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Chapter 1 

  

 

Introduction 

 

 

 

The generality and compositional power of sentential, symbolic structures has made it 

central to knowledge representation and processing in cognitive architectures. General, 

cognitive architectures have proven useful in modeling mental processes for both 

scientific, psychological research and real-world applications such as simulation entities 

and robots. However, cognitive architectures have failed to address and account for 

inherently perceptual and modality-specific thought processes that some argue should 

participate directly in thinking rather than serve exclusively as a source of sensory 

information (Barsalou, 1999; Chandrasekaran, 2006). Spatial and visual imagery are 

examples of such thought processes. 

With a few exceptions (Kurup, 2008), there has not been a proposed coherent 

system from the Artificial Intelligence or Cognitive Science community that integrates 

and uses symbolic and perceptual representations for reasoning. Current cognitive 

architectures use metric representations, but for control, and not for representing and 

manipulating task knowledge (Anderson et al., 2004; Laird, 2008; Sun, Slusarz, & Terry, 

2005). No architecture reasons with visual depictive representations. Metric and depictive 

structures may serve as perceptual input but not as first-class knowledge structures that 

an agent can use for inferring new knowledge.  

In this research, we explore the utility of general-purpose, intelligent systems 

supporting mechanisms to encode, compose, manipulate, and retrieve symbolic and 
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perceptual-based representations. In addition to the traditional symbolic representation, 

the resulting architecture uses quantitative spatial and visual depictive representations 

that serve as a basis for spatial and visual imagery processing. Behavioral and biological 

constraints, primarily derived from Kosslyn (1980; Kosslyn, 1994; Kosslyn, Thompson, 

& Ganis, 2006),  and computational constraints influenced by Newell (1990), inform the 

architectural design. From a theoretical standpoint, we account for high-level vision, as 

spatial and visual imagery are dependent on both cognition and visual perception (Finke, 

1989; Kosslyn, 1994; Kosslyn, Thompson, & Ganis, 2006; Palmer, 1999; Peronnet, 

Farah, & Gonon, 1988; Podgorny & Shepard, 1978).  At this point, underlying visual 

processing algorithms are ad hoc and do not model the details of human performance, but 

modeling the interdependence facilitates an enhanced understanding of the constraints 

imposed between the thought processes.  

The work reflects a computational synthesis of spatial and visual imagery, visual 

perception, and cognition within the computational constraints of the Soar cognitive 

architecture (Laird, 2008). Empirical results from three different domains illustrate the 

computational gain and functional value the resulting architecture achieves. The results 

show how specialized, architectural components processing quantitative spatial and 

visual depictive representations can achieve an order of magnitude (or more) speed up 

over traditional symbolic processing without trading off generality. Furthermore, the 

architecture demonstrates new functional capability and improved problem-solving 

quality when using imagery in tasks rich with spatial and visual properties.  

The psychological basis for the research is mental imagery processing. Humans 

use mental imagery to assist them with reasoning, problem solving, decision-making, 

creativity, learning, and motor rehearsal (Helstrup, 1988). Some attribute creativity to the 

observation that one can combine objects in  their mental images to reveal novel objects 

and relationships (Finke, 1989). Athletes often report using imagery or ―visualization 

techniques‖ to rehearse their motor skills prior to competition. People with certain forms 

of autism report relying almost exclusively on imagery in their thought processes 

(Grandin, 2006). Even to learn non-visual concepts, such as ―love,‖ they must have a 

visual, concrete representation of the concept (e.g. a heart). This research focuses on 
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using two forms of mental imagery, spatial and visual, for reasoning, decision-making, 

and problem solving.  

Spatial imagery assists humans with spatial reasoning tasks. For example, 

imagine that you are facing south and we ask you to simulate the following movements: 

step forward, turn right, step forward, turn right, and step forward. If we then ask you 

what your final location and orientation is, most people can respond that they are to the 

left of where they started facing north. This task requires you to infer a global spatial 

relationship (i.e. your final location and orientation) from a set of local spatial 

relationships provided in the task instructions. Your shape or contour characteristics as 

well as the shape of the area you are stepping are not relevant to the problem.  

Humans rely on visual imagery for the detection of spatial and visual properties 

not previously encoded as symbols where the specific shape or color of object(s) is 

necessary for the inference. For example, consider how you answer the following 

questions. Does the letter ‗A‘ have an enclosed space? What is the shape of a dog‘s ears? 

What is wider in the center, Michigan‘s lower peninsula or the state of Ohio? When 

asked, most people respond that they create a visual depiction of the object(s) and then 

―look at‖ the image to answer the question. This type of reasoning requires a depiction 

because the inference is directed at a feature (e.g. enclosed space) or spatial property (e.g. 

width) requiring specific shape to formulate an answer. On the other hand, if asked, 

―What state is larger geographically, Alaska or Rhode Island,‖ most American adults can 

formulate an answer without having to create an image. They know from previous study 

that Alaska is the largest state and Rhode Island is the smallest state, which is a general 

fact easily encoded with symbolic representations. 

General problem solving may use all three types of representations. If you are at a 

furniture store trying to choose a new sofa for your living room, you may imagine your 

living room to see if the shape and color of the furniture matches your current decorum 

(visual imagery) and possibly simulate moving your furniture around to ―see‖ where the 

new sofa fits best (spatial and visual imagery). On the other hand, sometimes you use 

spatial imagery to form a general answer and then, if given time (or prodding), use visual 

imagery to form a more accurate inference. Consider another geography question. What 
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city is further to the west, San Diego, California or Reno, Nevada?
1
 Initially, you might 

build a quantitative spatial structure representing California and Nevada as geometric 

shapes (such as rectangles). Then using symbolic, factual knowledge that California is to 

the west of Nevada, arrange the geometric figures accordingly (Figure 1-1a). Again based 

on your knowledge that San Diego is in the southwest corner of California and Reno is in 

the west central section of Nevada, you place ―dots‖ in those locations. You then reason 

that San Diego is west of Reno. This answer is a common mistake people make. 

