the Soar decision cycle path where consolidated input from

SVI‘s listeners is processed. Although the processing path is different from bottom-up,

visual processing, the information (i.e. data) flows along the same paths. For example,

after processing constructs or manipulates a representation, the information (e.g. the

instance-id of the imagined/transformed visual object, automatically extracted spatial

relationships from the current viewpoint) resulting from this construction/manipulation

 86

are extracted by the inspectors, stored in VS-STM, and consolidated by the listeners for

input to Soar. During imagery inspection, as in bottom-up perception, the inspectors

extract information from the quantitative or depictive representation and encode it in VS-

STM. The listeners consolidate the results from VS-STM for input to Soar.

Figure 6-17: “Top-down” Imagery Processing and Data Flow

This top-down imagery processing propagates temporal and spatial constraints on

the overall system. Imagery may inhibit incoming sensory input (bottom of Figure 6-17)

and synchronize (i.e. ―lock‖) the memories to avoid race conditions. That is, sensory

information from the environment continues to arrive, but in order to give imagery an

opportunity to process the spatial and visual representations, there may be an ephemeral

inhibition of sensations. Of course, such inhibitions cause the system to miss incoming

information so there must be some sort of an ―override‖ to interrupt imagery and attend

to the incoming sensory input. Although we do not have an adequate model of how such

an ―override‖ is realized, for now we say that the system must be responsive to

SVI

Input Output

Symbolic STM

Soar

VLTM
Listeners

What
Inspectors

Where
Inspectors

Object Map
Listeners

Constructor /
Manipulator

VS-
STM VLTM Object Map

Visual
Buffer Refresher

Stimulus

Process Flow

Data Flow

Inhibit

 87

―important‖ information. For example, in the Scout domain ―important‖ information is a

moving object in the perceived scene or a message arriving from the agent‘s teammate.

An orthogonal issue relevant to the processing flow of imagery and inhibition of

sensory input is the system‘s overall truth maintenance mechanisms. That is, the

architecture must address how the information states between sensory input, imagery, and

cognition remain consistent. For example, if there are two salient, visual objects in the

perceived or imagined scene, then that information must be reflected in at least one of the

Visual Buffer‘s images, in the Object Map, in VS-STM, and on Soar‘s symbolic, input-

link. Similarly, if a previously imagined object is no longer in the current scene because

the agent is ―perceiving‖ again, then the visual symbol instance in Soar‘s short-term

memory must be tagged and eventually removed so that future reasoning does not assume

the object is still in the scene.
17

 In most cases, the VLTM and Object Map Listeners will

handle the updating of symbols on Soar‘s input-link, but if the agent creates any internal

symbolic state in Soar, it has the responsibility through procedural knowledge to enforce

consistency.

From an architectural perspective, after imagery finishes processing, or when an

―important‖ perception interrupts it, any temporary imagery state stored in the short-term

memories is removed. For example, in the Scout domain if an observation report from the

agent‘s teammate arrives while the agent is imagining a hypothesized enemy path, the

architecture removes (1) the symbolic state created in Soar‘s imagery problem space,
18

(2) any imagined visual objects in the Object Map, (3) temporary images created in the

Visual Buffer, and (3) any state containing imagined objects in VS-STM. It then updates

those short-term spatial and visual memories based on the current visual perception. The

effect then is that any state imagery creates is monotonic with respect to any pre-existing

state. The agent, through procedural task knowledge, must decide what information to

make persistent in one of Soar‘s symbolic memories and is responsible for enforcing

consistency based on the spatial and visual information arriving on Soar‘s input-link.

17
Future work discusses the exploration of ―object permanence‖ or the memory of a visible object that

disappears (through motion).
18

The state for the imagery problem space is created by Soar‘s subgoaling mechanism.

 88

6.3 Summary

In summary, the architecture consists of two major components, Soar and SVI.

Each contains a set of fixed memories and processes with Soar encompassing the

symbolic representation and SVI including the quantitative spatial and visual depictive

representations. A symbolic VS-STM binds the two processing pathways and serves as a

temporary symbolic store. Imagery processing leverages the mechanisms high-level

vision inherently provides and includes functions for constructing a quantitative spatial

representation, generating a visual depictive representation, and transforming or

inspecting either representation. The next chapter will focus on the evaluation of this

architecture.

 89

Chapter 7

Evaluation

This chapter presents the objective evaluation and continues the subjective evaluation of

the architecture in three different domains. The objective evaluation is in support of our

research goal to understand the computational capabilities of spatial and visual imagery.

It focuses on three metrics: efficiency, functional capability, and problem-solving quality.

As there are no existing cognitive architectures with an imagery component and

corresponding experiments to compare our system against, the objective evaluation

includes, where possible, comparisons between Soar agents with and without the Spatial-

Visual Imagery (SVI) component. This approach supports our research goal by providing

quantitative evidence that the capability and computational gain an agent achieves is a

result of spatial and visual imagery mechanisms and not task knowledge.

The architectural description in the previous chapter is the start of our subjective

evaluation. In this chapter, we will expand on that discussion as it relates to the

computational constraints introduced in Chapter 3 (Figure 3-1). Although our primary

goal focuses on functionality, we briefly touch on behavioral constraints when we present

results from the Alphabet experiment. These results make comparisons with human data

and highlight shortcomings in the architecture. These shortcomings include our

uncertainty of the visual processing algorithms that humans use to recognize features, and

the architecture‘s lack of an ―image maintenance‖ mechanism that regenerates the image

when it decays (Kosslyn, Thompson, & Ganis, 2006).

 90

The remainder of this chapter is organized as follows. We begin by presenting the

evaluation criteria. We then provide, for each experimental domain, additional

implementation details, relevant results for applicable criteria, and our subjective

assessment. We present each experiment in chronological order corresponding to the

evolution of the architecture. As such, the first two experiments do not always have a

one-to-one mapping with the current architecture as we apply the lessons learned from

earlier experiments to improve the architecture. We conclude the chapter with the major

lessons learned.

7.1 Evaluation Criteria

This quote from Pylyshn (2002) serves as inspiration as to what we are attempting to

achieve.

"The search for a system of representation that retains some of the attractive

features of pictures and yet can serve as the basis for reasoning has been the holy

grail of many research programs, both in cognitive science and in artificial

intelligence.‖

Figure 7-1 illustrates our evaluation criteria. There are four dimensions. The first

dimension is the behavioral, biological, functional, and computational constraints

influencing the architectural design space that we must continuously consider. The x-axis

represents computational gains, the y-axis represents additional functional capability, and

the z-axis is an indicator of the problem-solving quality. In the foreground of these

evaluation dimensions is an assessment of the task and environments where spatial and

visual imagery is useful (Chapter 5).

As the architectural design considers the behavioral, biological, and functional

constraints, our evaluation in this chapter focuses on the computational constraints as

they relate to the other three dimensions. Specifically, we are concerned with the relative

efficiency of a representation for a given task when compared to using another

representation for the same task. We also want to analyze subjectively whether we can

assign credit for the resulting efficiency to the architecture. Finally, even though the

resulting representation may provide computational efficiency, we want to evaluate its

impact on the ability of the architecture to support reactive and deliberate behavior.

 91

Figure 7-1: Evaluation Metrics

We evaluate computational efficiency by comparing either different designs or

different agents with and without SVI. Agents using SVI are denoted Soar+SVI (Soar

―plus‖ SVI) while agents not using SVI are denoted Soar-SVI (Soar ―minus‖ SVI). The

comparisons include the amount of processing (in CPU time) and the amount of task

knowledge in terms of Soar productions. In order to nullify any system or simulation

variability, each result represents an average of 30 trials. Where appropriate, we also

discuss opportunities for improved efficiency and generality.

We measure functional capability with subjective observations derived from

implementation of the task. Objective measurements of functionality compare an agent

with and without imagery. Problem-solving quality measures whether the agent‘s overall

performance improves with imagery processing. We evaluate this metric in the Scout

domain. Finally, where appropriate, we highlight the tradeoffs in terms of design

complexity, generality, and psychological validity.

7.2 Geometry Gymnastics

The first domain derives from Larkin and Simon‘s (1987) work demonstrating a

computational advantage of a diagram. In this problem, the agent must locate objects

(e.g. vertices, line segments, triangles) and infer relationships (e.g. angles, congruency)

that initial task knowledge does not specify (Figure 7-2). We chose this task because it

Computational

Constraints
Functional

Capability

Computational

Efficiency

Problem-Solving

Quality

-

Functional
Constraints

Behavioral
and Biological

 Constraints

Tasks
and

Environments

 92

stresses the construction and inspection of a quantitative spatial representation. As either

symbolic or metric representations are sufficient, we can compare agents and determine

computational and functional differences. The task does not require a visual depiction as

initial knowledge specifies the objects (i.e. lines) from which other features can be

directly inferred.

Figure 7-2: Geometry Problem

To review, the agent‘s goal is to prove two triangles formed by a given

specification are congruent (Figure 7-2). The agent‘s initial knowledge is that there are

four lines (A, B, C, and D). Line A is parallel to line B, line C intersects line A, and line

D intersects line C at the midpoint of the line segment formed by the intersection of line

C with line A and line B. To prove the two triangles are congruent, the agent employs the

angle-side-angle (ASA) rule. The rule states that if two angles and the included side of

one triangle are congruent to two angles and the included side of another triangle, the

triangles are congruent. In Figure 7-2, if the agent shows E1=E2, c=b, and e1=e2, then it

proves the triangles are congruent.

To solve the problem with strictly symbolic representations (Soar-SVI), an

agent‘s task knowledge must include rules for creating the different features (e.g.

vertices, line segments, triangles) and spatial properties (e.g. angles, congruent). We

implement the construction of these properties using Soar operators. Figure 7-3a provides

an example of some of these operators. During each decision cycle, the Soar-SVI agent

progresses towards its goal by creating the features required to solve the problem. For

example, operator three creates a line-segment given that there are two vertices on the

same line and production six states that alternate interior angles are congruent. The

A

B

C D

E1

E2

c

e1

e2

b

 93

italicized operators are the key distinction between the two implementations (discussed

shortly).

(a) Soar-SVI (b) Soar+SVI

Figure 7-3: Example Geometry Problem Operators (Pseudocode)

The Soar agent using SVI (Soar+SVI) constructs and inspects the quantitative

spatial representation with operators that invoke imagery (Figure 7-3b). When fully

implemented the Soar-SVI agent requires 54 task productions, and the Soar+SVI agent

requires 28 total task productions (not including imagery operators). Since the visual

objects in this example are lines, there are two different ways we can model the agent

(1) If two lines (L-1,L-2) are parallel, and

L-1 intersects line, L-3, then L-2

intersects L-3

(2) If two lines (L-1, L-2) intersect, create a

vertex, v-1, recording the two lines

associated with the vertex.

(3) If there is a vertex, v-1, on line, L-1,

and another vertex, v-2 on line, L-1,

then create a line-segment, ls-1, and

record the two vertices associated with

it.

(4) If there are three line segments (ls-1,ls-

2,ls-3) and ls-1shares a vertex, v-1, with

ls-2, and ls-2 shares a vertex, v-2, with

ls-3, and ls-3 shares a vertex, v-3, with

ls-1 and v-1 != v-2 != v-3 then create a

triangle, t-1, and record the line-

segments that make up each side

(5) If there is a vertex, v-1, create 4 angles,

1 per region. Region 1, 2, 3, 4 (see

Figure 7-4)

(6) If there are two vertices, v-1,v-2, and v-

and v-1 is associated with line L-1 and

L-2 and v-2 is associated with line L-1

and L-3, and L-2 is parallel to L-3 and

v-1 has an angle, a-1 in region 1 and v-2

has an angle, a-2 in region 3 then a-1

is congruent to a-2 (Alternate interior

angles congruent)

(7) If there is a vertex, v-,1 with angles a-1,

a-2, and a-1 is in region 1 and a-2 is in

region 3 then a-1 is congruent to a-2

(Vertical angles congruent)

(8) etc.

(9) Prove congruent with ASA rule

54 Total Task Productions

(1) If two lines (L-1,L-2) are parallel then

Compose(L-1, L-2, geometry, parallel)

(2) If scene has two parallel lines(L-1,L-2)

and another line, L-3 intersects L-1 then

Add (L-3,L-1,L-2,direction.in-

between,orientation.scalar

random(30,60), size(L-1,2))

(3) If scene has lines, L-1, L-2, and L-3, and

line, L-4, intersects line L-3, then

Add(L-4, L-3 orientation

(random(30,60),size(L-3,1)))

(4) If scene has four lines, L-1,L-2,L-3,L-4,

then Inspect(intersect(scene, create-

vertex))

(5) If scene has vertices then

Inspect (line-segment (scene), create-

line-segment)

 Inspect (triangle (scene), create-triangle)

(6) If triangle, t-1 with line-segment, ls-1

then Inspect(angle(center-of(t-1, ls-

1),scalar)

(7) If vertex, v-1, on line L-1 and L-2 with

orientation angles to triangle, t-1, center

a-1 and a-2 respectively then create

angle in region sign(a-1)/sign(a-2)

(8) Alternate interior angles congruent

(9) Vertical angles congruent

(10) Prove congruent with ASA rule

28 Total Task Productions

This number does not include imagery

operators (construct, transform,

generate, inspect) that we consider

―architectural‖.

 94

imagining the lines. One way is to have the agent simply ―draw‖ each line by sending

SVI a pair of vertices for each line. This model assumes that the agent has task

knowledge defining the spatial arrangement of vertices for parallel lines, intersecting

lines, etc.

Another more general way and what we chose to model here, is to assume that the

agent has a prototypical representation of a line in VLTM. Recall that each visual object

stored in VLTM has a ―front‖ and canonical orientation. In this domain, we assume that a

line‘s canonical orientation is due ―east‖ (i.e. an infinite ray extending east). The

Soar+SVI agent‘s first operator (Figure 7-3b) states that if there are two lines with a

parallel relationship, then imagine composing them in a parallel manner. Note that since

both of the lines face ―east,‖ this is the same as saying compose the two objects with the

relative visual object left-of (or right-of) the base visual object. The objects‘ area of

influence, which is slightly larger than the length of their bounds, is the default distance

between the two objects (i.e. lines).

Continuing in a similar manner, operators two and three add lines C and D to the

spatial representation. The second operator says to add line C in between line A and line

B, oriented some random direction between 30 and 60 degrees and with a size twice as

large as line A. The orientation and size specifications are required to form the

intersection specified by the task instructions. Note that when line D is added to the

spatial representation, it is added relative to line C meaning the origins of each line will

be the same—thus the bisect relationship constraint is met. Line D‘s orientation is

relative to line C‘s orientation so the end effect is that Line D is orientated between 60

and 120 degrees relative to line A.

Once construction is complete, the agent simply has to inspect the representation

(taking advantage of the metric representation and analytical geometry) for the

information it is seeking. In this problem, it requires the intersection points, or vertices

between the lines (Figure 7-3b operators 4 and 5). Once it knows the vertices, it can infer

the line-segments (through SVI) by determining the pairs of vertices that fall on the same

line (again through analytical geometry), and find the triangles from the set of vertices

and line segments (edges). This knowledge, together with the information of which side

 95

the triangle‘s center is relative to each line (explained next), is sufficient to prove the

congruency of the triangles with the angle-side-angle rule.

7.2.1 Functional Capability

One of the significant results from this experiment is that spatial imagery provides the

agent with a ―sense of direction‖ enabling it to reduce its search space. The Soar-SVI

agent cannot determine from the qualitative symbolic knowledge alone, where the center

of each triangle is relative to each vertex because it does not have metric information or a

notion of space. Therefore, it has to create four angles for every vertex, labeling them as

the angle belonging to region 1, 2, 3, or 4 (Figure 7-3a production 5 and Figure 7-4). This

leads to an explosion in the problem space as, in addition to the extra memory structures

required for each angle, the agent has to reason about several congruency relationships

between angles that are not inherent to the triangles (e.g. Figure 7-3a productions 6 and

7). In fact, to solve the problem, the Soar-SVI agent must have specific task knowledge to

apply the angle-side-angle rule (e.g. if there is a vertex representing the intersection of

line A with line C, then the angle belonging to the triangle is in region 4).

Figure 7-4: “Sense of Direction”

The Soar+SVI agent, however, can take advantage of the canonical direction of

each line and the metric information of the spatial representation to determine the angle

belonging to each triangle vertex. One approach is for the agent to query SVI for the

COG

4 +/-

A

C D

VAC

3 -/-

1 +/+

2 -/+
𝒅𝑨

𝒏𝑨

 96

orientation angle between each triangle‘s line segment and its center of gravity (COG) to

determine if the triangle is on the positive or negative side of the line segment (Figure

7-3b production 6 and Figure 7-4). SVI computes the COG as an average of the triangle‘s

vertices. To determine the angle between the line segment and the COG, and the angle‘s

corresponding direction (positive/counterclockwise or negative/clockwise) requires two

computations:

𝜃𝑑 = cos−1 𝑑 𝑙𝑠 ∙ 𝐶𝑂𝐺 = 𝑎𝑛𝑔𝑙𝑒 𝑏𝑒𝑡𝑤𝑒𝑒𝑛 𝑙𝑖𝑛𝑒 𝑑𝑖𝑟𝑒𝑐𝑡𝑖𝑜𝑛 𝑎𝑛𝑑 𝐶𝑂𝐺 (1)

𝜃𝑛 = cos−1 𝑛 𝑙𝑠 ∙ 𝐶𝑂𝐺 = 𝑎𝑛𝑔𝑙𝑒 𝑏𝑒𝑡𝑤𝑒𝑒𝑛 𝑙𝑖𝑛𝑒 𝑛𝑜𝑟𝑚𝑎𝑙 𝑎𝑛𝑑 𝐶𝑂𝐺 (2)

𝜃𝑑 𝑠𝑖𝑔𝑛 =
0 < 𝜃𝑛 ≤ 90 +/𝐶𝐶𝑊

90 < 𝜃𝑛 ≤ 180 −/𝐶𝑊

The first computation determines the angle between the line-segment and COG while the

second computation infers the direction of this angle. If the resulting value of the second

computation is between 0 and 90 degrees, then the triangle is on the positive side of the

line segment (i.e. the line segment must be rotated in a counterclockwise direction to

―hit‖ the COG). Otherwise, the triangle‘s COG is on the negative side of the line

segment. With this information, the agent can infer the angle associated with each vertex.

For example, in Figure 7-4, the triangle is on the positive side of line A and the negative

side of line C. Therefore, the angle associated with vertex, vAC, is in region four (+/-).

With this sense of direction, the agent only creates symbols for angles associated with

each triangle.

7.2.2 Computational Advantage

The functional advantage gained from the ―sense of direction‖ directly influences the

computational gain the agent achieves. The Soar+SVI agent requires less real and

simulated computational time than Soar-SVI (Figure 7-5). The primary reason is the

number of angles the Soar-SVI agent creates and the subsequent comparisons for

congruency. For example, Soar-SVI creates 5 vertices x 4 angles = 20 angles compared to

Soar+SVI‘s 6 angles (three per triangle). Subsequently Soar-SVI annotates congruency

relationships for 24 vertical angles (i.e. 5 vertices x 4 vertical angles plus 2 pairs of

vertices with 2 congruent alternate interior angles). This number does not reflect the

additional congruency relationships that the agent has to consider between pairs of

 97

unnecessary angles (Figure 7-3a operators 6 and 7). In addition to the performance gain,

the Soar+SVI model also requires less task knowledge as it only requires 28 productions

compared to Soar-SVI‘s 54 productions. The Soar-SVI agent requires knowledge about

geometric structures inherent to SVI‘s spatial imagery processing. Functionally, this

suggests that SVI decreases the amount of knowledge required to learn such a task.

Figure 7-5: Empirical Time for Each Agent

Simulated time is decision cycles x 50 ms

To measure whether the architecture supports reactive and deliberate behavior

(i.e. is responsive to the environment), we estimate the amount of time an average

imagery operation requires normalized to a hypothesized decision cycle time of 50

milliseconds. We calculate the average imagery time as follows. First, the average

decision cycle time is computed from Soar‘s total CPU time divided by the total number

of decision cycles.
19

 The average amount of time spent in SVI per imagery operation (i.e.

construction and inspection in this domain) is normalized to the hypothesized decision

cycle time where normalized time = (average-real-time-in-SVI-per-imagery-operation x

50) / average-decision-cycle-time. Note that each imagery operation encompasses all of

the analytical geometry computations (e.g. calculating the rotation direction between a

line segment and the COG of a triangle) required for that particular operation (i.e.

19
 A decision cycle is one iteration through Soar‘s processing loop (see Figure 6-2)

 98

construction and inspection). In this task, the average normalized time spent in SVI for an

imagery operation was less than one-half of a millisecond, suggesting that spatial

imagery processing is reactive, as it requires less than one percent of a single decision

cycle (i.e. 0.5 ms / 50 ms = 0.01).

7.2.3 Geometry Problem Assessment

Although the model is not psychologically plausible as we expect humans would ―write‖

the imagined structure to an external diagram, it does demonstrate imagery‘s

computational advantages and added functionality. The quality of the resulting solution is

the same whether the agent solves the problem with Soar-SVI and additional task

knowledge or Soar+SVI. The architecture enables this behavior while maintaining

responsiveness. It achieves these results because spatial imagery processing uses

mathematical reasoning specialized for the quantitative spatial representation.

There are tradeoffs, however. The resulting architecture is more complex and no

longer includes one amodal representation. As a result, the agent must determine what the

appropriate representation is for a given task or subtask. Although we model this problem

as a spatial imagery task, individual differences may influence whether one uses visual

imagery to solve the problem. For example, in order to find the vertices the agent may

employ visual imagery by generating an image for each visual object (i.e. line) and

coloring each object the same (e.g. white). It can then identify the vertices with depictive

rules marking each pixel with a unique color when there are overlapping pixels in two or

more layers. (e.g. if there is a white pixel in Layer 1 and a white pixel at the same

location in Layer 2, 3, or 4 then mark a vertex). The tradeoff is that there are more

imagery operations involved (generation and transformation of the visual depiction), but

the processing is perhaps more general as it does not have knowledge that it is marking a

vertex representing the intersection of two lines. That knowledge remains in symbolic

structures.

 99

Achieving such a level of generality is a continuous struggle when considering the

integration of new representations, as one, amodal representation is more parsimonious.
20

Consider the geometry experiment. For imagery construction, there is a distinct

separation between knowledge and architecture. The agent has a finite set of ways to add

visual objects to the spatial representation, and as long as it knows how to use them (e.g.

the need to ―rotate‖ line C to have it intersect with line A), then it achieves the desired

effects without the architecture having to encode any special task knowledge. The

architecture does not know that the visual objects it is composing are lines.

However, the inspection process does not provide as clear of separation as the

processing immediately exploits the knowledge that the visual objects are lines.
21

 The

fundamental issue is not whether the architecture should exploit the dimensionality (i.e.

one-dimensional line, two-dimensional polygon, etc.) of a visual object, as we assume

that at some architectural level there are low-level primitives for processing geometric

representations of lines and their relationships. Rather the issue is whether these

geometric properties (intersect, parallel, vertices, line-segments) belong to the set of

spatial property primitives (direction, distance, orientation, size, and topology)

communicated between the symbolic and quantitative spatial representations.

The alternative is to recast geometric types as a combination of other spatial

properties. For example, we previously described how constructing two parallel lines can

be rephrased as ―left-of/right-of‖ (direction) and disconnected (topology). Similarly, for

inspection, geometric intersection may be interpreted as the topological property of

―partially overlaps.‖ The underlying architecture must then have mechanisms to

determine whether the visual objects are one-, two-, or three-dimensional representations,

perhaps by determining the dimensionality of their convex hulls and invoking the

appropriate processing. The resulting shape returned to Soar, rather than being labeled a

vertex, would simply be labeled a general shape with one point. The agent can then infer,

perhaps through semantic knowledge, that a shape with one point represents a vertex.

20
Unless the architecture has to support vision as well in which case reuse of visual perceptual mechanisms,

as we demonstrate in this dissertation, may be more parsimonious than mimicking imagery-type operations

with the laborious churning of symbolic processing.
21

The current implementation of the primitive visual objects, or scene graph leaf nodes, labels the nodes as

―mesh‖ (i.e. vertices and indices), ―line‖ (i.e. two vertices and one edge), or ―point‖. Separate processing

paths for each type of primitive object are then possible.

 100

These are the types of issues we propose investigating for future work to include the

integration between imagery processing and long-term semantic and episodic memories.

7.3 Alphabet Soup

In the geometry experiment, we explore spatial imagery and show that for tasks involving

more than a few spatial properties, using a symbolic representation and logical reasoning

is sufficient but not as computationally efficient as using the quantitative spatial

representation and mathematical processing. In this experiment, our desire is to explore

tasks where the use of visual imagery and depictive representations is more efficient and

likely necessary to infer the desired information.

The domain derives from Thompson et al. (in press). In this experiment, the

subject hears a letter from the English alphabet and is instructed to visualize it in its

uppercase format. Next, the subject hears a cue, such as ―curve,‖ ―enclosed space,‖

―horizontal symmetry,‖ or ―vertical symmetry‖ and indicates, as quickly as possible,

whether the letter has the particular feature (Figure 7-6). Response times are measured.

For example, the letter ‗A‘ has an enclosed space and vertical symmetry while ‗U‘ has a

curve. We outline further experimental details in Appendix A.

Figure 7-6: Alphabet Features Experiment

We chose this task because, unlike the geometry problem, reasoning with

symbolic or quantitative spatial representations may not be able to infer the required

information without explicitly encoding every feature or task knowledge to support the

inference (e.g. if three non-collinear lines then there is an enclosed space). Since an

object can have an infinite amount of features, that approach is not scalable from either a

psychological or a computational perspective. The task also includes an external

environment (i.e. the person asking the question) emphasizing the interaction of imagery

and cognition.

A

“curve”

Response

(yes or no)

Presentation
of letter

and feature

RT “No”

 101

Similar to the human experiment, the Soar+SVI agent ―hears‖ a question,

visualizes the letter, searches for the desired feature, and then ―verbally‖ responds. The

simulation models the audio input as a sequence of two symbols (e.g. ―A curve‖) and the

verbal output as a simple ―yes‖/‖no‖ symbolic response. The agent‘s initial, declarative

knowledge is a symbolic structure containing the 26 capital letter entities. Each letter

symbol has the ―name‖ of the letter (e.g. ―A‖) for identifying it with the ―audio‖ input

and the visual object symbol for the letter to support imagery. The agent‘s symbolic

knowledge does not have any specific letter features.

After hearing the question and searching its symbolic memory for the desired

feature, the agent realizes it cannot infer the answer directly and constructs the

quantitative spatial representation from the visual object of the letter. It then generates the

visual depiction for the letter, invokes SVI to inspect the Visual Buffer for the desired

feature, and ―verbally‖ responds after receiving the results. The simulation records the

time from when the agent receives the question to when it provides an answer.

The architecture detects curves using a Hough transform and enclosed spaces

using depictive manipulations encoded in the architecture. Appendix B describes these

algorithms in more detail. SVI‘s inspector determines symmetry by first generating a

second image of the visual object for the letter and transforming (i.e. rotating) it around

the given axis of symmetry. It then marks (with a different color) the pixels on the rotated

image that overlap (i.e. have the same color pixel) with the original image. If the number

of remaining pixels of the original color is below some threshold, then the inspector

considers the letter symmetrical around the given axis of symmetry.

7.3.1 Alphabet Results

The requirement for generating and transforming depictive representations to infer

features forced us to reconsider our original theory and design that did not include a

visual depictive representation. Our previous discussion of the theory and architecture

reflects this subjective assessment. A notable observation from this assessment is that

there is a difference between the types of algorithms capable of processing a depictive

representation. Some are mathematical-based while others take advantage of the color,

topological space, and locality of neighboring pixels. That is, even though the

 102

representation is depictive, the processing may be sentential or depictive. Many accounts

of visual imagery processing do not clarify this distinction, and, as Anderson (1978)

argues, every computational account of imagery must not only discuss the representation

but also the types of processing.

As an example, the Hough algorithm maps edge pixels from an image space to a

parameter space and uses a ―voting‖ algorithm to determine the parameters of a curve.

Although the algorithm has interesting perceptual characteristics (e.g. edge detection), it

relies on sentential, algebraic computations. On the other hand, algorithms such as pixel-

level rewrites (Furnas, 1990, 1991; Furnas et al., 2000), which we employ for detecting

enclosed spaces, are depictive computations as they manipulate the representation based

on the spatial configurations and color of neighboring pixels.

The second observation from this experiment is that the gain in computational

efficiency, functional capability, and quality of the problem solving is obvious. We

cannot achieve this capability or solve these types of reasoning problems, at least in a

practical sense, with symbolic or quantitative computations.
22

 Therefore, a comparison of

computational efficiency between agents with and without imagery is immaterial. As an

alternative, we compare the Soar+SVI agent‘s performance with human data. We make

no claim that the algorithms are similar to how humans recognize these features, but we

use the data to highlight shortcomings with the architecture.

Figure 7-7 shows the comparison for each feature (horizontal and vertical

symmetry are combined). We sort the letters for which we have human data
23

 along the

x-axis from left to right according to human response time. The y-axis represents the

response time in milliseconds. We scale the Soar+SVI agent response times for curves

(1/10) and symmetry (2x) to fit within the human bounds. Although there is no

correlation between the Soar+SVI agent and the human response times for individual

letters, both humans and Soar+SVI show variability in the time to detect curves and

enclosed spaces between various letters (Figure 7-7a&b). In the case of symmetry,

however, Soar+SVI shows little variability while humans show a lot (Figure 7-7c).

22
As we explore in the Scout domain, there may be ways to have a symbolic processor, such as Soar,

process low-level pixel data. However, as we will demonstrate, it is computationally expensive. Symbolic

representations and computations do not facilitate efficient manipulation of depictions.
23

 We would like to thank (Thompson et al., in press) for the data and collaboration on this experiment.

 103

A possible reason why Soar+SVI is consistent in recognizing symmetry while

humans are not, is that the architecture does not account for the human phenomena of

having to continually ―refresh‖ the visual depictive representation as it fades due to

perceptual interference (Kosslyn, Thompson, & Ganis, 2006). Additionally, the agent

determines symmetry by transforming the original depiction around the axis of symmetry

and comparing it with the original orientation. Rather than performing this operation in a

single step, we hypothesize that humans must continuously rotate and regenerate the

letter where the time to rotate the object is linear to the rotational angle (Shepard &

Metzler, 1971). The results demonstrate that even if the overall architecture is correct

(our hypothesis), the details of modeling human behavior is in low-level visual

processing.

These details become more evident when we measure the responsiveness of the

architecture. Figure 7-8 illustrates the average amount of time for one imagery operation

(construction, transformation, generation, inspection) normalized to the hypothesized

decision cycle time in humans (log 50 ~ 1.7). Most of the reflected time is for inspection

of the particular visual feature (i.e. visual imagery). Response times for determining

enclosed spaces and curves are respectively one and two orders of a magnitude higher

from what we consider supporting responsive behavior (i.e. ~50 ms). There are a couple

of reasons for this seeming discrepancy. First, we assume that low-level visual processing

exploits parallelism that we do not reflect in our architecture. Parallel hardware and

algorithms may help, but a more fundamental issue may be that the architecture is

attempting to process too much of the image in a single decision cycle. We attempt to

address this issue with the incorporation of an attention window and evaluate it in the

Scout domain. Second, it may be that visual imagery simply takes more processing time

than spatial imagery using traditional computer hardware. Comparing the normalized

response time from the geometry problem (< 1 ms) with Figure 7-8 suggests just that.

 104

(a)Human 98:,610:  ,Soar

178:,611: 

(b) Human 65:,604:  , Soar 65:,605: 

(c) Human 104:,778:  Soar 12:,643: 

Figure 7-7: Comparison of Response Times to Detect Alphabet Features

 105

Figure 7-8: Time Required for an Imagery Operation in the Alphabet Experiment

Time is an average of all imagery operations normalized to the decision cycle time (50 ms).

7.3.2 Alphabet Experiment Assessment

The results show that visual imagery provides a functional advantage over symbolic

processing when recognizing visual features. However, visual imagery appears to be less

reactive then spatial imagery, at least in light of our current implementation. Since

perceptual input in this task does not ―interrupt‖ the agent (i.e. the agent has as much time

as required to answer the questions), it can imagine the situation for as long as it desires.

However, in a task requiring reactive behavior, as in the Scout domain, the architecture

must support the interruption of imagery processing when ―important‖ perceptual input is

competing for cognitive and visual resources.

Similar to the Geometry experiment, the Alphabet experiment demonstrates a

clear separation between knowledge and the architecture for imagery construction and

generation. Knowledge directs the processing of these functions and the architecture does

not know if it is constructing or generating a letter from the English alphabet, the Chinese

alphabet, or another visual object. It only knows that it is activating objects from VLTM

based on a given spatial configuration.

Questions linger, however, regarding the knowledge transparency for the

inspection processes. As with the geometry problem, our assumption remains that at

some architectural level there are primitives for detecting basic features such as lines,

 D.C.

Time

(50 ms)

 106

curves, corners, enclosed spaces, etc., as visual processing requires these detectors to

automatically perform their role during bottom-up processing. The algorithms and

depictive manipulation rules for detecting these features are ―hardwired‖ into the

architecture (or acquired early on in development).

However, consider alternative recognition schemes for symmetry. Perhaps it is a

property that is not ―hardwired.‖ Rather the recognition emerges from the combination of

symbolic and perceptual representations where the agent‘s procedural and declarative

knowledge plays more of a role (i.e. algorithms of a more richly hybrid sort). Within the

context of Soar+SVI the processing may be realized when an agent‘s procedural

knowledge determines it wants to recognize symmetry and generates two images of the

letter transforming the second image around the given axis. Then, rather than having an

architecturally embedded algorithm deciding if an object is symmetrical, an imagery

command sends depictive rules to SVI. SVI marks the non-overlapping pixels in

accordance with the rules and returns the resulting symbolic representation of the

shape(s). Based on the number of points in the shape, the agent‘s procedural knowledge

decides whether the object is symmetrical. Not only is this type of recognition for

symmetry possibly relevant for imagery, but it is also relevant during perception where

the inspection for it initiates after bottom-up processing fails to recognize an object from

more primitive features.

From a psychological perspective, the top-down explanation of how one may

recognize symmetry clarifies to some extent why humans take longer, on average, to

detect symmetry than to detect curves or enclosed spaces (Figure 7-7). Functionally, the

advantage of this type of processing is that it facilitates learning as the procedural

knowledge of how to recognize symmetry is available to Soar‘s learning mechanisms.

This observation helped inform our decision to encode the knowledge embedded in

depictive rules, at least for ―non-primitive‖ manipulations, within Soar‘s symbolic

memories and send them to SVI‘s Visual Buffer Manipulator for processing. The Scout

domain explores this design in more detail.

 107

7.4 Scouts Out

Our experimental results from the previous two domains are limited to solving internally

represented problems. Although the Alphabet experiment includes perceptual input, it is

not of the visual modality so the architecture does not have to consider issues such as the

difference between perceived and imagined objects and the resource constraints between

shared perception and imagery memories. Furthermore, the high-level goal of the

previous two tasks was to answer a single question whereas more complex problem

solving requires internally answering multiple questions where the information

supporting the answer originates from multiple sources—both internal and external.

In the Scout domain, we extend our results to a rich, dynamic environment where

perception and imagery operate simultaneously. The agent must interpret and act upon

information from multiple sources. By combining perceptual representations with task

specific, procedural and declarative knowledge, an imagined situation supports higher-

level decisions. Analysis emerges through the manipulation of symbolic, quantitative

spatial, and visual depictive representations and provides the agent with the knowledge

necessary for reasoning and producing action in the environment.

7.4.1 Simulation Environment

To review, there are two scouts in the simulation (Figure 7-9a). One scout is a

Soar+SVI/-SVI agent and the team‘s lead. The other scout, the teammate, is a scripted

entity. The opposing force is a scripted, three-vehicle enemy reconnaissance unit that is

attempting to determine possible routes and friendly locations in support of a follow-on

attack by a larger force (the follow on attack is not modeled). The scout team‘s goal is to

acquire and maintain visual contact with the approaching enemy to determine their

maneuver intentions. Paramount in achieving this goal is keeping their commander

informed of the opposing force‘s movements by periodically sending observation reports

(through the lead) of their best assessment of the enemy‘s location. The commander uses

this information to position/reposition other friendly forces and reallocate assets (not

modeled).

 108

(a) Actual Situation (b) Teammate‟s View

(c) Agent‟s View (d) Agent‟s Perceived Map / Imagined Situation

Figure 7-9: Scout Domain (Scenario-1)

The agent‟s imagined situation in (d) is based on its current perceived/hypothesized knowledge. It

has not yet received the teammate‟s report of the second enemy vehicle (Enemy Scout-1).

Both the agent and its teammate scan the area in front of them and send reports

when they observe enemy vehicles (Figure 7-9b&c). Because of terrain occlusions, the

agent cannot observe its teammate but instead maintains situational awareness through

the teammate‘s periodic messages that identify its position. Both the agent and the

teammate can reorient their views, but the teammate performs this action only when the

lead directs it. The agent can look at the scene or its map (Figure 7-9c&d), but not both

simultaneously. We assume that the agent and its teammate can distinguish enemy

vehicles from other objects. However, the agent has to decide whether a sighted or

reported enemy is a new or previously identified entity.

The simulation architecture consists of five major components (Figure 7-10): a

World Representation, a Simulation Engine, several Simulation Actors, an Agent Proxy,

 109

and Soar+SVI.
24

 We will discuss each of these components to provide an understanding

of the modeling fidelity between the agent and the environment. The World

Representation is a Wild Magic (Eberly, 2005) scene graph and includes the terrain and

each object in the world (e.g. tanks, buildings, etc). Its purpose is twofold. First, from a

simulation perspective it maintains the location and orientation state of each actor and

provides a graphical representation of the simulation for debugging purposes. Second, the

Agent Proxy provides the agent, as perceptual input, the portion of the world that is

visible to the agent. We will discuss this implementation detail shortly.

A Simulation Actor represents a unique entity in the simulation such as the agent,

the teammate, the enemy, and buildings. Each simulation actor includes a set of basic

behaviors (i.e. move, turn, send a message, etc.) and maintains a reference to its scene

graph object representing its 3D model, where it is located, and its orientation. During

initialization, the simulation creates the world and the actors from a configuration file.

The file contains actor attributes such as their name, 3D model, initial location and

orientation, movement velocity and angular velocity. For enemy actors, the simulation

also loads the enemy ―plan‖ to include a set of waypoints, possible paths between

waypoints, and a few ―decision points‖ where the enemy commander has the latitude

(based on randomness) to split its force or modify the path of a subordinate. A tactical

expert creates the enemy plan from an off-line analysis.

The Simulation Engine is a discrete event simulation (DES) using the SimKit

framework (Buss, 2002). At the most basic level, a discrete event simulation consists of a

clock, an event list, and set of possible events that the system schedules for execution by

placing them on the event list. During each ―tick‖ (t) of the clock, the simulation engine

removes all events on the event list whose scheduled execution time is less than or equal

to the current simulation time and processes their actions. After the simulation processes

those actions, it increments its clock and the processing iterates. The general algorithm is

the following:

24
During the discussion of the simulation when we refer to Soar+SVI, we also imply Soar-SVI as having he

same external interface with the simulation.

 110

The actions of an event change the state of the system and may schedule another event

for future processing. From the perspective of the simulation, then any action that occurs

in the world is the result of a scheduled event. The advantage of this approach is that the

system can enforce temporal constraints on actions.

Figure 7-10: Simulation Architecture

For example, the simulation models the initiation of a tactical maneuver when one

actor sends a message to another actor asking it to commence movement (e.g. reorient,

start-move). Each actor can send a message to another actor by scheduling a ―send

1. Create and initialize actors and world

2. Set simulation time to 0

3. Schedule the default (―Run‖) event

4. While there are events on the event list

a. While there are events on the event

list with an execution time <=

simulation time

i. Execute the next event

b. Increment the simulation time

 111

message‖ event. The temporal delay between when the actor schedules an event and

when it executes can be immediate (i.e. t + 0) or sometime in the future, t + ∆, where ∆ is

a constant or generated random number based on a given statistical distribution. When

the ―send message‖ event executes, the simulation changes the state of the message from

―waiting‖ to ―in transit‖ and schedules a ―receive message‖ event. At some point in the

future, the simulation engine processes the ―receive message‖ event by marking it as

―received‖ and delivering it to the appropriate actor for further processing. The actor

―reading‖ the message may, based on its information, schedule another event. For

example, when the teammate receives a message from the agent to re-orient, the

teammate schedules a ―turn‖ event. Likewise, when an enemy actor receives a message

from the enemy commander to move to a checkpoint, the subordinate enemy actor

schedules a ―move‖ event changing its status from stationary to moving. Note that this

state change does not reorient or move the actor‘s scene graph object. The dynamic

change occurs through another event that we explain next.

To model animation, the simulation schedules a special ―update world‖ event that,

after processing, reschedules itself for the next simulation tick so that it continuously

processes (Buss & Sánchez, 2005). The simulation schedules this event with the lowest

priority so that it executes only after all other events scheduled for that time have an

opportunity to run. The basic algorithm for the update world event is the following:

1. For each actor

a. If motion status is turning or moving, update scene graph object‘s

location and orientation based on the actor‘s movement/angular

velocity (Newtonian physics)

b. If one or more ―opponents‖ are visible and actor has not sent a report

in ―awhile‖, then schedule event to send message to leader (NOTE:

does NOT apply for the agent actor).

c. Record status (for logging / debugging)

2. Referee

a. Determine what objects each actor can observe (detection algorithm)

b. Tell each actor what they can observe

3. Notify Simulation Clients

a. Simulation user interface (for rendering the scene)

b. Agent Proxy (to provide perceptual input to Soar+SVI)

4. Schedule another update world event with the lowest priority for time t + 1

 112

The update world event gives each simulation actor an opportunity to update its dynamic

state, such as location and orientation and report status changes if it has not done so in

awhile.
25

 The event processing then referees the current situation by determining what

objects are visible to each actor using the following detection algorithm:

The occlusion detector uses a ray-tracing algorithm and checks three different points on

the object (top and two sides). The detection algorithm assumes the object is visible if

two of the three points are visible (i.e. intersects the ray). Finally, the update world event

notifies clients, such as the simulation‘s user interface and the Agent Proxy that the event

is complete so they can process. This step is where the Soar+SVI agent receives its

perceptual input from the Agent Proxy.

The Agent Proxy serves as an interface between Soar+SVI and the simulation

(Figure 7-10). After the update world event notifies the Agent Proxy that it can process

perceptions, the proxy sends the agent its current perceptions through SVI. The

perceptions include audio (i.e. messages), motion status, simulation time, and visual. For

this domain, SVI has components to process the audio, motion, and time input from the

Agent Proxy. These components simply pass the input on to Soar by creating symbolic

structures on Soar‘s input-link.

The visual input is a copy of the individual scene graph nodes from the World

Representation that the detection algorithm determines the agent can observe. The Agent

Proxy provides this list of nodes to SVI‘s Saliency Inspector. The first node in this list is

always the ―background‖ node, which includes the terrain. As discussed in Chapter 6, the

Saliency Inspector instantiates the structure of the current scene in VS-STM and provides

25
Defined as the opposing entity moving more than 500 meters from last reported location or 60 simulation

ticks.