However, if you add more ―detail‖ by adding the specific shape of the two states (visual 

depictive), you can correctly ―see‖ that Reno is west of San Diego (Figure 1-1b). Note 

that even though we illustrate the quantitative spatial representation as a picture in Figure 

1-1a, we can represent the objects (California, Nevada, San Diego, and Reno) as a set of 

points in a Cartesian coordinate system—a picture is not required. However, when we 

add shape to the specification (i.e. the shape of the states), an image is a more suitable 

structure where space is inherent in the representation. 

 

  

(a) Quantitative Spatial Representation (b) Visual Depictive Representation 

Figure 1-1: Representations Involved in Spatial and Visual Imagery 

 

What the previous examples illustrate is the power of being able to reason by 

combining these representations through imagery processing. Of course, to perform these 

tasks assumes: 

                                                 

1
 Example from (Stevens & Coupe, 1978) 
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 You have previously encoded a representation of each object‘s shape and 

color and stored it somewhere in memory (e.g. letter, states, or furniture). 

 You have previously encoded local spatial relationships between pairs of 

objects (e.g., California is west of Nevada, Reno is in Nevada, your sofa is 

in front of the T.V.). Note that the types of spatial relationships include 

direction (west, in front of), distance (number of steps), orientation (the 

orientation of the objects), topology (in), and size (sofa is larger than 

chair). 

 You recognize your current state and goal (e.g. determine if the letter ―A‖ 

has an enclosed space, determine what direction you are facing, decide 

what furniture you should purchase, etc.). 

 You are able to combine these different forms of knowledge and retrieve 

the desired information.   

 You can access the results of your retrieval to make a decision and form a 

response.  

These issues are the types we explore in this research to determine the computational 

mechanisms underlying spatial and visual imagery. The goals and relevant questions of 

our research follow: 

 

(1) To incorporate spatial and visual imagery within the context of a cognitive 

architecture inspired and constrained by behavioral, biological, functional, and 

computational evidence. 

 

 What are the representations and processes that are architectural? 

 What knowledge is necessary to create these representations and control 

the processing? 

 What is the relationship between spatial imagery, visual imagery, and 

visual perception? What underlying structures and mechanisms do they 

share? What components are unique to imagery? 

 Where is information stored and in what representational format?  

 Where is the information processed?  

 What information is transmitted between the architecture‘s functional 

components? 

 

(2) To understand spatial and visual imagery‘s capabilities and limitations. 
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 How does cognition use spatial and visual imagery to solve problems? 

What are the types of problems? 

 What are the environment and task conditions where spatial and visual 

imagery processing provides additional functional capabilities? 

 What types of tasks are computationally more efficient using a 

quantitative spatial or visual depictive representation versus using a 

symbolic representation? What are the tradeoffs? 

 

(3) To expand the integration between perception and cognition. We are focused 

specifically on how cognition uses perceptually based representations for 

reasoning and problem solving rather than how the system processes bottom-up 

perception into symbols (e.g. computer vision, robotics) or how perception 

constrains the timing, processing, and control behavior of the architecture (e.g. 

EPIC, ACT-R). 

 

(4) To determine and build appropriate tools for debugging and evaluating a spatial 

and visual imagery component within a cognitive architecture (software 

engineering aspect). 

 

As further clarification, the following is a list of what are not our research goals. 

  

(1) Detailed modeling of human behavior (Cognitive modeling). We are using 

psychological theories, experimental evidence, and neuropsychological results as 

inspiration in our architectural design. We would like the system to exhibit the 

general behavior and be plausible in accordance with how we believe humans 

solve problems using spatial and visual imagery. At this time, however, we are 

not concerned with matching human experimental results. 

 

(2) Building a stand-alone model of mental imagery. We are not trying to model 

mental imagery without taking into consideration how it fits into the overall 

architecture. Our goals are much more general in that we want to discover how 

the different representations are used for problem solving. The system has to work 

together as a whole with spatial and visual imagery processing as one of 

cognition‘s possible tools. 

 

(3) Designing and evaluating specific algorithms or attempting to claim we have all 

imagery functionality implemented. As a follow-up from the previous point, the 

scope of this work is general so that attempting to analyze, design, and evaluate 

the details of specific algorithms would take away from our focus.  

 

We organize the remainder of this dissertation as follows. Chapter 2 and 3 present 

our design space constraints and theory. We devote Chapter 2 to the discussion of the 

quantitative spatial and visual depictive representations, as they are central to our theory. 
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The chapter includes a summary of the mental imagery debate and its influence on our 

decisions. Chapter 3 presents the remaining design space constraints and summarizes our 

theory. Appendix A provides additional background on the relevant psychological and 

neuroimaging experiments supporting our theory. 