1. For each actor that can ―see‖ (i.e. not buildings)

a. Determine the objects in the actor‘s view frustum and

sort closest to furthest

b. For each object in view frustum

i. If on periphery (camera plane), remove object

ii. If a closer object in view occludes it (ray

tracing), then remove object

iii. If terrain occludes object (ray tracing), remove it

c. Give actor its list of remaining visible objects.

 113

the ―What‖ and ―Where‖ Inspectors this list of scene graph nodes. The ―What Inspectors‖

recognize the objects with a simple ―string match‖ and the ―Where Inspectors‖ build the

internal Object Map scene graph from the provided list of nodes. For debugging

purposes, the Refresher renders the scene graph from the agent‘s current viewpoint. The

remaining processing proceeds as discussed in the architectural description.

Although we do not literally model the two ―what‖ and ―where‖ control paths (see

Figure 6-7), we do model the separation of control between cognition and perception with

two separate threads. The Agent Proxy‘s thread processes the perceptual input, up to the

point where SVI creates the structures in the Object Map and VS-STM (i.e. the ―what‖

and ―where‖ processing). Simultaneously, another processing thread is executing Soar‘s

decision cycle beginning with input received from the VLTM and Object Map

Listeners.
26

Recall that the visual perceptual processing in SVI automatically creates symbolic

structures for Soar to include the recognized objects in the scene and their direction,

distance, and relative size from the agent‘s egocentric perspective. In order to determine

the object‘s orientation in this domain, the agent has to observe the entity move and then

infer its orientation, or direction of travel, by taking into account its current and previous

locations. One important point is that when the agent is looking at the scene, the scene

graph nodes represent objects in the environment. When the agent is looking at the map,

the terrain nodes represent the map and the salient, visual objects are the map-icons that

the agent has previously ―written‖ on the map. In this case, rather than providing Soar the

egocentric direction and distance of the map icons from the agent‘s eyes and then forcing

it to ―read‖ the map to infer absolute locations, we simply provide the absolute locations

and orientations. The agent‘s procedural knowledge must interpret the incoming direction

and distance accordingly, based on whether it is looking at the scene or the map.

When Soar sends commands to SVI, they may be imagery commands or

instructions to create action in the environment. As with the extra perceptual components

(i.e. audio, motion) in this domain, SVI also has some motor components that receive

commands from Soar and communicate the instructions to the Agent Proxy. These motor

commands include changing the agent‘s view from looking at the scene to looking at the

26
Unless running on multi-core machine, the threads are interleaved.

 114

map (or vice versa), writing an object on the map, orienting in a given direction, or

sending a message. The Agent Proxy interprets these commands and schedules the events

through the agent‘s Simulation Actor. When the simulation processes the event, it

produces the corresponding action in the environment by updating the internal state of the

agent‘s Simulation Actor. The agent perceives the action‘s results via the Agent Proxy.

Again, note that these events take time to process based on the modeling of their

temporal constraints. Therefore, when the agent issues a command to write an object on

the map or look at the scene, Soar will execute a few decision cycles before it perceives

the change based on the action. This modeling produces some interesting behavior. For

example, to write an object on the map the agent must first imagine it by constructing the

quantitative spatial representation of the map icon. The agent can then issue a write

command to simulate writing the icon on the external map, in effect making it persist.

However, while writing the map-icon, the agent may be interrupted (e.g. the teammate

sends a message), forcing it to attend to the perceptual input. Because ―important‖

perceptual processing inhibits imagery, the imagined map-icon ―disappears‖ before the

agent has had an opportunity to finish writing it. The agent has to re-imagine and rewrite

the object. The architecture‘s truth maintenance mechanisms must consider these types of

perception and imagery interactions, for example by removing the imagined visual-object

structure of the map-icon from Soar‘s short-term memory and removing any stale state in

SVI referring to its visual-object. The agent‘s procedural knowledge must also wait until

its symbolic perceptions inform it that it is perceiving, rather than imagining, the map-

icon and not assume that just because it sent the command the action occurred.

7.4.2 Task Decomposition

The primary goals of a scout team are to acquire and maintain visual contact with the

approaching enemy and report all information rapidly so that the commander can make

his assessment. After establishing visual contact, a scout‘s actions include the following

steps (Army, 2002).

(1) Deploy and report

(2) Analyze the situation

(3) Choose and execute a course of action

 115

Analyzing the situation involves reasoning about known friendly and enemy locations

and orientations, terrain, and obstacles. If the scout lead does not know the locations of

all expected enemy, then he might hypothesize the location of other enemy entities and

template their positions. Based on the analysis, the scout lead then decides if he should

reorient himself, his teammate, or both.

Figure 7-11 illustrates the Soar+SVI agent‘s task decomposition to perform this

mission. The left-to-right ordering implies some task sequence although this is not a hard

rule, as the reasoning is conditional, iterative, and sometimes interleaved. Tasks in bold,

italic font use imagery operations to assist in the reasoning. Figure 7-11a shows the top-

level tasks. During a reconnaissance mission, the scout agent is continuously observing

the situation, analyzing its possible courses of action, and deciding and acting on a course

of action. Observing (Figure 7-11b) includes scanning the area attempting to establish

visual contact with the approaching enemy. Once the agent or its teammate makes

contact, the agent must identify whether the entity it is observing, or the teammate is

reporting, is a new enemy or a previously identified enemy. We assume that the agent can

distinguish between two different entities that it observes. For enemy vehicles that the

teammate reports, however, the agent uses the quantitative spatial representation to

determine if the distance between the reported location and a previously identified enemy

is within a certain threshold (e.g. 150 meters). If the constraint is true, the agent assumes

that the teammate is observing the same entity the agent is observing. After identifying

the entity, the agent records the observation and sends a report to the commander. If the

agent is confident in the observation it writes it on the map by first imagining the map

icon (construct) and then issuing a ―write‖ command.

Analyzing the situation (Figure 7-11c) begins by first determining if the agent has

an observation for all expected enemy (i.e. three), and, if not, hypothesizing (i.e.

template) the unknown enemy locations. The hypothesis involves retrieving semantic

knowledge of a typical enemy reconnaissance element (e.g. three vehicles, one vehicle

forward, two vehicles behind at a given distance and orientation) and imagining their

locations (Figure 7-9d). The agent may also employ its knowledge of a typical enemy

 116

vehicle‘s velocity to simulate movement when the last known location of an enemy is

stale (i.e. recorded time is less than the current time).

(a) Top-level Task (b) Observe Sub-Goal

(c) Analyze Sub-Goal (d) Analyze-Position Sub-Goal

Figure 7-11: Scout Domain Task Decomposition

To analyze each enemy‘s avenue of approach or path, the agent must first make

an assumption as to their next destination. An enemy can be terrain-oriented or force-

oriented. For this scenario, the agent assumes the enemy is terrain-oriented. One way the

agent may determine an individual enemy‘s next destination is for each piece of

Analyze
Position

Imagine
Views

Determine
Coverage

Improve
Coverage

Analyze

Template
Enemy

Determine
Enemy /

Key-Terrain
Pairs

Imagine
Obstacles

Imagine
Paths

Analyze
Position

Simulate

Observe

Look-at
scene,
map

Scan Identify

Evaluate

Imagine

 Map-Icon
Write

on
Map

Send
Message

Record

Scout

Observe Analyze Decide&
Act

Choose
COA

Re-Orient
Self

Re-Orient
Teammate

 117

hypothesized key terrain,
27

 use spatial imagery to infer the direction, orientation, and

distance from the enemy vehicle to the key terrain. With this information, the agent may

employ a heuristic, such as preferring the minimum distance and change in orientation,

which forms a hypothesis as to the individual enemy‘s next destination. The agent repeats

this reasoning for each known or hypothesized enemy.

After hypothesizing each enemy‘s destination, the agent uses visual imagery to

imagine known obstacle barriers and restricted or ―slow-go‖ terrain (e.g. vehicles cannot

drive through buildings, vehicles have problems with steep terrain, enemy scouts will

attempt to avoid open spaces, etc.). It then marks a path by transforming the visual

depictive representation. The agent‘s knowledge provides imagery with the enemy

vehicle (source) and key terrain (sink) visual objects, the attention window parameters,

and the set of rules for the depictive manipulations. Imagery then performs the

manipulations, marking the path. The general procedure is the following (Appendix B

provides more details):

1. Mark all known obstacles and ―slow-go‖ terrain with a color (yellow) by applying

a set of threshold values.
28

 Mark all other pixels gray.

2. Grow an iso-distance contour field avoiding any previously marked barriers

(Figure 7-12a).

3. Walk the contour field from source to sink, marking the path along the way.

(Figure 7-12b).

(a) Distance field

flood

(b) Mark Path

Figure 7-12: Imagining an Enemy Path

Finally, the agent analyzes its position (Figure 7-11d) by imagining its

teammate‘s view and its own view by first constructing and generating the views.

27
Key terrain is any location where control by either friendly or enemy forces offers a significant advantage

because it provides good observation of converging paths, is a logistical hub, has psychological

implications, etc.
28

Threshold values are determined from an off-line analysis and encoded as part of the agent‘s declarative,

task knowledge.

 118

Generation takes into account some terrain occlusions (e.g. that a hill blocks the view).

The agent determines the amount of coverage by inspecting the Visual Buffer images for

the size (i.e. length) of each hypothesized path that is a topological proper part of each

view (Figure 7-13). Soar‘s procedural knowledge then estimates the amount of coverage

a particular view has on a path by dividing the covered portion of the path by the total

path length. If there are paths with coverage below a certain threshold (i.e. 0.25), the

agent attempts to improve coverage by simulating reorientations of its teammate, itself, or

both. Again, the agent uses a combination of imagery and task heuristics embedded in

procedural knowledge to determine who to reorient, what direction to reorient them, and

how far to simulate the orientation. To execute the simulation, the agent issues imagery

commands to transform and regenerate the views. It then re-inspects the visual depictive

representations in the Visual Buffer to determine the resulting coverage. Based on its

analysis, the agent makes a decision (Figure 7-11a) and issues a motor command to

reorient itself and/or send a message to its teammate directing it to re-orient. The agent

starts observing the scene again and the ―observe, analyze, decide, and act‖ process

continues.

Figure 7-13: Agent Imagining Its Coverage of One Enemy‟s Hypothesized Path

Agent also imagines coverage for other paths and its teammate‟s coverage of each path

As a summary of the agent‘s analysis and subsequent decision, Figure 7-14 shows

a trace from one of the runs. Bold font indicates our own remarks to clarify the trace.

Note that the agent‘s reasoning is non-trivial and that its functionality and problem-

 119

solving quality emerges from the combination of symbolic, quantitative spatial, and

visual depictive representations.

Agent decides to see if it can obtain better coverage on path P51 by reorienting its teammate.

Reinspecting path-coverage by attempting to improve Scout-2's view to cover path P51

Analysis results after simulating the reorientation of its teammate and subsequent inspection of

path coverage. Teammate can adequately cover path P51 while also improving coverage on its

current primary path, P49.

Scout-2's path analysis path: P49 cf: 0.730275 distance: 1373.78 orientation distance: 18.8389

Scout-2's path analysis path: P51 cf: 0.313793 distance: 772.466 orientation distance: 0.

Scout-2's path analysis path: P53 cf: 0.182153 distance: 1337.91 orientation distance: 25.5324

Analysis results after simulating the reorientation and inspecting for path coverage.

Scout-1's path analysis path: P49 cf: 0.591979 distance: 1277.63 orientation distance: 3.5553

Scout-1's path analysis path: P51 cf: 0.340073 distance: 590.454 orientation distance: 0.0989148

Scout-1's path analysis path: P53 cf: 0. distance: 851.323 orientation distance: 56.6101

Agent sees that after simulating the reorientation it has better coverage of path P51. However,

it decides to reject the COA because its takes it off its primary path, P53. That is, its coverage

factor of path, P53 has dropped below 0.25 and in the previous, initial analysis, the agent‟s

orientation distance to path P53 is 3.6 degrees (i.e. it has to orient 3.6 degrees to be oriented

exactly on the path‟s center) whereas Scout-2‟s orientation distance to P53 is 63.7 degrees. This

is an indicator that Scout-1 currently has primary coverage on path P53. Note, that rejecting

this COA does not reject the possibility of reorienting both the agent and the teammate where

each would assume responsibility for a new primary path.

Rejecting COA because takes Scout-1 off its primary path: P53

Results from the analysis of Scout-1‟s (Agent) and Scout-2‟s (Teammate) current path

coverage.

cf = coverage factor (length of path covered by view / total length of path)

distance = distance from entity‟s location to path center in meters

orientation distance = how far entity has to orient (in degrees) to be in line with path center

Scout-1's path analysis path: P49 cf: 0. distance: 1277.63 orientation distance: 49.4096

Scout-1's path analysis path: P51 cf: 0.0663824 distance: 590.454 orientation distance: 53.0644

Scout-1's path analysis path: P53 cf: 0.460498 distance: 851.323 orientation distance: 3.64507

Scout-2's path analysis path: P49 cf: 0.676294 distance: 1373.78 orientation distance: 19.3111

Scout-2's path analysis path: P51 cf: 0.126035 distance: 772.466 orientation distance: 38.1506

Scout-2's path analysis path: P53 cf: 0. distance: 1337.91 orientation distance: 63.6824

Agent decides to simulate reorienting itself (Scout-1) to cover path P51. The reason it chose P51

over P49 is because Scout-2 already has adequate coverage on path P49

Reinspecting path-coverage by attempting to improve Scout-1's view to cover path P51

 120

Figure 7-14: Execution Trace of Scout Agent‟s Analysis and Subsequent Decision

At this point, the agent has four possible COA‟s (one of which it has already rejected):

 COA 1: Do nothing (NOT SELECTED)

 COA 2: Reorient self (REJECTED)

 COA 3: Reorient both (NOT SELECTED)

COA 4: Reorient teammate (SELECTED)

Agent decides to reorient teammate to achieve better coverage on path P51. Each COA along

with its advantages follows. Note that even though COA 3 has a better cumulative total

coverage, the agent does not select it as it leaves path P53 with less than 25 percent coverage.

Coverage factors shown here represent a cumulative total for each path. Possible COA

advantages are:

better-path-coverage: overall (total) path coverage is better than current

 maximum-coverage-on-different-paths: Agent‟s and teammate‟s maximum coverage

are on different paths (i.e. they are not focusing on the same path).

 all-paths-<twenty-five or fifty or seventy-five>-percent-covered: each path has at least

the corresponding percentage of coverage

COA 1: Do nothing (NOT SELECTED)
Non-selected COA coverage factor: 0.676294 for path P49

Non-selected COA coverage factor: 0.192417 for path P51

Non-selected COA coverage factor: 0.460498 for path P53

Non-selected COA total coverage factor: 1.329209

Non-selected COA advantage: maximum-coverage-on-different-paths

COA 2: Reorient self (REJECTED)
Non-selected COA coverage factor: 1.26827 for path P49

Non-selected COA coverage factor: 0.466108 for path P51

Non-selected COA coverage factor: 0. for path P53

Non-selected COA total coverage factor: 1.734378

Non-selected COA advantage: better-path-coverage

COA 3: Reorient Both (NOT SELECTED)
Non-selected COA coverage factor: 1.32225 for path P49

Non-selected COA coverage factor: 0.653867 for path P51

Non-selected COA coverage factor: 0.182153 for path P53

Non-selected COA total coverage factor: 2.15827

Non-selected COA advantage: better-path-coverage

COA 4: Reorient Teammate (SELECTED)
Selected COA coverage factor: 0.730275 for path P49

Selected COA coverage factor: 0.380175 for path P51

Selected COA coverage factor: 0.642651 for path P53

Selected COA total coverage factor: 1.753101

Selected COA advantage: all-paths-twenty-five-percent-covered

Selected COA advantage: maximum-coverage-on-different-paths

Selected COA advantage: better-path-coverage

COA chosen re-orienting teammate to 101.229 degrees

 121

7.4.3 Computational Advantage

One of our computational constraints is for a component to process its representation

efficiently, yet remain task independent. As we discovered from the Geometry and

Alphabet experiments, achieving this balance is not always clear. We had to consider

similar tradeoffs in the Scout domain as we expanded the architecture to include

transformations of the visual depictive representation using pixel-level rewrites. The new

component, the VBManipulator, proves useful in determining the enemy‘s hypothesized

paths as the visual depictive representation takes into account the specific shape of the

terrain and obstacles. Alternative approaches (shown in the next section) that do not

consider the specific shape have a lower problem-solving quality, as they do not provide

as much accuracy.

In order to incorporate the depictive manipulations, we had to consider not only

the efficiency of the processing to insure it gave the resulting architecture a

computational advantage, but also the demarcation between the knowledge and

architecture. The architectural description in Chapter 6 (specifically 6.2.2.2.4) and the

more detailed description of the depictive manipulations in Appendix B describe the

tradeoffs we considered in achieving efficiency (e.g., minimization of the image size

through an attention window). In our analysis of the separation between knowledge and

architecture, we considered and compared three alternatives (Figure 7-15).

Recall that a pixel-level rewrite system includes a shared image, a set of depictive

rules, and processes to interpret the rules and manipulate the image. Clearly, the image

structure and processing to modify the image belong in SVI‘s architecture, but where do

the rules, which contain both procedural (i.e. topological structure of each manipulation)

and declarative knowledge (i.e. color of pixels to match) reside? One alternative is to

create a task specific component including both the procedural and task knowledge

(obstacles, slow-go terrain, distance field colors, etc.) in the architecture. This approach is

computationally efficient and serves as a baseline measure but if the task changes the

architecture must change. A second design choice maintains all knowledge and the

majority of processing in Soar where the pixel-rewrite rules are encoded as Soar

productions. Each decision cycle SVI‘s VBManipulator sends Soar the current set of

pixel values. The pixel rewrite rules in Soar determine the current match set and send the

 122

results to the VBManipulator for updating the image. An intermediate solution stores the

depictive manipulations (i.e. the pixel-level rewrite rules) in Soar. Soar transmits the

appropriate task-specific manipulations to the VBManipulator for processing.

Figure 7-15 illustrates the amount of processing time (log scale) required by each

of the alternatives where each implementation executes a distance field flood on a 16x16

pixel image. As shown on the left of Figure 7-15, the first, task specific/representation

specific implementation is very efficient compared to our other alternatives. Maintaining

the majority of computations within the symbolic processor, as shown on the right of

Figure 7-15, is two-three orders of a magnitude slower than the alternatives. The reason,

similar to the issue with angles in the Geometry problem, is that there are too many

alternatives for Soar‘s rule matcher to consider efficiently when the fringe layer in the

distance field has several matches. Depictive processing that iterates over the image

handles these fringe layers in a much more efficient manner as it is only considering the

local (e.g. 3x3) topological structure at any one instance. The intermediate approach

provides efficient execution (middle of Figure 7-15) coupled with flexibility to change

task-specific manipulations dynamically. It also provides high-level control so that if

―important‖ perceptual input interrupts imagery processing, the architecture can respond

accordingly.

Figure 7-15: Comparison of Processing Times of a 16x16 Pixel Image

 123

A final alternative, evaluated subjectively, involves encoding the declarative

knowledge in Soar (i.e. the color of the pixels to match), while keeping the procedural

knowledge of the rules (i.e. rules for creating distance field flood, rules for marking path)

embedded in the architecture. Again, as with the first task specific/representation specific

design, we expect to have slightly better efficiency compared with the intermediate

solution. However, this requires either knowing a priori every required manipulation that

we desire the architecture to process or changing the architecture for every task--

defeating the purpose of having a general, purpose architecture. This design choice is

more appropriate for manipulations that support the detection of low-level, primitive

visual features (e.g. enclosed spaces).

To evaluate the responsiveness of the architecture, as in the Geometry and

Alphabet experiments, we compare the hypothesized human decision cycle time of 50

milliseconds to the normalized amount of time for each imagery operation. To review,

the average time of a single imagery operation is calculated as follows. First, the average

decision cycle time is computed from Soar‘s total CPU time divided by the total number

of decision cycles. The average amount of time spent in SVI per imagery operation

(Construct, Transform Object Map, Transform Visual Buffer, Inspect) is normalized to

the hypothesized decision cycle time where normalized time = (average-real-time-in-

SVI-per-imagery-operation x 50) / average-decision-cycle-time.

Figure 7-16 illustrates the response times ordered left to right with the most

responsive operation (Inspect) on the left and the least responsive (Transform Visual

Buffer) on the right. The line represents the hypothesized human decision cycle time (log

50 ~ 1.7). Spatial imagery operations (Construct and Transform Object Map) are 2-3

orders of a magnitude faster, and appear more responsive, than visual imagery operations

(Generate and Transform Visual Buffer). This result is consistent with our results from

the Geometry and Alphabet experiments. The inspection processing includes inspections

of both the quantitative spatial and visual depictive representations. Since in this domain,

these inspection processes involved relatively few calculations (e.g. direction, distance,

and orientation between object; size of path), it was very responsive.

As we previously articulated, the higher response times for visual imagery

operations may partially be due to our assumption that low-level visual processing

 124

exploits parallelism, possibly requiring special hardware that we do not reflect in the

architecture. For example, a reason for the reflected time to generate a visual depictive

representation (~4 ms real CPU time) is that the operation includes the time to copy the

rasterized image pixels from the graphical processing unit‘s memory to main memory.

We assume that specialized hardware support would achieve a significant speed up. Even

though the manipulation of the visual depictive representation (Transform Visual Buffer)

is roughly an order of three magnitudes more efficient when compared to processing the

representation with symbolic computations (Figure 7-15), it is not as responsive to the

environment as we would like (right column of Figure 7-16). Note that one visual

imagery operation (Transform Visual Buffer) includes the execution of many pixel

rewrite rules (e.g. the rules to create the distance field flood in one attention window is

counted as one imagery operation as its execution is within one Soar decision cycle).

Figure 7-16: Time Required for an Imagery Operation in the Scout Domain

Time reflects an average of an imagery operation normalized to the decision cycle time (50 ms).

As with detecting curves and enclosed spaces, it may be that the system is

attempting to process too much in one decision cycle. Limiting the processing to a

64x64-attention window did achieve significant speedup (~250 ms real CPU time) and

appeared ―adequate‖ for this domain. There are also much more efficient pixel-rewrite

algorithms (Furnas & Qu, 2002), but their implementation is rather complex and not the

main thrust of this research. Increasing the efficiency of the depictive manipulations

would only strengthen the claims of this research. From a psychological perspective, it

 D.C.

Time

(50 ms)

 125

may be simply that visual imagery take longer to process, suggesting that given a choice,

humans tend to use spatial imagery in situations where speed is more important than

accuracy.

7.4.4 Functional Capability and Problem-Solving Quality

Although reasoning using visual depictive manipulations is not as responsive when

compared to the other imagery processes, its advantage is that it provides the architecture

with functional capability that the system cannot achieve without it. These manipulations

enable the architecture to support reasoning when there are arbitrary shapes involved (e.g.

finding paths through undulating terrain, determining the intersection between the view

and the winding path). Spatial imagery, using quantitative spatial representations, would

require converting the shapes to convex polygons resulting in a loss of accuracy. Better

accuracy results in better problem-solving quality.

To evaluate problem-solving quality, we created three agents modeling the lead

scout. The first agent (Soar+SVI) uses spatial and visual imagery to observe, analyze, and

decide on a course of action. The second agent (Soar-SVI) uses the same task

decomposition (Figure 7-11) but uses strictly symbolic and quantitative representations

and processing in Soar. For example, it imagines the enemy‘s paths as straight lines and

the views as a triangle without taking terrain or known obstacles into account. Path

coverage is determined using basic trigonometry. This is a fair comparison because as

just discussed, providing the Soar-SVI agent with all known obstacles to include the no-

go terrain would slow its processing significantly (see right hand column Figure 7-15),

causing it to miss observations. The third agent (Observer) and its teammate simply

observe the area to their front and send reports to their commander without any re-

positioning (i.e. it only executes the Observe sub task in Figure 7-11).

To evaluate the generality of the system, we evaluate the same agents in two

different scenarios. Figure 7-9 shows the first scenario. We will describe the second

scenario shortly. In general, Enemy Scout-1 and Enemy Scout-2 maneuver in the general

direction as shown in their initial configuration, but there is some variability in the paths

they choose. For example, in Figure 7-9 Enemy Scout-2 may initially maneuver in a

southeasterly direction and then make a sweeping maneuver to the south or west. Enemy

 126

Scout-3 randomly decides to follow Enemy Scout-1 or Enemy Scout-2, typically at a

distance ranging from 500 to 1000 meters. There are times, however, when it closes that

gap to 50-100 meters.

We have two evaluation metrics for problem-solving quality. The first is the

cumulative amount of information the commander receives on the enemy‘s location over

time (Figure 7-17). The second metric is the number of reported observations of each

enemy entity (Figure 7-18). Both results reflect the average over 30 trials. In Figure 7-17,

the x-axis is the current simulation time, and the y-axis measures the amount of

information per unit time with 1.0 being perfect information and –1.0 indicating no

information. The measure of information is an average over all three enemy entities at

simulation time, t, calculated for each enemy as follows:

𝐼𝑡 =
−1 𝑖𝑓 𝑛𝑜 𝑜𝑏𝑠𝑒𝑟𝑣𝑎𝑡𝑖𝑜𝑛

1 − 𝛿 𝑜𝑡𝑕𝑒𝑟𝑤𝑖𝑠𝑒

where:

𝛿 = 𝑜𝑏𝑠𝑥 − 𝑎𝑐𝑡𝑥 2 + 𝑜𝑏𝑠𝑦 − 𝑎𝑐𝑡𝑦
2

𝑑𝑎𝑐𝑐𝑒𝑝𝑡𝑎𝑏𝑙𝑒

(obsx,obsy) is the reported location of an entity at time, t and

(actx,acty) is the actual location of an entity at time, t

𝑑𝑎𝑐𝑐𝑒𝑝𝑡𝑎𝑏𝑙𝑒 = 𝑡𝑕𝑒 𝑎𝑐𝑐𝑒𝑝𝑡𝑎𝑏𝑙𝑒 𝑠𝑞𝑢𝑎𝑟𝑒 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 = 𝑑𝑥
2 + 𝑑𝑥

2

𝑤𝑕𝑒𝑟𝑒 𝑑𝑥 = 𝑑𝑦 = 500 𝑚𝑒𝑡𝑒𝑟𝑠

The agent receives a positive score for a given enemy if at simulation time, t, the

commander‘s knowledge of the particular enemy‘s location is within a 500 x 500 meter

square of the enemy‘s actual location at that time. Otherwise, the information score is

negative for that time with a minimum score of -1.0. Note that by assigning a -1.0 to

unobserved entities effectively ―punishes‖ the scout team.

The ―Tracker‖ in Figure 7-17 illustrates the amount of information a scout team

would provide if each scout observed one enemy vehicle each at the beginning of the

simulation and then ―tracked‖ that entity to the conclusion of the simulation. Assuming

no terrain occlusions, instantaneous message passing, and the third enemy not in vicinity

of the tracked entities, the ―Tracker‖ would receive an information score of (1.0 + 1.0 -

1.0) / 3 = 0.33 for each time unit.

 127

The results show that the Soar+SVI agent provides more information upon initial

visual contact (the slope in Figure 7-17 is steeper) and over a sustained period.

Furthermore, on average, it sends more observation reports to the commander, indicating

that the team has detected the enemy more frequently and that the overall architecture

continues to be responsive as the agent is able to perform other functions (observe,

report) in addition to imagery (Figure 7-18). The reason the Soar+SVI agent is able to

reposition its team more effectively is that its analysis is more accurate. The Soar-SVI

agent often under or overestimates the required adjustments resulting in the scout team

missing critical observations.

Figure 7-17: Measure of Information over Time (Scenario-1)

 128

Figure 7-18: Number of Cumulative Observations (Scenario-1)

The purpose of the second scenario is to demonstrate the generality of the

architecture and evaluate our hypothesis that the Soar+SVI agent analyzes the situation

more accurately and thus, makes better decisions on where to orient its team. The second

scenario uses the same terrain as in the first scenario, but the enemy‘s direction of attack

is in the opposite direction and there are several buildings in the western sector that

provide excellent coverage for the enemy scouts‘ movement (Figure 7-19a). The purpose

of these reinforcing obstacles is to force the enemy to turn west before it can continue its

movement north and determine if this sharp turn influences the agent‘s analysis.

In this scenario, Enemy Scout-2 initially maneuvers north/northwest and

establishes visual contact with Scout-2 (Figure 7-19a&b). Once it makes contact, Enemy

Scout-2 signals to Enemy Scout-1 to begin movement in a northwest direction. Enemy

Scout-1 takes advantage of the buildings and terrain to remain concealed as much as

possible from Scout-1‘s observation during a majority of the simulation (Figure 7-19c).

Enemy Scout-3 randomly decides to follow Enemy Scout-1 or Enemy Scout-2. Note that

in this maneuver the Soar+SVI and Soar-SVI agents begin with the same information as

both establish visual contact with Enemy Scout-2 at approximately the same time (again,

with some simulation variability). However, our hypothesis is that the Soar+SVI agent

will perform a more accurate analysis taking into account the terrain and the building

occlusions and adjust accordingly.

 129

(a) Actual Situation (b) Teammate‟s View

(c) Agent‟s View (d) Agent‟s Perceived Map / Imagined Situation

Figure 7-19: Scout Domain (Scenario-2)

Figure 7-20 through Figure 7-23 illustrate the outcome. Figure 7-20 shows the

cumulative information the agent provides to its commander over time. Initially,

Soar+SVI and Soar-SVI provide similar amounts of information to the commander but at

approximately simulation time 280, the Soar+SVI agent begins observing enemy

movement again while the Soar-SVI agent, on average, does not. As Figure 7-20 shows

cumulative information, to include Enemy Scout-2 which tends to cancel out the effects

of observing the other two enemy scouts, Figure 7-21 and Figure 7-22 show the

information that Soar+SVI and Soar-SVI agents provide on Enemy Scout-1 and Enemy

Scout-3 respectively from simulation time 280 to 350. The results are more obvious for

Enemy Scout-1 as Enemy Scout-3 sometimes follows Enemy Scout-2.

Why is there such a difference in the amount of information and number of

observations? Figure 7-24 shows that visual imagery, and specifically visual depictive

 130

manipulations, provides a more accurate representation of the enemy‘s hypothesized

path. Using this information together with the generated view frustum that takes into

account some terrain occlusions, the resulting analysis provides the Soar+SVI agent more

accurate information to base its assessment.

Figure 7-20: Measure of Information over Time (Scenario-2)

Figure 7-21: Measure of Information on Enemy Scout-1 over Time (Scenario-2)

Observe Enemy

Scout-1 and -3

Regain Observation

of Enemy Scout-1

and -3

Observe

Enemy Scout-2

 131

Figure 7-22: Measure of Information on Enemy Scout-3 over Time (Scenario-2)

Figure 7-23: Number of Cumulative Observations (Scenario-2)

 132

(a) (b)

Figure 7-24: Two Example Paths Imagined During Scenario-2

The straight line reflects a quantitative spatial representation of the same path

The gain in computational efficiency in processing the perceptual representations,

functional capability, and problem-solving quality does not come without a cost. The

resulting architecture is more complex and requires truth maintenance mechanisms to

maintain consistency between the components when the agent stops imagining, either

deliberately or because a more important perception interrupts it. Unlike the initial task

knowledge of the geometry problem where the agent uses imagery for internal problem

solving, Figure 7-25 suggests that because of the interaction with perceptual processing,

additional task knowledge is required. Figure 7-25 shows the number of productions the

Soar+SVI and Soar-SVI agents have in the Scout domain to include the ―architectural‖

visual processing and imagery productions. Although the basic task knowledge (i.e.

Observe, Decide, Act) is the same between the agents, the Soar+SVI agent requires more

task productions because of its ability to perform analysis using imagery. This analysis

includes adding and moving imagined objects, encoding depictive manipulations, and

writing objects on the map—tasks that the Soar-SVI agent does not perform. The tradeoff

then is that there is less task knowledge to perform ―internal‖ cognitive tasks but more

task knowledge to perform the ―external‖ imagery operations and interact with

perception.

 133

Figure 7-25: Number of Productions in the Scout Domain

7.4.5 Scout Domain Assessment

The Soar+SVI agent, by combining the symbolic, quantitative spatial, and visual

depictive representations and then reasoning with them, can paint a relatively accurate

picture of the situation for its commander sooner and for a longer sustained period of

time than its counterpart Soar-SVI agent. Visual imagery enables it to provide a better,

more fine-grained assessment than if it relied solely on spatial imagery. Furthermore, due

to the number of observation reports, the results show that it is still able to perform other

cognitive functions (receive and send reports, perceive the environment), demonstrating

that the imagery system is working in conjunction with the complete cognitive system.

Although SVI‘s depictive manipulations are not as responsive as we would like, they

provide a significant computational advantage when compared to processing the

representation with sentential algorithms and much more generality than a task specific

implementation.

7.5 Lessons Learned

The evaluation demonstrates that the power of incorporating spatial and visual imagery

mechanisms in a cognitive architecture emerges from the ability to combine their

representations and reason with them. The experiments highlight tasks where spatial and

 134

visual imagery fills in a missing details of a situation, recognizes novel shapes if not

present visually, and assists an agent analyzing its actions before deciding and acting on

them. As the results show, imagery is useful for inferring spatial relationships where

metric information facilitates the reasoning between two or more objects (e.g. ―sense of

direction,‖ orientation between the enemy and relevant key terrain) or detecting an

object‘s spatial or visual properties (e.g. curves, enclosed spaces, path size, view

coverage). In tasks where there are more than a few types of spatial properties or where

visual features are not explicitly encoded, imagery provides an advantage from a

computational, functional, and problem-solving standpoint. However, the advantages

come at a cost to include architectural complexity and challenges in incorporating low-

level components where the separation between knowledge and architecture is not always

clear.

As we discussed in Chapter 2 (see section 2.2), each representation offers a

functional and computational tradeoff. The Alphabet experiment and Scout domain

highlight both these tradeoffs as visual imagery processing offers a functional advantage

for reasoning about specific shapes but is less responsive than spatial imagery processing,

suggesting that it requires greater capacity. Perhaps humans, when given a choice, tend to

use spatial imagery in situations where speed is important. Maybe this observation is

another reason why the mental imagery debate continues.

 135

Chapter 8

Summary and Conclusion

Our research presents a synthesis of spatial and visual imagery, visual perception, and

cognition. We demonstrate that it is computationally feasible to extend a general

cognitive architecture with comprehensive mechanisms to support spatial and visual

imagery processing to include quantitative spatial and visual depictive representations;

shared mechanisms with vision; and incorporation of imagery‘s primary functions. Our

empirical results and subjective assessment assert that for demanding spatial and visual

tasks, the resulting architecture provides a computational gain and additional capability

without trading off generality. As a summary of our work, this chapter reviews our major

contributions, presents possible directions for future work, and concludes.

8.1 Research Contributions

The following list summarizes our major research contributions:

 Integration of spatial and visual imagery‟s functional constraints

(construction, transformation, generation, and inspection) in an implemented

cognitive architecture (Chapters 3, 6, 7). We seriously consider the underlying

behavioral and biological constraints in the design of the system. However, the

integration focuses on functionality. We describe the representations and

processes that are architectural and define the knowledge that is necessary to

 136

create these representations and control the processing (e.g. visual object

representations in VLTM, VS-STM, local spatial relationships in symbolic STM,

a set of spatial and visual primitives, operators to control the high-level

processing). As evidenced by the experimental results, we demonstrate these

functions and their advantages in a working system.

 Inclusion of a visual depictive representation and associated processing

(Chapter 6, 7). An explicit mechanism for encoding and using the visual

depictive representation is a major distinction between this work and other

proposals. We demonstrate how the visual depictive representation provides the

architecture with additional capability for recognizing visual features and spatial

properties involving specific shapes. Furthermore, we show how it improves

problem-solving quality when there is sufficient time for reasoning.

 General mechanisms to support efficient processing of the quantitative

spatial and visual depictive representation (Chapters 6, 7). Specialized

processing is associated with each representation to gain efficiency. The inclusion

of specific spatial and visual primitives facilitates communication between the

processes in a general manner. We describe the challenges associated with

achieving this generality and articulate the difficulties of determining how an

agent (or human) decides when to use the appropriate representation. We suggest

that functional capability, time, and desired accuracy are factors in this decision.

 Description of the types of tasks where imagery provides a computational

gain, additional functionality, or improved problem-solving quality

(Chapters 2, 5, and 7). We describe and demonstrate several tasks where

imagery processing is useful for reasoning because the task has many types or

numbers of spatial or visual properties. These properties include direction,

distance, orientation, size, topology, geometry, shape, and color. We suggest there

are four general tasks where using imagery is useful to infer spatial and visual

properties and demonstrate the first three tasks in our evaluation.

 137

 Filling in missing details of a situation

 Recognizing novel shapes and spatial properties if not present visually

 Analyzing or rehearsing the outcome of an action before executing the

action

 Replay of a previous event to inform a future decision

 An initial computational theory describing the functional integration of

visual perception with spatial and visual imagery (Chapter 3, 5, 6). We

provide a computational theory of how imagery leverages the mechanisms

provided by higher-level vision to facilitate its processing. Our theory includes the

shared memories and processes between the two systems along with how bottom-

up visual processing and top-down imagery processes coexist and mutually

support one another.

 Software engineering tools to support the evaluation and debugging of

imagery components (Chapter 7, Appendix C). We built two tools to support

the design, testing, and evaluation of the architecture. First, we integrate an SVI

module with the SoarJavaDebugger (Figure C-6) to support viewing the contents

in Visual LTM, the Object Map, and the Visual Buffer. Second, the simulation

provides an initial attempt at defining an interface between an agent using

Soar+SVI and an external environment.

8.2 Future Work

Based on our lessons learned from our evaluation (see section 7.5), we propose four

possible directions for future work. There is some overlap between the research

directions. We will explain each in more detail below.

1) Push down. Push the architecture closer to sensory input and low-level perceptual

processing.

 138

2) Push up. Explore the integration of spatial and visual imagery with Soar‘s

declarative long-term memories (episodic and semantic).

3) Push out. Expand the capability of the current system by improving current

functionality and expanding to other types of imagery processing such as motor

imagery.

4) Push in. Build detailed cognitive models and compare to human data.

The first research direction is to expand our current perceptual theory by pushing

the architecture closer to sensory input. One domain we would like to explore in more

depth is robotics and specifically how cognitive processing, to include spatial and visual

imagery, can provide a robot with higher-level reasoning abilities. Paramount in this

exploration is an understanding of how our theory of perceptual processing would

incorporate typical robotic sensors (e.g. light detection and ranging, stereoscopic video

images, global position system, etc.) and how imagery may prime robotic effectors

(motor imagery). Kuipers (2000) spatial semantic hierarchy, Yeap‘s and Jefferies‘ (1999)

absolute space representation, and Ullman‘s (1996) object recognition schemes provide

some insights here.

This research direction could also consider the role of imagery in top-down visual

perception. For example, imagery may support the recognition of an object when bottom-

up visual perception initially fails to recognize the object but suggests possible candidate

objects (i.e. partial matches). Top-down visual processing using imagery may generate a

visual depiction of each candidate object transformed from their stored, canonical

orientation to an orientation congruent with the unrecognized object. The architecture

attempts to recognize the perceived object by comparing its extracted visual features with

the features extracted from the visual depiction of the imagined, transformed object.

Relevant research questions include how many candidate objects to consider and how to

determine when the transformed imagined object is ―congruent‖ with the orientation of

the unrecognized object.

Imagery processing may also support object permanence. Object permanence is

the memory of a visible object that disappears (through motion) behind another object.

The architecture may realize such behavior by maintaining the object‘s quantitative

 139

spatial representation for some time after it visually disappears from the perceived scene.

If the object was in motion the architecture combined with knowledge about the object‘s

motion model (discussed below), may simulate object movement until it reappears from

behind the occluding object or decays from memory. An important research question to

address is how long the object should persist after it disappears from the scene.

The second approach is to explore how imagery integrates and interacts with

episodic and semantic memories. As an agent has experiences, episodic learning may

store certain aspects of the experience, including perceptions, internal state, and resulting

action, as structures in memory. These structures may include symbolic, quantitative

spatial and, possibly, a few specific visual depictive representations. At some time in the

future when the agent recalls the experience to inform a decision, it may use imagery

processing to replay the experience and infer spatial and visual properties that perhaps it

did not explicitly encode or use as part of its original decision-making. This imagery

replay capability also presents an opportunity for ―offline‖ learning as the agent can

reason about new spatial and visual properties that it did not attend to during the actual

situation (e.g. Alice was seated to the left of Bob at the party last night).

Semantic memory stores knowledge that is more general rather than specific

instances. In the context of imagery, this memory is useful for encoding the local spatial

and visual properties that imagery uses to construct the scene. For example, the fact that a

place setting has a fork, plate, knife, etc., and that the knife is right of the plate or that the

enemy typically configures itself in a particular formation (i.e. doctrine) are examples of

semantic memories. Note that imagery can help keep the encoding of semantic or

episodic memories compact, as only the local spatial relationships between the objects

and their explicit visual properties need to be stored. Reconstructing the situation with

imagery enables the inference of global spatial relationships and visual properties not

explicitly encoded.

Together imagery and these long-term declarative memory mechanisms have

potential to lead to more informed reasoning. For example, in the Scout domain, an agent

may initially construct the imagined parts of its scene from its semantic knowledge of the

enemy and the terrain. As the agent acquires more experiences, it may adjust its

templates. The enemy may change the spatial characteristics (distances, directions, and

 140

orientations) of their tactics or maneuver through an area the agent previously thought

was impassable. With these experiences, the agent may then construct and analyze its

imagined scene using the adjusted templates from its episodic memory.

The third research direction involves extending our current work by improving

the communication primitives and algorithms for spatial and visual properties, refining

our notion of the Visual Buffer‘s attention window, and using motion models in addition

to one-step transformations to simulate movement. We have designed the system to

incorporate the basic spatial and visual properties listed in Figure 6-9 thru Figure 6-11.

Although we offer a small contribution in this work with this list of properties, there does

not appear to be a cohesive theory detailing the spatial and visual primitives that humans

use in reasoning. There are researchers (Biederman, 1987; Cohn et al., 1997) who offer

theories for a specific spatial or visual property type. However, without a coherent theory

there remain challenges in designing a general-purpose architecture because, as we have

discussed, the interpretation of these properties tend to constrain each other (e.g.,

constructing a topological relationship between two objects requires knowledge about

their specific shape and orientation, symmetry may or may not be a primitive feature,

etc.).

Related to this issue are the factors an agent uses to determine the representation

to use for reasoning. The factors we suggest are the following:

1) Functional capability. I am detecting curves so I have to use visual imagery.

2) Speed/Accuracy tradeoff. If both representations provide a result but one is

more accurate and I have time, then use the visual representation.

3) Number and types of spatial and visual properties. The greater the number and

types, the more likely reasoning requires a visual depictive representation.

A future research effort then is to continue to review the literature in an effort to refine

and improve these low-level primitives and investigate how learning mechanisms may

use the factors, such as what we suggest above, to assist in choosing the appropriate

representation.

The attention window proves useful in improving the efficiency of the depictive

manipulations. However, its design is brittle as it has a fixed size and shifts only in a

linear direction based on procedural knowledge. A more flexible approach is to allow the

 141

attention window to ―grow‖/―shrink‖ and also shift based on a visual cue (i.e. shift to the

red object). For example, in the Scout domain if the terrain is very restrictive, it will

impede the distance field flood. An architectural mechanism could possibly detect this

―impasse‖ and either inform cognition or automatically expand or shift the attention

window so that processing can continue. The major research questions for this direction

is how does the architecture detect and signal this type of ―impasse‖ and how does the

resize and/or shift occur-- automatically or deliberately through procedural knowledge?