Chapter 4 compares previous work in Artificial Intelligence and Cognitive 

Science. Included in this chapter are computational approaches that have either modeled 

mental imagery or used it as motivation for a specific application. Chapter 5 summarizes 

task and environmental characteristics where spatial and visual imagery is useful. The 

chapter also presents an overview of our three experimental domains to facilitate the 

architectural discussion in Chapter 6. The three experimental domains include an agent 

using spatial imagery to solve a geometry problem, visual imagery to recognize features 

on individual alphabet letters, and both spatial and visual imagery to inform its decision 

making in a simulation of an Army small-unit leader. Chapter 6 discusses the memories 

and processes associated with the architecture that include Soar and its Spatial-Visual 

Imagery (SVI) component. Appendix B and Appendix C provided more details on the 

design and implementation of the system. Chapter 7 provides the subjective and objective 

evaluation of the architecture across the three experimental domains. The evaluation 

metrics include behavioral, biological, functional, and computational design space 

constraints; computational gain; functional capability; and problem-solving quality. We 

conclude with our research contributions and future work in Chapter 8.  
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Chapter 2 

 

 

Spatial and Visual Imagery Representations 

 

 

 

A key result from mental imagery experiments is that humans use multiple types of 

representations during imagery processing. As the distinction between these 

representations is central to our theory, we focus exclusively on them in this chapter. We 

begin by summarizing the three representations that support spatial and visual imagery 

processing and discuss their functional and computational tradeoffs. We then summarize 

the mental imagery debate. The debate is important to understand as it directly influences 

the decision as to whether a cognitive architecture should include separate mechanisms 

for spatial and visual imagery. The alternative is to assume that symbolic cognitive 

architectures are sufficient for imagery processing and what an agent requires is simply 

additional knowledge.  

2.1 Symbolic, Quantitative, and Depictive Structures 

From a functional and computational perspective, our hypothesis is that spatial and visual 

imagery use at least three distinct representations to include (1) a symbolic, (2) a 

quantitative spatial, and (3) a visual depictive representation (Figure 2-1). The symbolic 

representation (first row of Figure 2-1) is the amodal, stable medium useful for general 

reasoning (Newell, 1990). Symbols may denote an object, visual properties of that object, 

and spatial relationships between objects. They are sentential, or sentence-like, in that 

their meaning is dependent on context and interpretation rather than their spatial 
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arrangement. The power of symbols comes from their composability using universal and 

existential quantification, conjunction, disjunction, negation, and other predicate 

symbols. For example, the right-hand column of Figure 2-1 represents two objects, a can 

and a box with symbols denoting visual features (e.g. (can, yellow)) and spatial properties 

(e.g. on(can, box)). In addition to visual and spatial properties, symbols can represent 

non-visual or non-spatial content, which is necessary for associating an object with other 

modalities and concepts.  

 

Representation Aliases Modality Processing Uses Example 
Symbolic  

 Visual Properties 

(optional) 

 

 Spatial Properties 

(optional) 

 

Sentential 

 

Propositional 

 

Descriptions 

 

P-Symbols 

Amodal Symbolic 

manipulation 

 

Logic 

 

Entailment 

General 

Reasoning 

 

Explicit 

visual 

feature 

recognition 

 

Qualitative 

Spatial 

Reasoning 

object (can) 

feature (can,curve) 

color (can, yellow) 

 

object (box) 

feature(box,corner) 

color (box, blue) 

 

on (can, box) 

 

Quantitative spatial 

 Visual Properties 

o General Shape 

(inferred from 

size dimension) 

 Spatial Properties 

(mandatory) 

o Direction / 

Distance 

(location) 

o Orientation 

o Size 

o Topology 

Sentential 

 

Metric 

 

Diagrams 

 

P- and I-

Symbols 

 

Perceptual 

Symbols 

Amodal Mathematical 

manipulation 

 

Laws of 

Dynamics 

(motion) 

Spatial 

Imagery 

 

Spatial 

Reasoning 

(General 

shapes) 

can  

   location <2,1,2> 

   orientation 0 

   height 5, radius 1 

 

box 

     location <0,0,0> 

    orientation -10  

    length 10 

    width 6  height 4 

 

Visual depictive 

 Visual Properties 

o Shape, Color 

o Explicit 

features 

o Explicit empty 

space 

 

 Spatial Properties 

o Direction / 

Distance 

(location) 

o Orientation 

o Size 

o Topology 

Iconic 

 

Analog 

 

I-Symbols 

 

Perceptual 

Symbols 

 

Visual Mathematical 

manipulation 

 

Depictive 

manipulation 

Visual 

Imagery 

 

Visual 

Feature 

Recognition 

 

Spatial 

Reasoning 

(Specific 

shapes) 

 

Figure 2-1: Imagery Representations 
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The quantitative spatial representation (second row of Figure 2-1) is also amodal, 

but is perceptual-based. That is, it is an interpretation of visual, auditory, proprioception, 

and kinesthesis senses based on a fixed frame of reference that asserts an object‘s 

location and orientation in space. The frame of reference can be relative to an agent‘s 

viewpoint (egocentric) or another object (allocentric). Computationally, the structure uses 

scalar values and vectors in a three-dimensional Euclidean space to represent information 

with symbols labeling the objects. The processes that infer information from this 

structure use sentential, mathematical equations.  

Spatial imagery uses the representation for spatial reasoning and simulating 

motion through linear transformations (i.e. translating, rotating, and scaling) or laws of 

dynamics. The second example in Figure 2-1 represents the metric location, orientation, 

and size dimensions of the can and the box. Location is a combination of direction and 

distance from a fixed frame of reference. One may infer rough estimates of size and 

topology based on the general convex shape, or dimensions, of the objects. 

In contrast to symbols or quantitative spatial representations, both of which are 

sentential structures, space, including empty space, is inherent in the visual depictive 

representation (third row of Figure 2-1). The depiction is from a privileged viewpoint, 

and the spatial structure of the patterns resembles the objects in a perceived or imagined 

scene (Finke, 1989). Computationally, it is an image data structure where the processing 

uses either mathematical manipulations (e.g. filters, rotation, and scaling) or algorithms 

that take advantage of the topological structure and color of the representation (Funt, 

1976; Furnas, 1990; Furnas et al., 2000).  

Visual imagery uses the depictive representation for extracting an object‘s visual 

features (e.g. lines, curves, enclosed spaces, corners) or for spatial reasoning where non-

convex shapes are inherent to the problem. It also facilitates the identification and 

location of empty space between objects, exits between scenes, and topology between 

objects. Similar to spatial imagery, visual imagery can use the depictive representation to 

simulate physical processes. For example, visual imagery processing can simulate 

moving the can in Figure 2-1 to the right to determine where it falls off the box (Funt, 

1976). 
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Even though we only label the top structure in Figure 2-1 as a symbolic 

representation, each of the representations are symbols in the sense that each is a pattern 

denoting something where ―denotation is a mapping of patterns onto their meanings‖ 

(Simon, 1996). Although we typically think of symbols as linguistic patterns and 

reasoning as logic or mathematical equations, non-linguistic patterns, such as depictions, 

are also symbols, but the reasoning processes that infer information from it are not based 

on logic. In symbolic terms, the distinction between the representations is that some are 

pointer symbols (P-Symbols), such as what we call symbolic representations, and some 

are information symbols (I-Symbols), retinal input, for example, being an extreme case. 

Pointer symbols do not contain raw information, but rather serve as an abstraction of 

more detailed information. Information or perceptual symbols  (Barsalou, 1999), are 

carriers of information where the encoding pattern is primarily raw information such as in 

the depictive representation. Hybrids, such as the quantitative spatial representation, 

contain both P- and I-symbols.  

2.2 Functional and Computational Tradeoffs 

So why does a cognitive system use these three representations during thought 

processing? In short, each structure has functional and computational tradeoffs. From a 

functional perspective, there are tradeoffs between the representations that a specific task 

often highlights even when the environment remains constant. For example, given 

appropriate inference rules and the symbolic representation in Figure 2-1, one can infer 

that there is a yellow object (can) on a blue object (box). However, one cannot infer that 

the top of the can is a circle. One can infer visual properties from a symbolic 

representation only when the property is encoded explicitly as a symbol or when task 

knowledge supports the inference (e.g. if two lines intersect then there is a vertex). 

Consider another example from Ullman (1996). Figure 2-2 shows two enclosed 

regions. Assume that the region in Figure 2-2a is a quantitative spatial representation 

rather than the image shown for presentation purposes. That is, assume the region is a set 

of x, y points with indices specifying the connections, or line-segments, between the 

points. One way to determine if the dots in the figure lie inside or outside the enclosed 

region is to imagine a ray (again as a quantitative representation) from the point to 



 

 12 

―infinity‖ and then count the number of intersections between the ray and the line-

segments making up the region. If the count is odd, then the point is inside the region; 

otherwise, it is outside the region.  

 
 

(a)  (b)  

Figure 2-2: Example of the Capability and Limitation of Representations 

 

Now consider the situation in Figure 2-2b where the environment is the same, but 

the task is to determine whether the two points lie in the same region. Using the same 

ray-based methodology will not provide the desired information as the number of 

intersections only tell you whether the point is in a region or not. It does not tell you what 

region (if there is more than one region). Rather than using rays to determine the region, 

assume now that the figure is a visual depictive representation (as presented). Start at one 

of the points and imagine ―coloring‖ all the white area red until you reach a black 

boundary. If after coloring, red pixels surround the other point, then the two points are in 

the same region. Such a coloring or activation scheme is similar to the depictive 

algorithms we use in our architecture. In this example, the environment remains the same, 

but the task changes requiring a different representation to achieve the desired functional 

capability.  

From a computational perspective, the tradeoff is between scope (what it can 

represent) and processing cost (Newell, 1990; Simon, 1996) or alternatively, what 

Norman (2000) categorizes as discretion and assimilability. Symbolic representations are 

high in terms of discretion as they convey only the intended information required for 

general reasoning, nothing more or less. They purposefully leave certain aspects of the 

description indeterminate. The predicate description, ―on(can, box),‖ is sufficient for 

general inferences used in logical reasoning. That is, you can assert very general 

statements such as ―if the can is on the box then grasp it.‖ In terms of capacity alone, 

symbolic representations transmit much less information than visual depictions. The 
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symbolic representation in the right-hand column of Figure 2-1 is roughly 2
9
 (512) bits 

while the picture of the can on the box is 2
19 

(512K) bits—three orders of magnitude 

more.
 
Symbols may then provide a much more compact structure allowing us to retain 

context while reasoning and bring in details as required. 

Symbols can also represent uncertainty such as ―the can is on the box or on the 

floor,‖ and negation as in the statement ―if the can is not in the hand but is on the box or 

on the floor then grasp it.‖ The quantitative spatial and visual depictive representations 

have to commit to a particular configuration and so cannot convey these general 

statements. Over specification is a disadvantage for perceptual representations as any 

learning may apply only to the particular situation. It is difficult to generalize and transfer 

to other tasks. A simple example illustrates this point. Assume an agent learns by 

imagining an ‗A‘ that does not have any curves. Now it can assert that the particular ‗A‘ 

it imagines does not have a curve, but it cannot assert that all ‗A‘s‘ do not have curves 

(e.g. consider a cursive letter, A ). 

At the other extreme, depictive representations are low in terms of discretion (i.e. 

they provide many details), but for visual and spatial properties are computationally 

easier to assimilate. For example, from the picture in Figure 2-1, information such as the 

top of the can looks like a circle and covers about an eighth of the box is directly 

accessible. What we lose in representational scope, or expressiveness, we often gain in 

fewer processing cycles as we can exploit the space and color in the image to infer the 

visual and spatial properties. 