One interesting phenomenon in humans is their use of motor imagery to rehearse

potential actions. Such a priming of the motor system, rather than executing a one-step

transformation, appear to take into account factors such as force and torque using motion

models of the particular subsystem (Grush, 2004). The use of motion models for

simulating the motion of other objects, such as the trajectory of a thrown baseball or the

movement of a vehicle is also applicable here. Note that these motion models may be in

the form of a quantitative, dynamical system or a set of depictive manipulations. In these

types of transformations, time is a key parameter, as the architectural processing must

know how long to run the simulation. A few of the major issues for the incorporation of

motor imagery and, specifically motion models, is to determine what memory structure(s)

store these models, how they originate and dynamically adjust, the granularity of time in

simulating the model, and insuring that the simulation of the model is not an

unconstrained computation. Wintermute and Laird have begun to investigate these issues

(2008).

The final research direction is to explore detailed cognitive models and attempt to

match human data. As we previously alluded to in the Alphabet Experiment, modeling

the details of low-level perceptual processing dominates this goal and thus relates back to

our first research direction of attempting to push the architecture closer to sensory input.

However, it also relates to our other research directions, as there are some higher-level

issues to address such as continuing to flush out the spatial and visual primitives to refine

what knowledge should be ―hardwired‖ into the architecture rather than being encoded in

a declarative or procedural memory.

One of our specific ideas for this research path is to run an experiment with

human subjects performing the same task as the agent in the Scout domain. During the

 142

experiment, we would capture fMRI and eye-tracking data, measure response times for

major decisions (i.e. when the subject decides on a course of action), and conduct post-

experiment interviews in an effort to understand how the individual solved the problem.

Assuming this dataset provides us with enough evidence that some form of imagery is

being used (e.g. parietal or visual cortex activation, subject says they ―imagined‖ the

situation), we could then start building models and try to match the human data in this

domain.

8.3 Conclusion

Past research in cognitive architectures has primarily taken the stance that amodal,

symbolic representations are sufficient for thought. This research expands this notion by

beginning to link perceptual-based representations with cognition. This union provides

functional and computational advantages for reasoning about spatial and visual

properties. The new capabilities of the resulting architecture that includes both Soar and

its Spatial-Visual Imagery (SVI) component emerges from its ability to combine multiple

representations and reason with them. Soar‘s symbolic memories and processes provide

the building blocks necessary for high-level control in the pursuit of goals, learning, and

the encoding of amodal, symbolic knowledge sufficient for general, abstract reasoning.

SVI encompasses the quantitative spatial and visual depictive representations and

processing specialized for efficient construction and extraction of spatial properties and

visual features not encoded as symbols. Together these mechanisms are necessary if we

hope to achieve general intelligence.

 143

Appendices

 144

Appendix A

Supporting Behavioral and Neuroimaging Experiments

While modeling human performance on these tasks is not a goal of this research, the

following experiments
29

 motivated our theory, design space constraints, resulting

architecture, and evaluation domains. Each experimental description includes the

reference, the described imagery functionality (construction, transformation, generation,

inspection), its task type (spatial or visual imagery), a summary of the experiment, the

relevant results, and a short discussion.

A.1 Image Units and Relations

a. Reference. (Kosslyn et al., 1983).

b. Functionality. Construction, Generation, Inspection.

c. Task Type. Visual.

d. Summary. The experimenters gave the subjects specific instructions on how to

encode geometric objects (Figure A-1) using either coarse or fine object parts (see

figure for definition of object parts) and their spatial relationships. After the

subjects indicated that they had visualized the image (by pushing a button), they

were probed for a specific feature. For example, in the first figure they might be

asked if they see a ―bow,‖ a ―cross,‖ or whether the object is symmetrical about

29
The ―island scan‖ experiment discussed in Chapter 2 is another experiment that influenced our theory.

 145

the vertical axis. The experimenters recorded the time to visualize the image and

response to the probes.

Figure A-1: Stimulus Patterns

(1) 2 triangles, 1 square vs. 4 triangles, 4 squares; (2) 1 triangle, 1 square vs. 2 rectangles, 3 triangles;

(3) 1 hexagon, 2 triangles vs. 2 diamonds, 4 triangles; (4) 2 triangles, 1 square vs. 6 triangles; (5) 2

triangles vs. 4 triangles, 1 diamond; (6) 2 rectangles vs. 5 squares; (7) 2 squares vs. 2 L‟s, 1 square;

(8) 1 square, 1 parallelogram vs. 3 triangles; (9) 2 triangles vs. 4 triangles; (10) 2 L‟s vs. 2 rectangles,

1 square.

e. Results. Subjects who encoded the figures with more parts took more time to

generate their visual images of the shape. Subjects required less time to see a

pattern in the image when the feature was congruent with the original description.

The authors concluded that (1) people construct visual images by amalgamating

an object‘s parts. The addition of each part to the image requires time. (2) In

addition to metric shape information, people use descriptive (symbolic)

information in constructing images; and (3) the ease of visualizing and inspecting

an object depends on how many parts composes it and its symbolic description.

f. Discussion. This experiment corroborates the theory that images are constructed

incrementally by adding parts. It also highlights that the descriptive or symbolic

representation is dependent on how one originally encodes the object. The

symbolic description of the object, or its super ordinate category, will not include

all of the object‘s spatial and visual properties such as whether it has an enclosed

space or contains four squares. Thus, there is the necessity to visualize and inspect

the object when attempting to recall these properties. The second capability that

 146

this experiment demonstrates is extracting emergent objects (bow, cross) or

features (symmetry) by composing known objects in novel ways.

A.2 Detecting Implicit Object Features

a. Reference. (Thompson et al., in press).

b. Functionality. Generation, Inspection.

c. Task Type. Visual.

d. Summary. The researchers‘ purpose was to gather evidence for the depictive

nature of representations during visual imagery and compare the underlying

mechanisms used to those used in visual perception. For both the visual perceptual

and visual imagery trials, they compared the ease of judging shape properties for

uppercase letters of the English alphabet. Some of the shape features were

propositionally explicit (and thus, immediately accessible to the verbal system) while

others were properties that the subject had to infer because they were not explicitly

encoded (i.e. in a symbolic representation). Their hypothesis was that that the

mechanisms enabling visual imagery are similar to visual perception.

The researchers first determined what features of an uppercase letter are

explicit by having a group of participants classify each visual appearance of each

letter and describe its shape properties as though they were talking to a blind person

who someday may be able to see the letter. For example, the letter ‗A‘ may have been

described as one diagonal line slanted to the left, connected at the top to one diagonal

line slanted to the right, with one horizontal line centered between the two diagonal

lines. The researchers considered the feature explicit if the subjects mentioned it more

than 50 percent of the time and not explicit if it was mentioned less than 5 percent of

the time. They discarded features mentioned between 5-50 percent of the time. The

most represented explicit features mentioned were ―line,‖ ―diagonal line,‖ ―curve,‖

and ―semi-circle.‖ The features deemed not explicit (mentioned less than 5 percent)

were ―enclosed space‖ and ―symmetrical.‖

Next, the researchers split a different set of subjects into two groups: a

perception group and a visual imagery group. The task for each group was similar

(Figure A-2). Each group first heard a letter. Then the participants would either see

 147

the letter on a display (visual perception) or visualize (imagery) the letter based on the

previous instruction. Next, the participants heard the feature to evaluate (e.g.

―enclosed space,‖ ―curve,‖ ―diagonal line,‖ ―vertical symmetry,‖ ―horizontal

symmetry‖) and responded by pressing a ―yes‖ or ―no‖ key as quickly as possible.

The experimenters measured the subjects‘ response times (RT) and error rates.

Figure A-2: Trial Format for Detecting Alphabet Letter Features

e. Results. There was no interaction between the visual mode (perception, imagery)

and method of encoding indicating that visual perception and visual imagery rely on

the same mechanisms. Additionally, explicitly encoded features (i.e. curves and

diagonal lines) required less response time than implicitly encoded features

(symmetry and enclosed spaces) for both visual perception and visual imagery. The

―symmetry‖ features also produced the largest error rate.

f. Discussion. This experiment was the basis for one of our evaluations. What it

demonstrates is that visual perception and visual imagery share similar mechanisms

and that there are some object features humans do not explicitly encode as a

descriptive, symbolic representation. Therefore, it highlights the visual imagery

capability of being able to reacquire these features.

A.3 Imagery Transformations

a. Reference. (Shepard & Metzler, 1971).

b. Functionality. Transformation, Inspection.

c. Task Type. On a spatial and visual spectrum, this task falls somewhere in

between. Our hypothesis is that the spatial representation is used to perform the

transformation, and a visual depictive representation is required to recognize if the

two objects are the same.

Auditory

presentation

of letter name

(300 ms)

Participants
visualize
(imagery)
or perceive
(perception)

appropriate letter .

A

Participants
hear probe
indicating which
property to
evaluate

Response
(yes or no)

RT

 148

d. Summary. Shepard and Metzler showed subjects pairs of three-dimensional, non-

standard objects and asked them to determine if the objects were the same shape

(Figure A-3). Some pairs were identical but with one of the objects rotated at a

different angle than another. Other pairs were mirrored reflections of one another

so could not be brought into correspondence by a rotation. After shown a pair of

objects, subjects pulled a right-hand lever if they thought the objects were

congruent and a left-hand lever if they did not think they were congruent.

Response times were measured.

Figure A-3: Mental Rotation Shapes

e. Results. Shepard and Metzler measured response times for each subject and found

that the response times were linear with the rotation angle. The subjects‘

introspective reports claimed that in order to make the comparison they had to

―mentally rotate‖ one of the objects. These two pieces of evidence led them to

hypothesize that there is some sort of an imagined transformation process in

three-dimensional space.

f. Discussion. We are using this experiment to highlight not only the phenomenon

of being able to rotate three-dimensional objects but also as motivation for

transformations of quantitative spatial and visual depictive representations in

general.

A.4 Combining Perception and Imagery

a. References. (Kosslyn et al., 1993; Podgorny & Shepard, 1978)

b. Functionality. Construction, Generation, Inspection.

c. Task Type. Visual.

 149

d. Summary. Experiment originally devised by Podgorny and Shepard to measure

the functional correspondence between visual perception and visual imagery.

There were two experimental groups. Each experiment started by displaying a

two-dimensional 5x5 grid to the subjects (Figure A-4a). The perception subjects

viewed one or two English letter(s) in the grid. A visual probe in the form of one

or more dots would appear in the grid and the subjects responded as quickly as

possible as to whether a dot fell on the letter(s). Podgorny and Shepard measured

response times and recorded other factors such as number of dots and distance

(number of grids) of the dot(s) from the letter.

The second imagery group, rather than viewing the letter(s), were

instructed to visualize it in the grid and press a pedal when they had the letter

imagined. At that time, the dot(s) probe appeared, and as in the first case, the

subjects indicated their response as quickly as possible as to whether a dot fell on

their imagined letter.

F

(a) Subjects saw a letter in grid (perception task),

visualized letter based on a “script cue” (imagery

task), or waited for „X‟ mark to be removed

(sensory-motor task)

(b) Subjects saw script cue, then a

perceptually degraded upper case

version of cue (perceptual task), and

a degraded „X‟ (both tasks) for the

amount of indicated time

Figure A-4: Identify the „X‟ On / Off the Letter

Kosslyn et al. (1993) extended the experiment in several ways, a few of

which are described here. First, they used PET (Positron Emission Tomography)

to measure the emissions from a radioactively labeled chemical injected into the

subject‘s bloodstream. The PET data produces two- or three-dimensional images

 150

of the distribution of the chemicals throughout the brain and provides an

indication where brain activity is occurring. Second, rather than seeing one or

more dots, subjects would see a single ‗X‘ in one of the grids (Figure A-4a). Half

of the time the ‗X‘ fell on the letter; half of the time if fell off. Additionally, half

of each type (on/off) was drawn near the segment of a letter that was thought to be

imagined early in the visualization sequence. The other half was drawn closer to

those segments thought to be imagined later. The purpose of this experiment

variability was to test Kosslyn‘s hypothesis that humans build the image of an

object (in this case a letter) by composing the parts, one part at a time. Third,

Kosslyn included a control group (the sensory-motor group) that simply saw an

‗X‘ in the grid and responded when the ‗X‘ disappeared. The purpose of this

control group was to exclude the activated brain areas and response times that

sense the ‗X‘ and control the motor response.

Finally, Kosslyn et al. ran another experiment to induce the recall of visual

memories (Figure A-4b). They hypothesized that the first task may not access

visual long-term memory because the tasks were what they call ―attention based

imagery.‖ In this second task, subjects in the perceptual group were shown a

script letter, followed by the letter and the grid. Then the ‗X‘ appeared for 200 ms

in a degraded form. In the imagery group, only the grid and ‗X‖ appeared. The

idea was that the task would no longer be based solely on attention because the

subjects could not just fix attention on that region. Rather, they would have to

recall the letter and the grid from visual memory for both perception and imagery.

e. Results. In Podgorny and Shepard‘s experiment, they found that the response

times varied with the number and locations of the dots (whether they were on or

off the letter) and, as expected, the response times for the imagery group were

longer than for the perception group. However, the factors influencing the

variance in response times had a similar affect for both perception and imagery

leading them to conclude that perception and imagery use similar mechanisms.

Kosslyn‘s group found subjects required less time to evaluate probes

where the ‗X‖ fell closer to the line segments of a letter believed to be added

earlier in the image construction process. The neurological evidence indicated

 151

greater activation of visual cortex during visual imagery than during perception

for both tasks. In addition, for Task 2 they discovered activation in other areas,

such as the dorsolateral prefrontal cortex (DLPFC), occipital-temporal pathway,

and parietal regions.

f. Discussion. This experiment features the intersection between vision and imagery

to included shared memories (visual cortex, temporal lobe, parietal lobe) and

processing. It also serves as an example of the ability to ―perceive/imagine/re-

perceive‖ behavior. That is, imagined spatial and visual representations can

augment visual perception to aid in the decision-making process. The grid and the

dot/‘X‘ arrive in the visual buffer from vision and are not generated from

imagery. The subject adds an imagined letter to this perceived scene. This is

similar to our Scout domain where the agent augments its map by imaging

different objects and features on it and then re-perceives the image.

A.5 Map and First-Person Perspective Recon

a. References. (Mellet et al., 2000)

b. Functionality. Construction, Inspection.

c. Task Type. Spatial.

d. Summary. The experiment tested the two major sources of information to build a

topographic representation of an environment, actual navigation within the

environment (route perspective) and map learning (survey perspective). The

experimenters used positron emission tomography (PET) to compare the neural

substrate of the topographic representation built from these two modes.

Mellet et al. broke subjects into two groups: a ―route perspective‖ and a

―survey perspective‖ group. The experiment had three phases: (1) learning, (2)

training, and then (3) testing. During the learning phase, the ―route perspective‖

group walked through a park they had never seen before (Figure A-5). An

instructor led the walk by taking subjects to seven key landmarks (statue, tower,

lake, etc) in the order they later would be expected to recall. After the instructor

led iteration, the subjects repeated the walk two more times following the same

path.

 152

The ―survey perspective‖ group‘s learning phase consisted of studying a

map of the park with the same landmarks annotated on the map as seven different

colored dots. A path linked the dots. Experimenters then ran subjects through a

series of seven slides showing each landmark in the same order that had been

presented to the walking group. The experimenter told the subjects the color of

the dot on the map that represented the landmark so the subjects could associate

the dot to the landmark. To insure the subjects learned the map, they were

required to pinpoint each dot location on a blank map at the end of the learning

phase.

Figure A-5: Park Map Used in Mellet et al. Experiment

During the training phase (3-4 hours before the testing phase), the route

perspective group trained on a mental navigation task by being presented with two

landmark names ("gas station," "phone box") and then were instructed to visualize

the walk between the two locations by mentally simulating it. When the subject

imagined their ―arrival‖ at the second location, they pressed a key. The map group

similarly trained on the mental navigation task by visualizing the map as

accurately as possible including the seven dots. They were then presented with

two dot colors (―red,‖ ―blue‖), and had to imagine a laser dot following the path

segment on the original map between the two dots. Once the second dot was

reached, the subject pressed a button triggering the release of the next pair of dots.

The training consisted of three sessions with each session including the mental

 153

navigation between five pairs of landmarks. Path segment length varied between

48 and 172 meters. During the testing phase, the experimenters administered a

PET scan while the subjects in both groups were either (1) resting with eyes

closed or (2) mentally navigating as described above.

e. Results. The right hippocampal and intraparietal sulcus were active in both groups

indicating the spatial imagery component of the task. There was no activation

observed in the visual cortex.

f. Discussion. These two different tasks highlighted differences in encoded material

(2D vs. 3D) and task demands (egocentric vs. allocentric view). However, both

showed similar activation. Hippocampus is associated with what we call episodic

memory indicating possible interaction between the imagery system and episodic

memory. Task properties included (1) recall of spatial locations and landmarks,

(2) maintenance of spatial relationships in the scene, and (3) mental simulation of

displacement from one location to the next. The experiment has some similarities

with the Scout domain as the agent has to imagine an enemy‘s current location by

simulating its movement.

 154

Appendix B

Algorithms

This appendix describes specific algorithms used for detecting curves and manipulating

depictive representations. For the purposes of this appendix, an image, I, consists of a

spatial domain X and an F-value set. X is a topological space consisting of points and the

topology providing the notion of connectivity. For example, a two-dimensional point, x,

is described as (xi,yi) where xi and yi describe the location of the point in a two-

dimensional space. The graphical representation of a point set, X = nm ZxZ , is shown in

Figure B-1. An F-value set is a set of possible values together with a finite set of

operations. In this discussion, we are concerned with integer and real (float) value sets.

The image, I, is then represented by a data structure I = s and an element of I, (x, I(x)) is

called a picture element or pixel. The first coordinate, x, is the pixel location and the

second coordinate, I(x), is the pixel value of I at location x (Ritter & Wilson, 1996).

Figure B-1: Point Set X = nm ZxZ

y

x 0

1
2
3
4
5
6
7

1 2 3 7 4 5 6

 155

B.1 Hough Transform

To detect lines and curves in an image, we use the Hough transform (Mat Jafri & Deravi

1994; Olson, 1999; Ritter & Wilson, 1996). The Hough transform is a ―voting‖ algorithm

that maps edge points in an edge-detected image to parameters in a parameter space. That

is, given an edge point, x from the edge point-set, E; a set of parameters, Ω, that

describes the curve; and either an analytical function, f, or a lookup table that

parameterizes the curve; the Hough transform, h, is described mathematically as







 









otherwise

fif
h

f

yx

N

0

0),(1
),(:

0),(

),,(

),(

10

00

x
x

x

x

 

Each edge point in the edge-detected image has an opportunity to ―vote‖ on one

or more sets of parameters. The algorithm collects votes in an array of counters, called

the accumulator or vote array. The array is a discrete partition of a continuous

multidimensional space spanning all feasible parameter values defined by either the

analytical equation or a shape lookup table. Larger counts in the vote array indicate a

higher probability that the parameter indices of the array are the parameters of the shape

in the image. A threshold algorithm must determine what set of parameters, if any, are a

representation of the sought-after shape. Computer vision researchers have used the

Hough algorithm to detect lines, circles, ellipses, and other non-analytical shapes that

have an associated lookup table describing the shape.

There has been little published on using the Hough Transform to detect parabolic

curves, but it appears to be a good fit for finding general curves in any orientation. We

use Mat Jafri and Deravi‘s (1994) algorithm and extend it to detect false positives. We

can define a parabola as a locus of points equidistant to a fixed point called the focus, F,

and a fixed straight line called the directrix, d. Figure B-2 shows a parabola in its

―canonical‖ form with its vertex, (x0,y0) at the origin. Its focus, F, is on the x-axis a

distance, a, from the origin, and its directrix, d, is parallel to the y-axis at a distance, a,

from the y-axis. This canonical form of a parabola has an equation of

 156

a

y
xoryax

4
 4

2
2  (1)

where a represents the length between the focus and the vertex. In the canonical form the

focal point is located at (a,0), and the focal length, a, defines the "curvature" or the width

of the curve. The default value for a given the equation x = y
2
 is 0.25. As a approaches 0

the parabola becomes "skinny" to where the two ends would eventually converge into a

line. As the focal length approaches infinity, the parabola widens. At infinity the curve

straightens into the line, x = 0 (the y-axis).

Figure B-2: Parabola in Canonical Form

Figure B-3 shows a parabola in its general form with the vertex translated (x0 y0)

from the origin and a counterclockwise angle of rotation, Θ, from the x-axis. We can

describe a translated parabolic curve without rotation as the following equation:

2

0)()(4 yyxxa o  (2)

When we apply the angle of rotation equation (2) becomes the more generalized

equation:

d
y

x

b

b

(x0,y0)

a a

F(xf,yf)

 157



































cossin

sincos
*

cossin

sincos

yx

yx

y

x
 therefore,

2

00)]cossin()cossin[()]sincos()sincos[(4  yxyxyxyxa oo

 (3)

Figure B-3: General Parabola

If we then differentiate y with respect to x in equation (3), we obtain the following

equation:

]cos[sin*)]cossin()cossin[(*2

]sin[cos4

0 



dx
dy

yxyx

dx
dy

a

o

]sin[cos*2

]cos[sin*)]cossin()cossin[(0






dx
dy

dx
dy

yxyx
a

o

 (4)

Substituting (4) back into (3) results in the equation:

n ˆ d

(x0,y0)

d

F(xf,yf)

d a

a

dy/dx

Θ

p

y

x

b

d ˆ

b

 158

)]cossin()cossin[(

]sin[cos

)]sincos()sincos[(*]cos[sin*2

0

0









yxyx

dx
dy

yxyx
dx

dy

o

o

Simplifying the equation:















sin*cos

sincos* l

 where

for Solving

)]cossin()cossin[()]sincos()sincos[(*

]sin[cos

]cos[sin*2

0

0

00

km

k

m

mylxlx
y

y

yxyxyxyxk

dx
dy

dx
dy

k

o

oo

(5)

Equation (5) serves as the analytical function, f, which we use to determine the possible

set of parabolas where a particular edge pixel may fall. The parabola is parameterized by

Ω = (x0, y0, Θ). To calculate the slope of the line tangent to the parabola at a pixel edge,

p, (dy/dx in equation (4)) we use the edge gradient information (Figure B-3). The

gradient is determined by,

)tan(

2

)(tan 1









 

dx
dy

g

g

x

y

 (6)

where

gx = edge gradient in the x direction

gy = edge gradient in the y direction

Φ= orientation of the edge normal vector

 159

λ = orientation of the edge direction vector

dy/dx = slope of the line tangent to the parabola at a point, p.