In terms of discretion and assimilation, the quantitative spatial representation falls 

in between the symbolic and depictive representations. It provides more details than the 

symbolic representation (i.e. direction, distance, orientation, size, and general topology) 

but less information (i.e. specific shape and color) than the depictive structure. A strip 

map of the New York City subway system is a good example. It leaves out the details of 

every turn and provides you with the general topological structure, direction, and distance 

information. In the middle, quantitative spatial example from Figure 2-1, you can infer 

the direction and distance between the center of the can and the center of the box, the 

location where the bottom of the can touches the box, and the relative size between the 
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two objects. The depiction also provides this information but at the cost of requiring 

greater capacity.  

There are two other computational reasons why the quantitative spatial 

representation is useful. First, there are some general spatial reasoning tasks where 

reverting from symbolic to metric information is necessary to infer new information 

(Edwards & Moulin, 1998; Forbus, Tomai, & Usher, 2003; Mukerjee, 1998). Forbus, 

Neilsen, and Faltings (1991) coin this lack of a general, purely qualitative representation 

of spatial properties as the poverty conjecture. Second, Marr (1982) stresses that bottom-

up visual processing uses incremental, increasingly abstract levels of representations.  

This rationale is also pertinent to imagery but in the ―opposite‖ direction. Visual imagery 

cannot generate a depictive representation directly from qualitative symbols without first 

specifying metric properties, such as the location, orientation, and size of objects as the 

generation process requires this information to project the shapes to a depiction. 

The power of imagery processing emerges from the ability to combine the 

symbolic, quantitative, and depictive representations, taking advantage of the 

representation that provides a computational advantage or a specific functional capability. 

The support for this ability in a general, cognitive architecture is a major contribution of 

this research. One of the difficulties, however, is deciding when to use the appropriate 

representation. Although we provide hints throughout this thesis of where each 

representation is useful, we do not offer a conclusive theory. Therefore, our theory states 

that an agent, through procedural knowledge, decides which representation to use based 

on its current state and its estimate of the total cost of using the representation (to include 

transforming to that representation, using it, and then transforming back) is less than an 

alternative. 

One of the main criticisms of theories advocating the use of multiple 

representations is exactly this issue. As Simon (1996) articulates:  

 

"Transformation from one symbolic representation to another, in order to find one 

that is computationally efficient in dealing with a particular class of problems, is 

an essential, and little understood process in much problem solving."  
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The mental imagery debate highlights this criticism, so we will look at the issue from this 

perspective and articulate our reasons for incorporating both spatial and visual 

representations into the resulting architecture. 

2.3 Mental Imagery Debate 

Although to the casual observer the mental imagery debate may seem ludicrous (of 

course we have ―mental images‖), it is actually quite complicated once one investigates 

the details. Few deny that when we engage in imagery we seem to be forming pictures in 

our heads. The question is, are we really? 

Philosophy and psychology have a long history of mental imagery theories (Tye, 

1991). Past theories have cast the role of mental imagery in thought processing at both 

ends of a spectrum. At one end, philosophers such as Aristotle, Descartes, and Hobbes, 

advocated visualization as the focal point of thought. They believed mental images were 

models of the external world. Introspection, or the process of explaining your internal 

thought processes, was the dominant method in the formulation of these ideas. In the 

early twentieth century the behaviorist movement, led by Watson (1913), rejected 

introspection as a valid methodology, arguing that imagery is simply a dramatization of 

what is actually occurring in a person‘s mind. He concluded that introspection is not 

evidence of mental structures and processes.  

As cognitive psychology emerged in the 1960s, some began to argue that there 

must be mental representations used in imagery to explain the results of so many 

experiments. Hebb (1968) asserted that descriptions of someone‘s imagery experience is 

not necessarily introspection. As an example, he used the case of amputees, who after 

removal of an extremity, report pain and sensation in their ―phantom limb.‖ This 

reporting of sensation is not introspection, he argued, but an imagined experience where 

the perception originates in a higher brain process rather than from the extremity. Hebb 

described imagery as the activation of cell-assemblies previously formed during 

perception. According to Hebb, vivid imagery is the activation of the lower order cell 

assemblies while higher order cell assemblies are the basis for ―less specific‖ imagery. 

The separation between vivid and ―less specific‖ imagery is analogous to our theory of 

visual depictive and quantitative spatial representations. 
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This change in attitude concerning the relevancy of reported imagery experiences 

coupled with behavioral experiments that were more scientific, solidified imagery‘s role 

in cognition. The major question that remains, and what psychologists and neuroscientists 

have debated for over three decades is the representation of these internal images. The 

debate focuses primarily on visual imagery although the discussion of spatial imagery has 

recently emerged as the theorists refine their theories. Kosslyn is the protagonist for the 

depictive theorists who embrace the notion that visual images are quasi-pictorial, have an 

inherent underlying spatio-analogical representation, and share similar mechanisms with 

vision (Kosslyn, 1980; Kosslyn, Thompson, & Ganis, 2006). At the other end of the 

representational spectrum, there are those, such as Pylyshyn (1973; Pylyshyn, 2002), who 

argue that there has not been enough evidence to reject what he calls the ―null 

hypothesis.‖ That is, visual imagery uses the same propositional (i.e. symbolic) 

representations and processes as general, higher-level reasoning. The only difference, he 

contends, is that the content includes visual and spatial information such as shape, color, 

direction, and distance. Throughout the debate, cognitive scientists such as Anderson 

(1978) also raise the key point that a representation is dependent on the computational 

processing. Any theory must articulate how the representation facilitates the processing 

and what the tradeoffs are in terms of functional capability and computational efficiency.  

The modern debate began after Shepard and Metzler (1971) published their 

seminal work on mental rotations.  Their experiments showed subjects pairs of three-

dimensional, non-standard objects and asked them to determine if the objects were the 

same shape (Figure 2-3). Some pairs were identical but with one of the objects rotated at 

a different angle than another. Other pairs were mirrored reflections of one another so 

could not be matched by rotating. After being shown a pair of objects, subjects responded 

as to whether they thought the objects were the same. Shepard and Metzler found that 

response times were linear with the rotation angle. Furthermore, the subject‘s post-

experiment reports claimed that in order to make the comparison they had to ―mentally 

rotate‖ one of the objects. These two pieces of evidence lead Shepard and Metzler to 

hypothesize that there is some sort of an imagined mental rotation process in three-

dimensional space. Some psychologists began describing the phenomena using a 



 

 17 

―picture‖ metaphor to describe the representation and a ―mind‘s eye‖ as the process that 

―looks at‖ the ―picture‖ to infer information. 

 

Figure 2-3: Examples Shepard and Metzler Used to Show “Mental Rotation” 

 

Leveraging Newell and Simon‘s (1972) ideas that human problem solving uses 

symbolic computations,  Pylyshyn, wrote a strong argument against the ―picture‖ 

metaphor for mental imagery. He suggested that imagery, like other thought processes, is 

amodal and symbolic. In the same vein as Watson (1913), he questioned experiments 

relying on introspection stating that the images in our head are epiphenomenal.  He also 

questioned the notion of a ―mind‘s eye‖ arguing that it is really a question of infinite 

regress. That is, if there is a ―mind‘s eye‖ then does that imply there is a ―brain‖ for the 

―mind‘s eye?‖ 

Kosslyn and Pomerantz (1977) countered Pylyshyn‘s arguments using empirical 

evidence and theoretical comparisons between their depictive account of visual imagery 

and a propositional account.  For example, in one of the experiments subjects were 

presented with a map of a fictional island and seven objects (lake, well, beach, etc.) 

located at various places on a map (Figure 2-4). They asked subjects to study the map, 

close their eyes, mentally picture it, and compare their visual image with the map. Once 

the subject had the map adequately memorized, they were instructed to close their eyes 

and imagine one of the locations (e.g. ―well‖). Kosslyn and Pomerantz then named 

another object (e.g. ―tree‖), and the subjects were instructed to ―scan‖ to the named 

object. Kosslyn and Pomerantz measured response times and found that the time to scan 

between pairs of objects was linear with respect to the distance between objects. They 

concluded that a visual image preserves distance and space. Symbolic accounts, Kosslyn 

and Pomerantz argued, cannot adequately explain these findings. 

Later, Kosslyn shifted the basis of his argument for depictive representations from 

behavioral experiments to neuroimaging evidence (Kosslyn, 1994; Kosslyn, Thompson, 
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& Ganis, 2006).  In monkeys it is known that the primary visual cortex
2
 (Figure 2-5) 

roughly preserves the spatial structure of the image on the retina (Tootell et al., 1982).  

That is, space on the cortex represents space in the world. Kosslyn and others asserted 

that if the visual cortex shows similar activation patterns during visual perception and 

visual imagery, then there is a strong indication that visual imagery, similar to vision, is 

using the topographically mapped or depictive, areas of the brain. 

 

Figure 2-4: Fictional Island Map  

 

 

Figure 2-5: Visual Cortex 

 

The typical methodology used during these neuroimaging experiments consisted 

of two groups of subjects. One group would perform a task using vision, and the second 

group would perform the same task using imagery. During evaluation, response times and 

brain activity was measured using positron emission tomography (PET) or functional 

magnetic resonance imaging (fMRI).
3
 For example, Kosslyn et al. (1993) had subjects 

either view (vision group) or imagine (imagery group) a letter in a grid (Figure 2-6). An 

‗x‘ then appeared on the grid and subjects had to indicate (by pushing a button) whether 

                                                 

2
Also known as the striate cortex, V1, or Brodmann area 17. It is the first area of the brain to receive 

information from the retina. 
3
Positron Emission Tomography (PET) and functional magnetic resonance imaging (fMRI) are medical 

imaging techniques used to measure neural activity in the brain. 
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the ‗x‘ fell on or off the letter. They also had a baseline group (sensory/motor group) who 

simply pushed a button when the ‗x‘ disappeared from the grid to rule out any activation 

effects caused by sensing and responding. The results showed greater activation of visual 

cortex during the visual imagery task than during the visual perception task. They also 

found more activation in other brain areas
4
 indicating that there were additional 

mechanisms involved in generating the image. 

 

Figure 2-6: X On/Off Letter Experiment.  

Subjects either saw a letter in a grid (visual perception task), visualized the letter in the grid 

(imagery task), or waited for the „X‟ mark to be removed (sensory/motor task).   

 

During this time Pylyshyn (Pylyshyn, 1981, 2002) was also active in the debate 

asserting that tacit knowledge and not architectural constraints (in the sense of another 

representation) explained depictive theorists behavioral experiments. For example, he 

argued that the reason response times for scanning between various imagined objects on 

the island map were linear with respect to distance was not because the imagery medium 

uses space to represent, but rather because the participants were instructed to ―scan‖ 

between pairs of objects. To test his theory, Pylyshyn ran a similar ―island map‖ 

experiment. First, he instructed subjects to memorize a map and refer to their mental 

image of the map. Next, they were instructed to close their eyes and imagine one of the 

locations. Pylyshyn then named another object on the map and instructed the subjects to 

determine the compass direction (NE, N, NW, W, SW, S, SW, and E) from the second 

object to the first object. The task instructions did not provide an indication as to how the 

subjects were to determine the direction (i.e. there was no instructions to ―scan‖). 