Each pixel in the edge image over a certain threshold votes for all the possible

parabolas (defined by the parameters) constrained by the analytical function in equation

(5). Parabolas are then ―peaks‖ in the parameter space. We use a simple threshold to

calculate a peak. For each possible parabola detected, the algorithm must also maintain

the calculated focal length, a, for the parabola ―peak‖ where ―peak‖ is defined as the

edge pixel furthest from the parabola vertex. Again, the focal length determines how

narrow or wide the detected parabola is.

We add a post-processing step to remove false positives and consolidate several

similar detected parabolas. The false positive parabolas are the result of discretetization

errors (assumption that each edge pixel center is the center of the pixel) and localization

errors. Localization errors result either when the parameters of a curve do not receive

votes from edge pixels that are a part of the curve or because the discretization errors

causes a single bin in the vote/accumulator array to receive a large number of votes from

edge pixels that cannot lie on the same curve. The assumption is that the bin size is

sufficient to receive the votes for parabolas of interest but small enough not to receive

votes from false positives (Olson, 1999). Because of this induced error, we post process

the parabolas by ―walking the parabola‖ a few pixels in either direction from the vertex to

make sure there are a sufficient number of edge pixels on the parabola to classify it as a

curve.

The general algorithm follows:

1. Convert the source image to a grayscale image

2. Use an edge detector (we used a rotation invariant kernel mask)

to find the set of edge pixels in the image along with their

associated gradient information in both the x and y directions (gx,

gy).

3. For each edge pixel

a. Calculate the edge slope, dy/dx, according to equation (6)

b. Iterate through some fixed rotation angle, Θ, from 0 to π by

some step size, s

1. Iterate through each possible x0 (x coordinate of

possible vertices)

a. Calculate y0 according to equation (4)

 160

b. If (x0 ,y0) is an edge

1. Transform to canonical form (zero degrees of

rotation from the x-axis with the vertex at the

origin).

2. Determine actual angle (angle may be Θ + π)

3. Determine focal length, a, based on equation (1)

4. If the focal length is within constraints (i.e. not a

straight line and the parabola has an edge pixel

opposite the current edge pixel), then cast a vote for

the curve parameters (x0 ,y0, Θ). If the current pixel

is the ―peak‖ pixel, then record its focal length for

these parameters.

4. Post process to remove any false positives.

Parameters:

 amin = 5

 amax = 40

 vote threshold = 340

 step size, s = 5 degrees (0.087 radians)

Although the representation used for detecting curves is ―depictive,‖ the Hough

transform is a ―sentential‖ algorithm. That is, the algorithm detects curves by fitting the

representation to analytical algebraic equations. One could argue that it is ―biologically‖

inspired since it is highly parallelizable with a short dependency tree. We could

parallelize an iteration through the set of edge pixels and angles of rotation, as each edge

pixel vote is independent of the others. The current implemented algorithm is

significantly slow,)(
m

seO


, where e is the number of edge pixels in the image, s is the

angle step size, and m the width of the image in pixels. We may obtain speedup using

randomization and decomposition as described in (Olson, 1999) and implementing with

multiple processors.

B.2 Depictive Manipulations

Some of the VBManipulator‘s (Figure 6-14) processing units are implemented as a pixel-

level rewrite system (Furnas, 1990, 1991; Furnas et al., 2000; Yamamoto, 1996). Unlike

sentential algebraic algorithms, such as a Gaussian filter or the Hough transform that take

advantage of the geometric properties of the depiction, this type of processing takes

advantage of the topological structure and color of a depictive representation. This

 161

section will discuss our specific implementation details of this type of processing and the

rewrite rules used in the experiments.

A pixel-level rewrite system has a set of depictive rules and a shared image.

Similar to a production system, the depictive rules have a left-hand side (LHS) and a

right-hand side (RHS) but rather than predicate symbols, the LHS conditions and RHS

actions are visual depictive representations. The color of each LHS pixel and their spatial

arrangement, or shape, determines a match rather than the syntactic structure of the

symbols. Figure B-4 shows an example of two depictive rules. The top rule is a 2x1 rule

stating, ―if there is a black pixel adjacent to a gray pixel, then change the gray pixel to a

white pixel.‖ Similarly, the bottom rule is a 2x2 rule that says, ―if there is a black pixel

diagonally adjacent to a gray pixel, then change the gray pixel to a white pixel.‖ The

asterisks represent wildcard values where the processing ignores those pixel values in the

determination of a match. Note that ―color‖ simply implies that the pixel has an integer

value (F-value). In addition to the orientation shown, a rule may specify that the

processing also check for matches at 90, 180, and 270 degrees or for reflection. For

example, the second rule, rotated 90 degrees counterclockwise matches a pattern in the

image where there is a black pixel in the lower right corner and a gray pixel in the upper

left corner. The RHS action changes the upper left pixel to white.

Figure B-4: Pixel-level Rewrite Rules

The processing iterates over the image, searching for a match of any rule‘s LHS

pattern. If there is a match, the RHS action rewrites the appropriate pixel(s). Processing

terminates when there are no rules matching a pattern in the image. To achieve control,

each rule has a priority associated with it so if there are multiple matches in a particular

pixel neighborhood, then the rule with the highest priority fires. Although the matching

*
= wildcard

*

*

*

*

 162

and modifications are local in nature and extend no further than a 3x3 neighborhood in

our particular algorithms, the overall effects of the manipulations have global

consequences. The pixel rewrite model used in this first implementation has some details

that might not be biologically reasonable (e.g., global conflict resolution with only one

rewrite proceeding at a time), its essential nature of computation by iterated local

transformations does not seem at all beyond the realm of neuro-biological possibility.

In order to integrate the pixel-level rewrite rules with the Soar+SVI architecture,

we made the following three extensions. Yamamoto (1996) also investigated some of

these extensions. First, one or more depictive rules are encoded in Soar as operator

elaborations
30

 (Figure B-5). When Soar selects the operator for application, the depictive

rules are added to Soar‘s output-link. The VBManipulator receives the rules, and

specialized processing units interpret and execute the matching and firing of rules. As

shown in Figure B-5, each depictive rule has a name (for debugging), a priority, number

of pixels (to indicate if it is a 1x1, 1x2, 2x2, or 3x3 rule), and any other rotation angles to

check for a match (90, 180, 270). Rules may also have reflections associated with them

although we did not use them in any of our tasks.

The second extension we made is to distinguish processing between three types of

rules. Each rule is a member of a rule-set where all rules in a rule-set are constrained to

be of the same type. The rule-set type signals to the VBManipulator the form of

processing, and the rule-set number serves as a sequencing method (i.e. process rule-set

0, then 1, then 2, etc). We define three types of rule-sets: Threshold, Pattern, and Mark.

Threshold rule-sets are rules with either a 1x1 or a 1x2 image on both the LHS and a 1x1

image (i.e. 1 pixel) on the RHS. The VBManipulator processes these rules by making one

pass through the image and ―thresholding‖ each pixel based on the LHS value where a

1x1 LHS signals an exact match and a 2x1 LHS image indicates a minimum and

maximum range of values.

This functionality is different from a pixel-rewrite system in that rather than

specifying a rule for each possible pixel value requiring change, a 2x1 LHS in a threshold

rule specifies a range of pixel values where the values are on an ordinal rather than a

nominal scale. We found this functionality useful in the Scout domain for marking known

30
An operator elaboration is a type of Soar production or rule.

 163

obstacles such as buildings and ―no-go‖ terrain that could be defined roughly as a range

of pixel values in the original image. We think a similar type of rule-set based on location

may also be useful (e.g., we know the enemy is maneuvering through locations in a 9x9

region centered on location (x, y) even though it is considered impassable). However, we

have not implemented this type of rule.

Figure B-5: Example Soar Operator Rule (in English format) for Depictive Manipulations

The second type of rule-set is the pattern. The pattern rule-set processing is

similar to the pixel-rewrite system (Figure B-4). The general algorithm for processing the

rules is:
31

31
Much more efficient algorithms are possible (Furnas & Qu, 2002), but their implementation is rather

complex and not the main thrust of this research. Their increased efficiency would only strengthen the

claims of this research.

while (!quiescence)

quiescence = true

 for each pixel in the image

 get the 3x3 neighborhood

 check for a match in order of rule priority

 if match then quiescence = false

If there is an imagery operator proposed to transform a visual buffer layer with a set of depictive

rules and there are distance-field-flood color layers then elaborate the operator as follows:

 rule:

 name: <rule-name> # for debugging

rule-set: <rule-set-number> # 0 – N

type: <rule-type> # Threshold,Pattern,Mark

 priority: <rule-priority> # priority within this rule-set

 number-of-pixels: 1,3,4,9 # 1x1, 1x2, 2x2, 3x3

 rotate: 90 180 270 # rotations to check for match

 lhs: # Left-hand side (lhs)

 pixel: # one for each pixel (2, 4, or 9)

 number: 0 - 8 # pixel number based on its location in the 1x1, 2x1,

 # 2x2, or 3x3 LHS image

 type: exact min-value max-value wildcard # type of match

 vector:

 red: <red-value> # 0-255

 green: <green-value> # 0-255

 blue: <blue-value> # 0-255

 rhs: # Right-hand side (rhs)

 similar to lhs

Legend:
 # Comment
 <var-value> Variable

 164

The algorithm asymptotic run time is O(nr) where n is the number of pixels in the image

and r is the number of rules. If n or r is large, then we pay a computational cost. We

currently have no constraints imposed on the number of rules (r). However, by focusing

the computations on a subset of the image, we can keep n small so our algorithm is

effectively linear in the number of rules.

One way to keep the image size small is a consideration of our third type of rule

processing, the mark. Again, processing is similar to the pixel-level rewrites in that the

local neighborhood of the pixel determines activation. However, rather than processing

the entire image, the processing starts at a location specified in the rule-set header (not

shown in Figure B-5) and only considers the local 3x3 neighborhood of the current pixel.

The rule-set may specify location as a pixel location or a visual object in the Object Map

that is then projected onto its 2D pixel location. For this type of rule, the processing only

considers the local 3x3 neighborhood of the current pixel rather than the entire image.

The processing proceeds in a fashion similar to pixel rewrites in that if there is a match in

the current pixel neighborhood, the pixel is marked according to the rule RHS. For mark

rules, the RHS always specifies a modification of the center pixel. The next 3x3

neighborhood considered for matching is in the direction of the current match.

For example, in Figure B-6, if the current pixel is white and its diagonal pixel is

gray (in any direction), then the current pixel is marked orange, and the processing shifts

to the gray pixel. If the rule has a match in more than one orientation, then the processing

records any other matching pixel locations and pushes them on a stack. After processing

in the chosen direction is exhausted, the pixel locations on the top of the stack are

iteratively popped and, if not already marked,
32

 they are processed. For these types of

rules, their depictive specification automatically includes all rotational directions (i.e. 90,

180, 270), and they are constrained to a 2x1 or 2x2 diagonal rule.

Figure B-6: Mark Type Rule

32
This situation may occur when processing a closed region.

Shift processing to this
cell’s 3x3

neighborhood
*

*

*
*

 165

A mark rule-set is also distinguished from a pattern rule in that in addition to

performing the pixel rewrites, the VBManipulator creates a symbolic shape object and

adds it to the current scene‘s Visual Feature Set
33

 in VS-STM. The shape object includes

an emergent-id, the marking color, and the set of points defining the shape. We found this

rule-set type useful for marking the hypothesized enemy paths in the Scout domain and

propose that this form of processing is useful for marking salient objects by the Saliency

Inspector during bottom-up visual processing.

The final extension we made to the pixel-rewrite system is to create an attention

window in order to keep the image size (n) small. Since the depictive representation in the

Visual Buffer contains more information than can be processed, an attention window

focuses the processing effort (Kosslyn, Thompson, & Ganis, 2006). In our

implementation, the attention window is a fixed, m x m region of the image, where m is a

factor of two. The size of the attention window and its shift direction is task knowledge

transmitted from Soar to the VBManipulator every decision cycle in which the

manipulation is active.

For example, in the Scout Domain the attention window is set to 64x64 pixels.

During the distance field flood, the attention window starts centered at the key terrain.

After the flood completes in the current attention window, a Soar operator tells the

VBManipulator to shift the window towards the enemy map-icon. Since the visual object

of the enemy map-icon is in VS-STM, the VBManipulator simply looks up the visual-

object‘s scene graph node, determines its location, and then projects that 3D location to a

2D pixel location on the image. It then ―shifts‖ the attention window a fixed distance in a

straight-line towards the provided location based on the attention window dimensions and

a shift factor sent from Soar. For example, if the attention window is 64 x 64 and the shift

factor is 0.25, the shift is 64 * 0.25 = 16 pixels towards the given location. Note that this

is an internal shift of the cognitive focus. The agent‘s ―head‖ is not turning. We use the

rectangle shape for simplicity and its amenability to the rest of Soar (of importance

because of the strategic role of attention allocation). Furnas and Qu (2003) have also

33
If the marked shape is a subset of a specific object (e.g. the enclosed space of the letter A), then it is

added to the Visual Feature Set of the corresponding Visual Object in VS-STM.

 166

explored the notion of an attention window but where the processing is restricted to

arbitrarily shaped regions rather than a fixed rectangular region. An interesting extension

would be to explore using this more depictive (rather than spatial) notion of attention

control.

As an example of how an agent uses pixel-level rewrites to infer new visual and

spatial properties, consider the following rules from the Alphabet experiment. To find

enclosed spaces in a letter, there are two basic pattern-matching rules (Furnas, 1990,

1991; Furnas & Qu, 2003). Blob reduce modifies a 2x2, 2x3, or 3x2 blob by removing

the center pixel (Figure B-7a). Nibble tips reduces columns or rows of pixels in the image

by removing the end of the column or row segment (Figure B-7b). Using these two basic

algorithms, the general algorithm for finding enclosed spaces is as follows (sequenced

using rule priorities):

Figure B-8 shows the letter B before and after processing using these manipulations.

(a) Blob Reduce (b) Nibble Tips

Figure B-7: Enclosed Space Pixel Rewrite Rules

*

*

*

* * *

*

*

* *

*

*

*

 *

*

*

1. Reduce 2x2 blobs

2. Reduce 2x3 or 3x2 blobs

3. Nibble Tips

4. If there is a remaining shape then there is an enclosed space.

 167

Figure B-8: The Letter B Before and After Pixel Rewrites

As another example, consider a task from the scout domain. The agent may

analyze its team‘s position by imagining a hypothesized path from the current location

(source) of each enemy vehicle to a key terrain location (sink). After the imagined path(s)

are marked for each enemy/key-terrain pair, the agent imagines the team‘s view to

determine if they have adequate coverage of the paths. The analysis should take into

account the agent‘s knowledge about the surrounding terrain and known obstacles. A

possible solution is the following:

(a) Distance field

flood

(b) Mark Path

Figure B-9: Example Use of Pixel Rewrites from Scout Domain

This task knowledge can be encoded as depictive rules using the following three

rule-sets (Figure B-10). The first rule-set, shown in Figure B-10a in order of rule priority,

1. Mark all known obstacles and ―slow-go‖ terrain on the map with a color

(yellow) by applying a set of known threshold values. Mark all other pixels

gray.

2. Grow an iso-distance contour field avoiding any previously marked barriers

(Figure B-9a).

3. Walk the contour field from source to sink, marking the path along the way

(Figure B-9b).

 168

is a set of threshold rules to mark the known obstacles, steep terrain, and open terrain. For

example, the agent marks known obstacles in green on the original depiction so the top

rule changes those values to yellow, signaling an obstacle or barrier. Likewise, the middle

two rules mark the steep and open terrain as yellow obstacles based on pixel ranges

determined from an off-line analysis. The last threshold rule signals that any pixel in the

image not meeting the above criteria should be marked gray to facilitate building the

distance field flood.

(a) Obstacles (b) Distance Field Flood

(c) Mark Path

Figure B-10: Depictive Rules for Scout Domain

The second rule-set, shown in Figure B-10b, are a subset of the rules used to

create a temporary iso-contour distance field flood starting from the ―purple‖ sink (i.e.

key terrain). These rules create alternating layers of four colors: purple, black, white,

*

*

*

*

Start-Layer 2

Layer 2-1

Layer 1-0

*

*

*

*

Layer 0-1

Layer 1-2 *

Steep

terrain

Open

terrain

All

other

terrain

Known

obstacles

 169

green (not shown), purple, black, etc around the sink one pixel layer at a time (Furnas et

al., 2000). Figure B-10b shows the rule for layer 0 (purple) to layer 2 (white). The even-

to-odd layers match both orthogonal and diagonal pixels while the odd-to-even layers

match only orthogonal pixels. Four colors are sufficient to preserve the topological shape

around the yellow obstacles. The processing fills in the gray background pixels with the

contours. The end effect is a downhill field gradient that has both distance and directional

information that serves as an attractor for the subsequent, path-marking phase.

The final rule-set, shown in Figure B-10c, are rules that mark the path starting

from the red source (i.e. enemy map icon) to the purple sink (i.e. key terrain). The rules

take advantage of the direction and distance information of the iso-contor distance field

to find the shortest path from source to sink that avoids the yellow obstacles. Figure B-

10c illustrates the first few rules that fire, marking the path orange (assuming the red

source is initially adjacent to a white distance field layer—other rules are required for the

remaining initial possibilities). Note that once the top rule fires, moving the processing

from the source (i.e. red) to a distance field color (purple, black, white, or green), the

rules are simply the opposite from the rules in Figure B-10b used to create iso-contour

field. Each layer ―attracts‖ the path from the previous layer while avoiding obstacles.

Orthogonal directions are preferred (i.e. have a higher priority) than diagonal directions.

 There is a default rule (not shown in the figure) that fires when there is not a

match on the current pixel, and the current pixel is not purple (i.e. not the sink). In the

Scout domain, this situation may occur at the start or sometimes on the border of an

attention window when the current pixel being processed is yellow, or an obstacle. For

example, the enemy map-icon may be located on a piece of terrain that the agent thought

was ―no-go‖ terrain. In this situation, the default rule behavior is to move towards the

sink based on the annotated default direction preference of the rule.

 170

Appendix C

Software Engineering and Implementation

The following appendix describes the software design and implementation in enough

detail to give the reader an understanding of the major software components, classes and

their associations, and the symbolic representations in Soar‘s working (i.e. short-term)

memory. We will start by listing the software libraries and their dependencies. Then,

similar to the architectural discussion in Chapter 6, we will discuss SVI memories and

processes for spatial and visual imagery processing (Figure 6-1) using the Unified

Modeling Language (UML) diagram notation. As outlined in the architectural view,

connections between components imply both data and control constraints. We model

these constraints as UML associations (aggregate, composition, inheritance). The last

section describes the relevant Soar structures.

For performance, functionality, and usability reasons, the system is a layered

architecture with the mathematical functionality and image processing written in the C++

programming language and the software interfacing SVI, Soar, and its debugging tool,

the SoarJavaDebugger, written in the Java programming language. We use the following

open source software packages: CImg (Tschumperlé 2008), OpenGL (Shreiner et al.,

2006) and the corresponding LWJGL ("Lightweight Java game library (LWJGL)", 2008),

Soar ("Soar", 2008), SWT ("The standard widget toolkit (SWT)", 2007), SWIG (Beazley

et al., 2002), and Wild Magic (Eberly, 2005). Wild Magic provides the basic

mathematical package and scene graph support, CImg has the image data structure and

 171

algorithms, OpenGL is a software interface to graphics hardware, and SWT is a toolkit

for graphical user interfaces. We use the Soar Markup Language (SML) to interface Soar

with SVI and SWIG to generate the wrapper code for bridging C++ and Java code.

Figure C-1 and Figure C-2 illustrate the major software components and dependencies.

Figure C-1: SVI Libraries

Figure C-2: Component Dependencies

 172

C.1 Class Diagrams

The VisualObject is a basic class in the system. It is composed of zero or more

VisualObjects, VisualFeatures and SpatialProperties (Figure C-3). Along with its

instance-id, and if ―recognized,‖ visual-id, a VisualObject has a boolean flag indicating

whether or not it is perceived or imagined. A VisualFeature may be a Color or a Shape

and has a unique emergent-id. A SpatialProperty is an instance of Direction, Distance,

Orientation, Topology, Geometry, or Size and has a relative-instance-id or –emergent-id

and perhaps a base-instance-id or –emergent-id depending on the type (i.e. unary, binary,

tertiary) of spatial property and the VisualObject(s) or Shape(s) defining it. Visual-Spatial

short-term memory (Figure 6-6) is simply an instantiation of a VisualObject that

represents the current scene. The VisualBuffer, ObjectMap, and VisualLTM share this

VisualObject, effectively binding the ―what‖ and ―where‖ pathways.