                                                 

4
Specifically Broadmann area 44, 45, and 46. Area 46 is functionally part of a group known as the 

dorsolateral prefrontal cortex (DLPFC) and hypothesized to be responsible for executive functions. 
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Pylyshyn‘s results showed no correlation between response time and distance between 

the objects.  

Pylyshyn argued that if the task demands (i.e. ―scan‖) alter the behavioral pattern 

(in this case the response time), then knowledge explains the results, not the underlying 

architecture. He calls this phenomena cognitive penetrability. When we are told to ―scan‖ 

our image, he argued, it takes a certain amount of time until we arrive at the next object 

because knowledge of how long it takes to scan a specified distance controls, or mentally 

simulates, our scan rate. The intrinsic properties of the architecture are not involved, only 

knowledge.   

Furthermore, Pylyshyn claimed that there was not enough evidence to show 

conclusively that a human‘s visual cortex is a topographically mapped representation 

during imagery. He claimed that most imagery studies only showed activation in the 

latter posterior cortex areas (such as the parietal cortex and inferior temporal lobe) rather 

than in the visual cortex. He claimed that for the few imagery studies showing activation 

on the visual cortex, none presented conclusive evidence of a topographically mapping. 

Although Pylyshyn conceded that reasoning using imagery is different from logical 

reasoning, he concluded that ―spatial displays‖ (i.e. visual depictive representations) are 

inadequate for the representation of knowledge. 

2.4 Discussion 

Figure 2-7 summarizes the positions between the two camps. As the last column 

indicates, the theorists explain the experimental results as being either architectural 

mechanisms or knowledge. In order to design a general, computational system 

incorporating imagery capabilities, one must make a commitment as to whether imagery 

processing requires specific architectural mechanisms or can be realized with general, 

symbolic computations and knowledge. Again, our hypothesis is that spatial and visual 

imagery use at least three distinct architectural representations. We back this assertion 

with the following arguments and with our evaluation in Chapter 7.  
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Imagery 
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Figure 2-7: Summary of Mental Imagery Debate 

 

First, Kosslyn and others propose a cohesive and consistent theory. Propositional 

theorists do not offer any compelling, competing theories to embrace their viewpoint and 

cannot always explain the major phenomena (e.g. rotation) without resorting to ad hoc 

arguments. Even they agree that some of their theories require excessive computations 

(Pylyshyn, 2002).  Even though the propositional theorists disagree with the neurological 

evidence, they do not provide alternative explanations as to why the visual cortex is 

activated during some imagery experiments. If visual imagery is truly using only higher, 

amodal symbols, then why is there any activity in the visual cortex? 

Second, we agree with Pylyshyn‘s argument that tacit knowledge explains some 

imagery results as behavior emerges from a combination of the environment, knowledge, 

and the architecture. However, we disagree that this explanation implicates propositions 

as the exclusive structure for imagery processing. In addition to the ―island map‖ 

experiment, there have been many other behavioral experiments providing evidence that 

visual imagery representations use space. These experiments include image 

transformations, image size, and visual angle (Kosslyn, 1980). As further evidence 

neuropsychologists, such as Farah, Soso, and Dasheiff (1992) have shown that there is a 

visual field of view in both perception and imagery when, for medical reasons, they had 

to remove a patient‘s occipital lobe from one cerebral hemisphere. After removal, they 

found that the horizontal visual angle was reduced in half for both perception and visual 

imagery. However, the vertical visual angle remained intact. Tacit knowledge alone 

cannot explain this result.  
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Third, one of the shortcomings in the mental imagery debate, and possibly a cause 

of confusion in the interpretation of whether knowledge, architecture, or a combination 

explains an experimental result, is that the focus of the theorists‘ arguments is on visual 

imagery. Spatial imagery receives less attention yet there appears to be distinct brain 

structures, such as the parietal cortex, that are active during such tasks (Mellet et al., 

2000). As Grush (2004) articulates, a reason for the confusion is that spatial imagery does 

not fit either the propositional or depictive metaphors. As with propositions, spatial 

imagery representations are sentential and consist of objects with properties such as 

direction, distance, size, and motion. However, transformations between states does not 

follow logic or entailment but rather mathematical (e.g. translation, rotation, scaling) or 

dynamic (e.g. force, torque) manipulations. On the other hand, it is not a depiction either, 

such as an image or topographically organized visual cortex. The distinction between the 

two representations is difficult to appreciate because one can reinterpret the spatial 

representation into a depictive format. For example, a line can be represented in its 

algebraic, sentential format (y = x) or a depictive format (Figure 2-8).  

 

 

Figure 2-8: The Depictive Format of the Line, y=x 

 

We argue that the difference in the results between Pylyshyn‘s and Kosslyn‘s 

island map experiments are attributed to the type of imagery task (spatial versus visual). 

Pylyshyn‘s version of the island map experiment is clearly a spatial reasoning task as the 

subjects were to determine the absolute, cardinal direction between two objects. Our 

theory offers the following explanation. As the subjects were memorizing the map, they 

encoded the qualitative directions between the pairs of objects (e.g., the well is left-of the 

tree, see Figure 2-4) and used this information to infer the cardinal direction. Note that 

encoding these local spatial relationships facilitates rebuilding a depictive representation, 

but it is not required to complete this task. 