Figure C-3: Visual Object Class Diagram

Within the Java SVI component, a SoarAgent class serves as an object adapter for

the SML Agent and Kernel classes (Figure C-4). A SoarAgent has zero or more

Association

Aggregation Inheritance

Composition

 173

ISoarComponents (‗I‘ is the Hungarian notation for ―interface‖) that are either memories

(i.e. VisualLTM) or processes (i.e. an Inspector). The SoarAgent class defines two inner

classes, InputLink and OutputLink, each consisting of a collection ISoarInputLink and

ISoarOutputLink objects. During initialization, each ISoarInputLink and

ISoarOutputLink object in the system registers with the SoarAgent‘s respective InputLink

and OutputLink objects for the commands it handles. During Soar‘s output phase, the

OutputLink object parses Soar‘s output-link and, for each type of command, calls

ISoarOutputLink object responsible for parsing and executing the specific symbolic

structures. Likewise, prior to the input phase, the InputLink object calls each of the

registered ISoarInputLink objects to create or modify symbolic structures on Soar‘s

input-link.

Figure C-4: Soar Agent Class Diagram

Every SVI component derives from either an AgentMemory or AgentProcess class

that in turn derive from the AgentComponent class (top of Figure C-5). AgentComponent

encapsulates basic information and behavior that all of the processes and memories

require such as its type, its Soar agent, and functionality for gathering run-time statistics.

Association

Aggregation Inheritance

Composition

 174

AgentMemory includes basic memory behavior, such as storing and retrieving, posting

inspector results, and notifying listeners of those results. AgentProcess simply serves as a

placeholder to distinguish between the two types of components using run-time type

information.

Figure C-5: Visual Buffer Class Diagram

The VisualBuffer derives from AgentMemory and contains attributes for its

height, width, and background color (Figure C-5). It encapsulates the depictive

representation that the VisualBufferRefresher creates by rendering the scene to a display

canvas (for debugging). The VisualBufferRefresher reads the pixels from the graphic

processing unit (GPU) pixel buffer into a CImg (Tschumperlé 2008) data structure by

calling the VisualBuffer‘s CreateDepictiveRepresentation function. For efficiency and

functionality purposes, the pixel buffer is read only when the agent issues a generate

command. Otherwise, the VisualBufferRefresher renders the image to the display canvas

only. The image read from the GPU is the base visual-buffer layer (vb-layer 0). The

Association

Aggregation Inheritance

Composition

 175

VisualBufferManipulator and inspection process create other images from the base image

as required and store them temporarily in the VisualBuffer as a set of CImg structures.

All agent components written in C++ for SVI are extended in Java and have a

corresponding Soar<ComponentName> class (e.g. SoarVisualBuffer). These classes

serve three purposes. First, they implement the ISoarComponent (Soar Component

Interface) providing them with the interface to register as components of the SoarAgent

object (Figure C-4 and Figure C-5). This requirement is for ownership purposes so that

the SoarAgent object maintains responsibility for the memory allocation of its

components. Second, some of the Soar+SVI classes interface with Soar‘s input and/or

output links. For example, the SoarVisualBufferRefresher and

SoarVisualBufferManipulator implement the ISoarOutputLink interface. This standard

interface provides each component with the functionality to receive commands (i.e.

generate, transform) from Soar. Third, the Soar+SVI classes may provide additional

functionality specific to their Java implementation. For example, the SoarVisualBuffer

implements an SWT OpenGL drawing canvas (GLCanvas) that is specific to Java

facilitating the integration of SVI with Soar‘s debugging tool, the SoarJavaDebugger

(Figure C-6). The SoarVisualBufferRefresher implements the necessary threading and

Lightweight Java Graphics Library to draw a scene to the GLCanvas.

Figure C-6: SoarJavaDebugger with SVI Interface

 176

VisualLTM (Figure C-7) is a hash table indexed by a visual-id. Each VisualEntry

includes a visual-id, a scene graph representing the object, and an association with other

entries containing the object‘s parts. To assist construction, the VisualEntry class stores

basic statistics concerning each object‘s vertices (e.g. minimum and maximum vertices).

VisualLTM also provides an interface to load and store scene graph objects from a file

system. SoarVisualLTM extends VisualLTM so it can register as a Soar component.

Figure C-7: Visual Long-term Memory Class Diagram

Every memory has one or more IMemoryListener interfaces associated with it.

For VisuaLTM there is a C++ IVisualLTMListener and a corresponding Java

SoarVisualLTMListener (Figure C-7). The SoarVisualLTMListener implements the

ISoarInputLink interface, enabling it to communicate with Soar‘s input-link. After

Association

Aggregation Inheritance

Composition

 177

recognition of a visual object, manipulation of the VisualBuffer, or inspection for visual

features, the SoarVisualLTMListener receives a signal from the appropriate process.

During the subsequent input phase, the SoarVisualLTMListener creates the appropriate

symbolic structures on Soar‘s input-link from the information in VS-STM.

The ObjectMap and IObjectMapListener have a similar design to VisualLTM and

IVisualLTMListener (Figure C-8). The ObjectMap has a Node representing the current

scene graph and a View that represents the location and direction of the agent‘s

viewpoint. The ObjectMapConstructor and ObjectMapManipulator have direct access to

the ObjectMap so that they can construct and manipulate the scene graph or change the

ObjectMap‘s viewpoint. Their corresponding Soar class definitions implement the

ISoarOutputLink interface in order to receive commands (construct, transform) from

Soar. The SoarObjectMapListener communicates spatial query results stored in VS-STM

by creating symbolic structures on Soar‘s input-link.

Figure C-8: Object Map Class Diagram

Association

Aggregation Inheritance

Composition

 178

An InspectorManager object maintains a reference to all registered

VisualSpatialInspectors in the system (Figure C-9). These processes inspect the

VisualBuffer or ObjectMap in response to an automatic bottom-up query or top-down

imagery inspection. There are three types of VisualSpatialInspectors. The first is a

SaliencyInspector that is responsible for initially marking and attempting to recognize

objects in the perceived scene. To facilitate recognition, the saliency inspector through

the InspectorManager may call the other two types of inspectors, VisualFeatureInspector

and SpatialPropertyInspector. Both of these classes have several derived, concrete

classes implementing the algorithms for a specific type of visual or spatial property (i.e.

line, enclosed spaces, direction, topology, geometry, etc.).

Figure C-9: Inspector Class Diagram

Association

Aggregation Inheritance

Composition

See

Figure C-3

 179

The SoarInspectorManager (bottom of Figure C-9) is responsible for parsing the

inspect command from Soar and initiating the inspection process within SVI. When the

SoarInspectorManager receives the command to inspect, it first creates an

InspectorQueryResult object (top right of Figure C-9) that encodes the specific query and

stores the collected results. The InspectorQueryResult has a query-id (a unique symbol

generated by Soar prior to the inspection for tracking purposes), an optional set of query

parameters (e.g. parameters for Hough transform, attention window size, query

constraints) and one or more VisualSpatialProperties. The VisualSpatialProperty is an

abstract base class for the VisualFeature, VisualObject, and SpatialProperty classes

previously discussed (Figure C-3).

After marshalling the query by creating the InspectorQueryResult structure, the

SoarInspectorManager calls the inspect function of the base class. Based on the run-time

type information of the first visual-spatial property in the query, the InspectorManager

determines and dispatches the appropriate VisualSpatialInspector by calling its

corresponding Inspect function (Figure C-9). The InspectorManager knows what

inspector to dispatch because during initialization, each inspector registers the type of

visual-spatial property it is capable of processing.

The first inspector called during a query becomes the lead inspector and is

responsible for posting any results to VS-STM. If during the inspection, the lead

inspector comes across a visual-spatial property that it cannot handle, it dispatches the

appropriate inspector through the InspectorManager by calling the second Inspect

function shown in the VisualSpatialInspector class (Figure C-9). This function signals to

the called inspector to perform the inspection, store the results in the provided

VisualSpatialProperty object, and return to the caller without posting results. For

example, if the first visual-spatial property in a query is for the direction between two

visual objects and after finishing the inspection, the DirectionDistanceInspector comes

across a request for the topological relationship of the visual objects, it accesses the

TopologyInspector via the InspectorManager and dispatches it. When the

TopologyInspector finishes, it stores its results and returns control to the

DirectionDistanceInspector. The DirectionDistanceInspector consolidates the results in

 180

the original InspectorQueryResult structure, stores it in VS-STM, and notifies the

appropriate memory listener that there are results waiting processing.

C.2 Soar Symbolic Structures

Now that we have discussed the SVI classes, we can explain within this context how

spatial and visual imagery processing works from Soar‘s perspective. We will discuss the

symbolic structures from the point of view of someone writing an agent. Soar‘s short-

term or working memory elements (WME) are a three-tuple (identifier, attribute, value).

A value may be a primitive (integer, float, string) or another symbolic identifier. In most

cases we only represent the attribute with a caret (e.g. ^attribute). If the attribute has sub-

structure, we represent it either with a new-line and indentation or by connecting it with a

dot to its parent attribute (e.g. ^attribute.sub-attribute). Bold entries are permanent

architectural structures. Entries shown in italics are WMEs that the system creates

(currently through productions) in response to input or a command. Normal text entries

are working memory elements (WMEs) the agent creates with productions (i.e. task

knowledge). Finally, entries in <angle brackets> are items suggesting the types of values

that might augment the existing structure.

The imagery subsystem includes SVI and a set of Soar productions that initialize

some working memory structures and facilitate communication with SVI through Soar‘s

input- and output-links. We consider these productions and structures as ―architectural‖

rather than knowledge. The imagery system uses Soar‘s subgoaling mechanism to

implement the imagery processing specific to the input- and output-links. Soar‘s top-state

working memory structure has a visual-spatial working memory (vs-wmem) attribute

(Figure C-10a). This attribute has three architectural substructures: imagery, visual-ltm,

and visual-object-instances. The agent issues imagery commands (construct, transform,

generate, inspect) and receives results by augmenting the imagery attribute. We discuss

this structure in more detail shortly. When a VLTM listener informs Soar that a visual

object has been stored in VLTM,
34

 an operator creates a visual-object structure under the

visual-ltm attribute. Figure C-10b shows an example of a visual-object structure. Based

34
In the current implementation, this input implies that the visual-object scene graph has been loaded from

the file system.

 181

on input from the VLTMListener, only the visual-id and has-a attributes are initially

present in a visual-ltm visual-object. The name is optional and added by the agent to

assist in identifying instances of the object and associating it with other symbolic

structures (e.g. enemy tank). The agent adds explicit visual features and spatial properties

as it acquires them (programmed or learned). Although we implemented the visual-ltm

structure in working memory, we assume that it is better suited for one of Soar‘s long-

term declarative memories (i.e. episodic or semantic).

(a) (b)

(c) (d)

Figure C-10: Top-state Visual-Spatial Working Memory Structure

The visual-object-instances (Figure C-10a) also store a set of visual-object

structures. Unlike the structures augmenting the visual-ltm attribute, however, these

symbols are short-lived instances of what the agent has recently perceived or imagined.

^spatial

 ^relative-visual-object/shape

 ^base-visual-object/shape

 ^base-visual-object/shape-tert

 ^direction

 ^qualitative above below left-of

 right-of in-front-of behind

 ^vector

 ^distance

 ^qualitative near far

 ^scalar

 ^orientation

 ^qualitative n nw w sw s se e ne

 ^scalar

 ^topology

 ^qualitative dc ec po tpp ntpp eq

 ^geometry

 ^qualitative angle intersect parallel

 perpendicular congruent

 ^size

 ^qualitative small medium large

 ^scalar

 ^vector

 ^visual-feature

 ^emergent-id

 ^color

 ^qualitative red green blue

 ^scalar <color-index>

 ^vector

 ^red

 ^green

 ^blue

 ^shape

 ^number-of-points

 ^is-closed true false

 ^color <marking-color>

 ^qualitative point line curve

 triangle general

^visual-object

 ^visual-id <unique-integer>

 ^instance-id <unique-integer>

 ^is-imagined

 ^has-a <visual-object-parts>

 ^name <name-assigned-by-agent>

 ^visual-features

 ^spatial-properties

^vs-wmem

 ^imagery

 ^command

 ^result

 ^visual-ltm

 ^visual-object

 ^visual-object-instances

 ^visual-object

 182

When the architecture first recognizes a visual object (i.e. an incoming visual-object

structure on Soar‘s input-link with a visual-id and an instance-id), it builds a visual-object

working memory structure under the visual-object-instances. The agent identifies the

visual-object by associating it with its entity (e.g. the visual-object, ―S‖ is associated with

the letter ‗S‘, the visual-object ―enemy-tank‖ is associated with an enemy entity). The

visual-object structure contains a visual-id, instance-id, and, if the agent ―imagined‖

rather than perceived the object, an is-imagined attribute. The has-a, visual-features, and

spatial-properties attributes are inherited from the visual-object‘s corresponding visual-

object structure with the same visual-id encoded in visual-ltm. The agent optionally adds

a name.

Subsequent observations of a visual-object do not create a new visual-object

structure but simply match the incoming instance-id with the stored instance-id. If there is

not a match before building a new visual-object structure, the system determines if the

perceived object is the same as an existing visual-object based on the visual-object‘s

egocentric location and known velocity (semantic knowledge). If the incoming visual-

object is within a certain radius (task knowledge) of an existing visual-object instance,

the system assumes the incoming and existing visual object are the same and does not

create a new structure. Any imagined visual-object is removed when the system switches

from imagining to perceiving. Other visual-object instances, in theory (not implemented),

decay over time and are removed from working memory when the current episode

completes.

Figure C-10c-d also shows examples of a working memory structure for a single

visual feature and spatial property that is similar to the SVI class diagram for those

properties (Figure C-3). This information arrives on Soar‘s input-link from either the

VisualLTMListener or ObjectMapListener and may augment a visual-object‘s visual-

features or spatial-properties. The visual-feature attribute has an emergent-id and either a

shape or a color sub-attribute. The color is expressed qualitatively (e.g. red, green, etc.) or

quantitatively as a scalar or RGB vector. The shape attribute has a type (line, curve, etc.),

number of points, a flag signaling whether or not it is closed (i.e. a region), and marking

color. The spatial attribute describes the visual-object(s) or shape(s) involved with the

 183

relative- and base-instance/emergent-ids. Except for topology and geometry, each spatial

property may be described in qualitative or quantitative terms.

An agent invokes the imagery system by creating a command on the

^imagery.command structure (Figure C-11). The system augments each command with

a unique command-id and after processing the request, creates a corresponding result

structure with the same command-id. The purpose of the command-id is to facilitate the

tracking of an agent‘s request with the result from the system.

An agent composes two visual-objects or adds a visual-object or shape to the

current scene by augmenting the ^imagery.command structure with a compose or add

command (Figure C-11a). The command includes a spatial structure (Figure C-10d)

signaling to SVI how to configure the visual-object/shapes. For a compose command,

both the relative- and base-visual-objects are from the set of visual-object structures in

the vltm structure (Figure C-10a-b). The relative-visual-object is also from the vltm

structure for an add command, but the base-visual-object is from the visual-object-

instance structure as it is already an instance of the scene. If adding a shape as a first-

class visual-object, then the agent must either specify the shape structure with its

corresponding emergent-id so that SVI can access its vertices, or the agent must specify a

set of points and their connections (not shown in Figure C-10c). After processing the

command, the imagery system creates the visual-object structure on the ^visual-object-

instances structure (Figure C-10a) and records the instantiated visual-object(s) on the

^imagery.result.retrieved structure (Figure C-11b). To manipulate the quantitative

spatial or visual depictive representations, an agent creates a transform-om or -vb

structure (Figure C-11b-d). To transform a visual object in the ObjectMap, the agent

builds the spatial structure (Figure C-10d) with the relative-visual-object as the

transforming entity. The agent may change its imagined viewpoint by specifying

qualitative or quantitative information. To transform an image in the VisualBuffer, the

agent creates the transform-vb structure with the information shown in Figure C-11e. The

vb-layer is the image to transform. If using depictive rules to specify the manipulation

then the attention window specifies its parameters (see Appendix B.2). If the

manipulation is of type mark, then the system records a relative-shape structure on the

^retrieved.transform-vb structure (Figure C-11f).

 184

(a) Construct Command (b) Construct Result

(c) Transform ObjectMap Command (d) Transform ObjectMap Result

(e) Transform VisualBuffer Command (f) Transform VisualBuffer Result

(h) Generate Command (i) Generate Result

(j) Inspect Command (k) Inspect Result

Figure C-11: Imagery Command and Result Working Memory Structures

^imagery.result

 ^retrieved.inspect

 ^command-id <same-as-original>

 ^visual-feature

 ^visual-spatial

^imagery.command.inspect

 ^command-id <unique-symbol>

 ^visual-object/vb-layer # visual-feature

 ^visual-feature

 ^visual-spatial

^imagery.result

 ^retrieved.generate

 ^command-id <same-as-original>

 ^vb-layer <generated-layer-num>

^imagery.command.generate

 ^command-id <unique-symbol>

 ^visual-object-instances

 ^add-visual-object

 ^remove-visual-object

^imagery.result

 ^retrieved.transform-vb

 ^command-id <same-as-original>

 ^relative-shape # if mark rule

^imagery.command.transform-vb

 ^command-id <unique-symbol>

 ^vb-layer <image-to-transform>

 ^attention-window

 ^width <number-of-pixels>

 ^height <number-of-pixels>

 ^shift-factor<between 0.0-1.0>

 ^base-visual-object # start location

 ^relative-visual-object #stop location

 ^transform # image processing

 ^rotate

 ^scale

 ^rules #depictive manipulations

 ^rule # See Appendix B.2

^imagery.result

 ^retrieved.transform-om

 ^command-id <same-as-original>

^imagery.command.transform-om

 ^command-id <unique-symbol>

 ^spatial <spatial-struct>

 ^viewpoint

 ^qualitative front/top/side

 ^quantitative

 ^location

 ^direction

 ^up

^imagery.result

 ^retrieved.compose/add

 ^command-id <same-as-original>

 ^relative-visual-object/shape

 ^base-visual-object # compose only

^imagery.command.compose/add

 ^command-id <unique-symbol>

 ^spatial <spatial-struct>

 185

An agent issues a generate command by augmenting the ^imagery.command

with a generate attribute (Figure C-11h). The agent may create either one or more ^add-

visual-object or ^remove-visual-object attributes to specify the visual-objects it wants

generated in the visual depictive representation. After generating the image, the system

augments the ^result.retrieved.generate structure with the generated vb-layer number

(Figure C-11i) to support further reasoning such as manipulation of the image or queries

for visual features.

Finally, the agent initiates the inspect command by creating the inspect structure

as shown in (Figure C-11j). The ^visual-feature and ^visual-spatial structures are as

illustrated in Figure C-11c-d. If the query is for a visual-feature, the agent must specify

either the visual-object or vb-layer to inspect. SVI can determine a visual-object‘s

associated vb-layer image from VS-STM (Figure 6-6). However, sometimes it is easier to

specify the vb-layer if the agent just generated it and there are two or more visual-objects

involved in the inspection (e.g. two lines).

After processing the inspect command, the imagery system creates the result

structure (Figure C-11k). In the case of spatial queries with only a single, relative-visual-

object specified in the original inspection command (e.g. what are all of the visual-

objects left-of the fork), the ^result.retrieved.inspect structure contains a ^spatial

attribute for each pair of visual-objects satisfying the constraint. For binary or tertiary

spatial queries (e.g. is the plate right-of the fork), the system creates a single ^spatial

structure if the assertion is true; otherwise, the attribute will be missing. If the agent

desires quantitative information, then in the original command it specifies the attributes it

desires. For example, for the query ―What is the direction and distance between enemy-1

and the key-terrain in the west,‖ the structure would look like the following:

The result structure includes the values. Likewise, if the agent desires the answer in

qualitative terms, it includes the qualitative attribute without a value, and the resulting

structure will have the closest qualitative value.

^imagery.command.inspect

 ^command-id <unique-symbol>

 ^visual-spatial

 ^relative-visual-object <enemy-1-visual-object>

 ^base-visual-object <key-terrain-west-visual-object>

 ^direction.vector

 ^distance.scalar

 186

The imagery system uses Soar‘s subgoaling mechanism to implement spatial and

visual imagery processing. When an agent augments the top-state imagery attribute with

a command, the system proposes an imagery operator. If the operator is selected (it may

not be selected because of current, more immediate task demands), then an operator no-

change impasse occurs and Soar creates an imagery state structure. Imagery processing

commences in this state and remains active until either the corresponding result structure

of the command is created or another operator is selected in a superstate (e.g. in the Scout

domain an operator to attend to the teammate‘s report).

The imagery subgoal includes operators to compose, add, transform-om,

transform-vb, generate, inspect, and attend-to-input-link. With the exception of the

transform-vb, each imagery command requires two decision cycles. The first decision

cycle involves selecting the operator associated with the agent‘s imagery command and

sending it to SVI by augmenting Soar‘s output-link. The second decision cycle attends to

the results returned by SVI on Soar‘s input-link and creates ^vs-

wmem.imagery.result.retrieved structure in the top-state. For the compose and add

commands, this second decision cycle (attend-to-input-link) creates the ^vs-

wmem.visual-object-instances.visual-object structures. The transform-vb operator may

require additional decision cycles depending on the number of required attention-window

shifts. In this case, the attend-to-input-link operator creates the appropriate output-link

structures to affect the shift.

The primary purpose of each operator is to translate the agent‘s command into its

primitive elements, augment missing structures with default values, and communicate

with SVI via Soar‘s output- and input-link (Figure C-12a-b). For example, the structures

illustrated in Figure C-11 are similar to the substructures augmented on the output-link

except rather than specifying the relative- or base-visual-object identifier symbols, the

primitive visual-ids and instance-ids are used. If information is missing, the selected

operator augments the outgoing structure with its default values (e.g. topology defaults to

disconnected, distance to 1.0, orientation to zero degrees, etc.).

After imagery finishes processing in SVI, the VisualLTMListener and

ObjectMapListener augment the incoming ^what-link and ^where-link respectively.

Both structures have a ^recognize and ^result attributes. The listeners automatically

 187

update the two recognize attributes during each input phase. The ^what-link.recognize

attribute has one ^visual-object structure for each salient object (either perceived or

imagined) in the current scene. The ^where-link.recognize attribute has on ^spatial

structure for each visual-object in the scene. The base-instance-id is the visual-object

instance-id for the agent and the relative-instance-id is the salient object. Direction,

distance, orientation, and relative size between the agent and perceived object are always

provided on the incoming ^recognize.spatial attribute. So, for example, when the agent

adds an imagined visual-object to the scene, the VLTMListener will automatically add its

^what-link.recognize visual-object structure. The ObjectMapListener will add its ^where-

link.recognize spatial structure with the direction, distance, orientation, and size

information specified relative to the agent. After each imagery operation, the listeners, at

a minimum, augment each link‘s ^result attribute with the command-id. Other attributes

include the vb-layer, shift, visual-feature, or spatial result similar to the top-state ^vs-

wmem.imagery.result.retrieved structure previously discussed.

(a) (b)

(c) (d)

Figure C-12 Imagery Output-link and Input-link Working Memory Structure

^input-link.where-link

 ^recognize

 ^spatial

 ^relative-instance-id

 ^base-instance-id

 ^direction

 ^distance

 ^orientation

 ^size

 ^result

 ^command-id

 ^spatial # inspect command

 ^emergent-id

 ^shape

^input-link.what-link

 ^recognize

 ^visual-object

 ^visual-id

 ^instance-id

 ^result

 ^command-id

 ^vb-layer # after generate command

 ^shift true false # during vb transforms

 ^visual-feature # inspect command

 ^emergent-id

 ^shape

 ^color

^input-link

 ^what-link

 ^recognize # bottom-up,automatic

 ^result # imagery results

 ^store/remove # visual-ltm

 # store/remove

 ^where-link

 ^recognize # bottom-up,automatic

 ^result # imagery results

^output-link

 ^imagery.command

 ^compose

 ^add

 ^transform-om

 ^transform-vb

 ^inspect

Note similar structure as in Figure C-11

but using primitive values

 188

Bibliography

 189

Anderson, J. R. (1978). Arguments concerning representations for mental imagery.

Psychological Review, 85(4).

Anderson, J. R., Bothell, D., Byrne, M. D., Douglass, S., Lebiere, C., & Qin, Y. (2004).

An integrated theory of the mind. Psychological Review, 111(4), 1036-1060.

Army, U. S. (2002). Field manual 3-20.98, reconnaissance platoon. Washington D.C.:

Headquarters, Department of the Army.

Army, U. S. (2003). FM 6-0, mission command: command and control of Army forces.

Washington, D.C.: Headquarters, Department of the Army.

Barkowsky, T. (2002). Mental representation and processing of geographic knowledge -

A computational approach. Berlin: Springer-Verlag.

Barkowsky, T. (in press). Modeling mental spatial knowledge processing: An AI

perspective. In F. Mast & L. Jäncke (Eds.), Spatial processing in navigation,

imagery, and perception. Berlin: Springer.

Barsalou, L. W. (1999). Perceptual symbol systems. Behavioral and Brain Sciences, 22,

577-660.

Baylor, G. W. (1971). A treatise on the mind's eye: an empirical investigation of visual

mental imagery. (Doctoral dissertation, Carnegie-Mellon, 1971).

Beazley, D., Ballabio, L., Fulton, W., Johnson, L., Köppe, M., Lenz, J., et al. (2002).

Simplified wrapper and interface generator (SWIG). Retrieved October 15,

2005, from http://www.swig.org/

Best, B. J., Lebiere, C., & Scarpinatto, C. K. (2002). A model of synthetic opponents in

MOUT training simulations using the ACT-R cognitive architecture. In

Proceedings of the Eleventh Conference on Computer Generated Forces and

Behavior Representation). Orlando, FL.

Biederman, I. (1987). Recognition-by-components: A theory of human image

understanding. Psychological Review, 94(2), 115-147.

Buss, A. H. (2002). Component based simulation modeling with SimKit. In Proceedings

of the 2002 Winter Simulation Conference, E. Yücesan, C.-H. Chen, J. L.

Snowdon & J. M. Charnes (Eds.)). Miami, FL.

Buss, A. H., & Sánchez, P. J. (2005). Simple movement and detection in discrete event

simulation. In Proceedings of the 2005 Winter Simulation Conference, M. E.

Kuhl, F. B. Steiger, N. M. Armstrong & J. A. Joines (Eds.)). Miami, FL.

http://www.swig.org/

 190

Byrne, P., Becker, S., & Burgess, N. (2007). Remembering the past and imagining the

future: A neural model of spatial memory and imagery. Psychological Review

114(2), 340-375.

Chandrasekaran, B. (2006). Multimodal cognitive architecture: Making perception more

central to intelligent behavior. In Proceedings of the Twenty-First National

Conference on Artificial Intelligence, (pp. 1508-1512). Boston, MA.

Chong, R. S., & Laird, J. E. (1997). Identifying dual-task executive process knowledge

using EPIC-Soar. In Proceedings of the Nineteenth Annual Conference of the

Cognitive Science Society, M. Shafto & P. Langley (Eds.)). Mahwah, New Jersey:

Lawrence Erlbaum Associates.

Chown, E., Kaplan, S., & Kortenkamp, D. (1995). Prototypes, location, and associative

networks (PLAN): Towards a unified theory of cognitive mapping. Cognitive

Science, 19(1), 1-51.

Cohn, A. G., Bennett, B., Gooday, J., & Gotts, N. M. (1997). Qualitative spatial

representation and reasoning with the Region Connection Calculus.

GeoInformatica, 1(3), 275-316.

Eberly, D. H. (2005). 3D game engine architecture, first edition: Engineering real-time

applications with Wild Magic. San Francisco, CA: Morgan Kaufman Publishers

Elsevier Inc.

Edwards, G., & Moulin, B. (1998). Toward the simulation of spatial mental images using

the Voronoi¨ model. In P. Olivier & G. Klaus-Peter (Eds.), Representation and

Processing of Spatial Expressions (pp. 163-184). Mahwah, New Jersey:

Lawrence Erlbaum Associates, Inc.

Farah, M. J., Soso, M. J., & Dasheiff, R. M. (1992). Visual angle of the mind's eye before

and after unilateral occipital lobectomy. Journal of experimental psychology.

Human perception and performance, 18(1), 241-246.

Finke, R. A. (1989). Principles of mental imagery. Cambridge, MA: MIT Press.

Forbus, K. D., Neilsen, P., & Faltings, B. (1991). Qualitative spatial reasoning: the clock

project. Artificial Intelligence, 51(1-3), 417–471.

Forbus, K. D., Tomai, E., & Usher, J. (2003). Qualitative spatial reasoning for visual

grouping in sketches. Paper presented at the 17th International Workshop on

Qualitative Reasoning. Brasilia, Brazil.

Funt, B. V. (1976). WHISPER: A computer implementation using analogues in

reasoning. (Doctoral dissertation, The University of British Columbia, 1976).

 191

Furnas, G. (1990). Formal models for imaginal deduction. In Proceedings of the Twelfth

Annual Conference of the Cognitive Science Society, (pp. 622-669). Hillsdale, NJ:

Lawrence Erlbaum.

Furnas, G. (1991). New graphical reasoning models for understanding graphical

interfaces. In Proceedings of the CHI '91 Conference on Human Factors in

Computer Systems, (pp. 71-78).

Furnas, G., & Qu, Y. (2002). Shape manipulation using pixel rewrites, (at Visual

Computation 2002). In Proceedings of the Distributed Multimedia Systems 2002,

(pp. 630-639). San Francisco, CA.

Furnas, G., & Qu, Y. (2003). Using pixel rewrites for shape-rich interaction. In

Proceedings of the Human Factors in Computing Systems CHI2003 Conference,

(pp. 369-376). New York: ACM.

Furnas, G., Qu, Y., Shrivastava, S., & Peters, G. (2000). The use of intermediate

graphical constructions in problem solving with dynamic, pixel-level diagrams. In

First International Conference on the Theory and Application of Diagrams:

Diagrams 2000 (Vol. 1889, pp. 314-329). Edinburgh, Scotland, U.K.

Gelernter, H. (1959). Realization of a geometry theorem-proving machine. In

Proceedings of the International Conference on Information Processing, (pp.

273-282). Unesco, Paris.

Gilden, D. L., Blake, R., & Hurst, G. (1995). Neural adaptation of imaginary visual

motion. Cognitive Psychology, 28, 1-16.

Glasgow, J., & Papadias, D. (1992). Compuational imagery. Cognitive Science, 16, 355-

394.

Grandin, T. (2006). Thinking in pictures (Second ed.). New York: Vintage Books.

Grush, R. (2004). The emulation theory of representation: Motor control, imagery, and

perception. Behavioral and Brain Sciences, 27, 377-442.

Gunzelmann, G., & Lyon, D. R. (2007). Cognitive architectures: Valid control

mechanisms for spatial information processing. In H. Schultheis, T. Barkowsky,

B. Kuipers & B. Hommel (Eds.), Technical Report #SS-07-01: AAAI Spring

Symposium Series: Control Mechanisms for Spatial Knowledge Processing in

Cognitive/Intelligent Systems (pp. 23-28). Menlo Park, CA: AAAI Press.

Hebb, D. O. (1968). Concerning imagery. Psychological Review, 75(6), 466-477.

 192

Helstrup, T. (1988). Imagery as a cognitive strategy. In M. Denis, J. Engelkamp & J. T.

E. Richardson (Eds.), Cognitive and Neuropsychological Approaches to Mental

Imagery (pp. 241-250). Dordecht / Boston / Lanchester: Martinus Nijhorff.

Hill, R. W. (1999). Modeling perceptual attention in virtual humans. In Proceedings of

the 8th Conference on Computer Generated Forces and Behavioral

Representation). Orlando, FL.

Hill, R. W., Han, C., & Van Lent, M. (2002). Perceptually driven cognitive mapping in a

virtual urban environment. AI Magazine, 23(4), 67-69.

Itti, L. (2000). Models of bottom-up and top-down visual attention. (Doctoral dissertation,

California Institute of Technology, 2000).

Jaczkowski, J. J. (2002, June 2002). Robotic technology integration for army ground

vehicles. Aerospace and Electronic Systems Magazine, 17, 20-25.

Jones, R. M., Laird, J. E., Nielsen, P. E., Coulter, K. J., Kenny, P. G., & Koss, F. V.

(1999). Automated intelligent pilots for combat flight simulation. AI Magazine,

20(1), 27-42.

Jonides, J., Lewis, R. L., Nee, D. E., Lustig, C. A., Berman, M. G., & Moore, K. S.

(2008). The mind and brain of short-term memory. Annual Review of Psychology,

In Press.

Kaplan, S., & Kaplan, R. (1982). Cognition and environment. Ann Arbor, MI: Ulrich.

Kettani, D., & Moulin, B. (1999). A spatial model based on the notions of spatial

conceptual map and of object's influence areas. In C. Freksa & D. M. Mark

(Eds.), Spatial Information Theory. Cognitive and Computational Foundations of

Geographic Information Science (Vol. 1661/1999). Berlin: Springer-Verlag.

Kieras, D. E., & Meyer, D. E. (1997). An overview of the EPIC architecture for cognition

and performance with application to human-computer interaction. Human-

Computer Interaction, 12, 391-483.

Kosslyn, S. M. (1980). Image and mind. Cambridge: Harvard University Press.

Kosslyn, S. M. (1994). Image and brain - the resolution of the imagery debate.

Cambridge: MIT Press.

Kosslyn, S. M., Alpert, N. M., Thompson, W. L., Maljkovic, V., Weise, S. B., Chabris,

C. F., Hamilton, S. E., Rauch, S. L., & Buonanno, F. S. (1993). Visual mental

imagery activates topographically organized visual cortex: PET investigations.

Journal of Cognitive Neuroscience, 5, 263 - 287.

 193

Kosslyn, S. M., & Pomerantz, J. R. (1977). Imagery, propositions, and the form of

internal representations. Cognitive Psychology, 9, 52-76.

Kosslyn, S. M., Reiser, B. J., Farah, M. J., & Fliegel, S. L. (1983). Generating visual

images: units and relations. Journal of Experimental Psychology: General,

112(2), 278-303.

Kosslyn, S. M., Thompson, W. L., & Ganis, G. (2006). The case for mental imagery.

New York, New York: Oxford University Press.

Kuipers, B. (2000). The spatial semantic hierarchy. Artificial Intelligence, 119, 191-233.

Kurup, U. (2008). Design and use of a bimodal cognitive architecture for diagrammatic

reasoning and cognitive modeling (Doctoral dissertation, Ohio State University,

2008).

Kurup, U., & Chandrasekaran, B. (2007). Modeling memories of large-scale space using

a bimodal cognitive architecture. In Proceedings of the Eighth International

Conference on Cognitive Modeling, R. L. Lewis, T. A. Polk & J. E. Laird (Eds.),

(pp. 267-272). Oxford, UK: Taylor & Francis/Psychology Press.

Laird, J. E. (2008). Extending the Soar cognitive architecture. In Proceedings of the

Artificial General Intelligence Conference). Memphis, TN.

Larkin, J. H., & Simon, H. A. (1987). Why a diagram is (sometimes) worth ten thousand

words. Cognitive Science, 11, 65-99.

Lehman, J., Laird, J., & Rosenbloom, P. (2006). A gentle introduction to Soar, an

architecture for human cognition: 2006 Update. Retrieved Jan 2, 2006, from

http://ai.eecs.umich.edu/soar/sitemaker/docs/misc/GentleIntroduction-2006.pdf

Lightweight Java game library (LWJGL). (2008). Retrieved October 15, 2005, from

http://lwjgl.org/

Marr, D. (1982). Vision. San Francisco: Freeman.

Mat Jafri , M. Z., & Deravi , F. (1994, 2 November 1994). Efficient algorithm for the

detection of parabolic curves. In Proceedings of the Proceedings of SPIE - Vision

Geometry III, R. A. Melter & A. Y. Wu (Eds.), (pp. 53-61). Boston, MA, USA

SPIE--The International Society for Optical Engineering.

Mellet, E., Bricogne, S., Tzourio-Mazoyer, N., Ghaem, O., Petit, L., Zago, L., et al.

(2000). Neural correlates of topographic mental exploration: The impact of route

versus survey perspective learning. NeuroImage, 12, 588-600.

http://ai.eecs.umich.edu/soar/sitemaker/docs/misc/GentleIntroduction-2006.pdf
http://lwjgl.org/

 194

Moran, T. P. (1973). The symbolic imagery hypothesis: An empirical investigation via a

production system simulation of human behavior in a visualization task. (Doctoral

dissertation, Carnegie-Mellon, 1973).

Mukerjee, A. (1998). Neat versus scruffy: A review of computational models for spatial

expressions. In P. Olivier & G. Klaus-Peter (Eds.), Representation and

Processing of Spatial Expressions (pp. 1 - 31). Mahwah, New Jersey: Lawrence

Erlbaum Associates, Inc.

Newell, A. (1990). Unified theories of cognition. Cambridge, Massachusetts: Harvard

University Press.

Newell, A., & Simon, H. A. (1972). Human problem solving. Englewood Cliffs, N.J.:

Prentice-Hall.

Newell, A., Yost, G. R., Laird, J. E., Rosenbloom, P. S., & Altmann, E. (1991).

Formulating the problem space computational model. In R. F. Rashid (Ed.),

Carnegie Mellon Computer Science: A 25-Year commemorative. Reading, MA:

ACM-Press (Addison-Wesley).

Norman, J. (2000). Differentiating diagrams: A new approach. In M. Anderson, P. Cheng

& V. Haarslev (Eds.), Theory and Application of Diagrams (Vol. 1889, pp. 105-

116). Berlin Heidelberg Springer-Verlag.

Olson, C. F. (1999). Constrained Hough transforms for curve detection. Computer Vision

and Image Understanding, 73(3), 329-345.

Palmer, S. E. (1999). Vision science photons to phenomenology. Cambridge,

Massachusetts: The MIT Press.

Peronnet, F., Farah, M., & Gonon, M. (1988). Evidence for shared structures between

imagery and perception. In M. Denis, J. Engelkamp & J. T. E. Richardson (Eds.),

Cognitive and Neuropsychological Approaches to Mental Imagery (pp. 357-362).

Dordecht / Boston / Lanchester: Martinus Nijhorff.

Pinker, S. (1988). A computational theory of the mental imagery medium. In M. Denis, J.

Engelkamp & J. T. E. Richardson (Eds.), Cognitive and Neuropsychological

Approaches to Mental Imagery (pp. 17-32). Dordecht / Boston / Lanchester:

Martinus Nijhorff.

Podgorny, P., & Shepard, R. N. (1978). Functional representations common to visual

perception and imagination. Journal of Experimental Psychology: Human

Perception and Performance, 4, 21-35.

Pylyshyn, Z. (1973). What the mind's eye tells the mind's brain: A critique of mental

imagery. Psychological Bulletin, 80, 1-24.

 195

Pylyshyn, Z. (1981). The imagery debate: Analogue media versus tacit knowledge.

Psychological Review, 88, 16-45.

Pylyshyn, Z. (2001). Visual indexes, preconceptual objects, and situated vision.

Cognition, 80, 127-158.

Pylyshyn, Z. (2002). Mental Imagery: In search of a theory. Behavioral and Brain

Sciences, 25, 157-238.

Ritter, G. X., & Wilson, J. N. (1996). Handbook of computer vision algorithms in image

algebra. Boca Raton, Florida: CRC Press, Inc.

Schultheis, H., Bertel, S., Barkowsky, T., & Seifert, I. (2007). The spatial and the visual

in mental spatial reasoning: An ill-posed distinction. In T. Barkowsky, M. Knauff,

G. Ligozat & D. R. Montello (Eds.), Spatial Cognition V - Reasoning, Action,

Interaction (pp. 191–209). Berlin: Springer Verlag.

Shepard, R. N., & Metzler, J. (1971). Mental rotation of three-dimensional objects.

Science, 171, 701-703.

Shreiner, D., Woo, M., Neider, J., & Davis, T. (2006). OpenGL programming guide.

Upper Saddle River: Addison-Wesley.

Simon, H. A. (1996). The patterned matter that is mind. In D. M. Steier & T. M. Mitchell

(Eds.), Mind Matters A Tribute to Allen Newell (pp. 407-431). Mahwah, New

Jersey: Lawrence Erlbaum Associates, Inc.

Soar. (2008). Retrieved October 15, 2005, from http://sitemaker.umich.edu/soar/home

St. Amant, R., Riedel, R., Ritter, F., E., & Reifers, A. (2005). Image processing in

cognitive models with SegMan. In Proceedings of the HCI International 2005).

Las Vegas, NV: Lawrence Erlbaum Associates.

The standard widget toolkit (SWT). (2007). Retrieved October 15, 2005, from

http://www.eclipse.org/swt/

Stevens, A., & Coupe, P. (1978). Distortions in judged spatial relations. Cognitive

Psychology, 18, 422-437.

Sun, R., Slusarz, P., & Terry, C. (2005). The interaction of the explicit and the implicit in

skill learning: A dual-process approach. Psychological Review, 112(1), 159-192.

Tabachneck-Schijf, H. J. M., Leonardo, A. M., & Simon, H. A. (1997). CaMeRa: A

computational model of multiple representations. Cognitive Science, 21(3), 305-

350.

http://sitemaker.umich.edu/soar/home
http://www.eclipse.org/swt/

 196

Tambe, M., Johnson, W. L., Jones, R. M., Koss, F. M., Laird, J. E., Rosenbloom, P. S., &

Schwamb, K. B. (1995). Intelligent agents for interactive simulation

environments. AI Magazine, 16(1), 15-39.

Thompson, W. L., Kosslyn, S. M., Hoffman, M. S., & van der Kooij, K. (in press).

Inspecting visual mental images: Can people "see" implicit properties as easily in

imagery and perception? Memory & Cognition.

Tolman, E. C. (1948). Cognitive maps in rats and men. Psychological Review, 55(4),

189-208.

Tootell, R. B. H., Silverman, M. S., Switkes, E., & De Valois, R. L. (1982).

Deoxyglucose analysis of retinotopic organization in primate striate cortex.

Science, 218, 902-904.

Tschumperlé , D. (2008). The CImg library: C++ template image processing toolkit.

Retrieved January 5, 2008, from http://cimg.sourceforge.net/

Tye, M. (1991). The imagery debate. Cambridge, MA: MIT Press.

Ullman, S. (1996). High-level vision object recognition and visual cognition. Cambridge,

Massachusetts: The MIT Press.

Ungerleider, L. G., & Mishkin, M. (1982). Two cortical visual systems. In D. J. Ingle, G.

M.A. & R. J. W. Mansfield (Eds.), Analysis of visual behavior (pp. 549-586).

Cambridge, MA: MIT Press.

Watson, J. B. (1913). Psychology as the behaviorist views it. Psychological Review, 20,

158-177.

Weaver, M. (1993). An active symbol connectionist model of concept representation.

(Doctoral dissertation, University of Michigan, 1993).

Wintermute, S., & Laird , J. E. (2008). Bimodal spatial reasoning with continuous

motion. In Proceedings of the Twenty-Third AAAI Conference on Artificial

Intelligence (AAAI-08)). Chicago, Illinois.

Wray, R. E., Laird, J. E., Nuxoll, A., Stokes, D., & Kerfoot, A. (2005). Synthetic

adversaries for urban combat training. AI Magazine, 26(3), 82-92.

Yamamoto, K. (1996). Visulan: A visual programming language for self-changing

bitmap. In Proceedings of the International Conference on Visual Information

Systems, (pp. 88-96). Melbourne, Australia.

http://cimg.sourceforge.net/

 197

Yeap, W. K., & Jefferies, M. E. (1999). Computing a representation of the local

environment. Artificial Intelligence, 107, 265-301.