In Kosslyn‘s version of the experiment, the task was to ―scan‖ between the two 

objects. Therefore, even if the subjects had tacit knowledge that it takes longer to scan 
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between objects further apart, the subjects have to account for the distance between the 

objects. As it is unclear whether this is a spatial and/or visual task (individual preferences 

may be a factor in this determination), our theory offers two explanations. Either the 

subject, using a previously encoded or measured distance, builds a quantitative spatial 

representation and ―simulates‖ scanning between the two objects, or the subject generates 

a depictive representation and scans between the two objects by imagining a ―path.‖ In 

either case, perceptual-based representations and processes are in use. 

Our final thoughts are that depictive theorists, such as Kosslyn, have not denied 

that there are symbolic computations involved in imagery processing. On the contrary, he 

specifies how symbolic, associative memories are required to build or generate an image. 

Past research with Soar has focused almost exclusively on symbolic computations. 

However, as Newell (1990) stated in Unified Theory of Cognition, imagery may be a 

component with a different representation existing outside of central cognition. We have 

pushed Soar to its limits using symbolic computations. With mental imagery as our 

motivation, it is time to explore others.  
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Chapter 3  

 

 

Design Space Constraints and Theory 

 

 

 

As discussed in the previous chapter, the use of multiple representations is a core 

constraint of our theory. In this chapter, we discuss the remaining core constraints 

influencing the architectural design space. Our theoretical commitments closely follow 

the evidence provided by the depictive imagery theorists, specifically Kosslyn (1980; 

Kosslyn, 1994; Kosslyn, Thompson, & Ganis, 2006).  

Figure 3-1 categorizes our design space constraints into three areas: 

behavioral/biological, functional, and computational. We derive behavioral and 

biological constraints from a literature review of the theory and mental imagery 

experiments measuring behavioral or neural responses through neuroimaging techniques 

(i.e. PET, fMRI). Appendix A summarizes the notable experiments influencing our 

theory. Functional constraints emerge from the behavioral and biological constraints so 

there is some overlap. As we are extending the Soar cognitive architecture (Laird, 2008), 

we derive the last three computational constraints from Soar‘s computational model 

(Newell, 1990). The integration of the functional constraints with a cognitive architecture 

and the computational support for efficient processing of the representations are the 

major contributions of this research.  

 

 

 



 

 25 

Behavioral/ Biological Functional Computational 
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  Problem space 

computational model 
Figure 3-1: Design Space Constraints 

3.1 Behavioral and Biological Constraints 

There are many studies showing that vision and imagery share similar characteristics to 

include visual and spatial structure, resolution limits, field of view, laws of motion 

dynamics, motion aftereffects, short-term and long-term memories, and interference 

patterns (Farah, Soso, & Dasheiff, 1992; Finke, 1989; Gilden, Blake, & Hurst, 1995; 

Kosslyn, 1980; Palmer, 1999; Peronnet, Farah, & Gonon, 1988). Finke (1989) calls this 

the perceptual equivalence principle.  

 

―Imagery is functionally equivalent to perception to the extent that similar 

mechanisms in the visual system are activated when objects or events are 

imagined as when the same objects or events are actually perceived.‖ 

 

The primary difference between vision and imagery is the source of information 

(i.e. retinal input versus memory activation) and the initiation of the processing (i.e. top-

down versus bottom-up).
5
 Imagery may build spatial and visual representations entirely 

from the combination of activated object and spatial memories or by augmenting a 

perceived scene with objects and their spatial configurations from these memories. Thus, 

the interpretation of an imagined representation can occur in the presence or absence of 

perceived stimulus. This design space constraint requires that spatial and visual imagery 

share components associated with vision rather than having their own, separate 

mechanisms. 

                                                 

5
 However, most present theories of visual perception include substantial, ―top-down‖ processing that 

employs knowledge about objects to facilitate segmentation, recognition, and classification. Spatial and 

visual imagery are considered part of this top-down processing. 
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Neurological evidence shows imagery‘s integration with vision begins at the 

visual cortex. The visual cortex is the region of the occipital lobe (Figure 3-2a) that 

processes visual information received directly from the lateral geniculate nucleus (LGN). 

The LGN, in turn, receives information from the retina. From a biological perspective, 

the visual cortex is the ―lowest‖ area of the brain where imagery experiments have shown 

activation. From a functional perspective, this area is associated with the visual depictive 

representation.  

 

  

(a) Human brain lobes (b) Ventral (“what”) and dorsal (“where”) 

pathways 
Figure 3-2: Shared Biological Mechanisms between Imagery and Vision 

 

Two pathways emanate from the visual cortex (Ungerleider & Mishkin, 1982). 

The ventral, or ―what‖ pathway, extends from the visual cortex to the inferior temporal 

lobe while the dorsal, or ―where‖ pathway, runs from the visual cortex to the posterior 

parietal lobe (Figure 3-2b). The ventral pathway includes processes that extract an 

object‘s visual features and attempt to recognize the object by matching the features to an 

object in a long-term memory (Kosslyn, 1994; Palmer, 1999; Ullman, 1996). This long-

term object memory, assumed to be in the inferior temporal lobe, encodes the shape and 

color of objects. Some researchers advocate a 3D model (Finke, 1989; Marr, 1982; 

Pinker, 1988). Others suggest a population code (Kosslyn, Thompson, & Ganis, 2006). 

We are non-committal in this regard, as it remains unclear from our research how 

information in this memory is encoded.  

What is clear is that the system is able to reacquire shape and color. The shape 

may be a prototypical representation of the object (e.g. a prototypical chair), or in some 

cases, where one is exposed to the object through multiple repetitions, a very specific 
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shape that represents the exact object (e.g. the chair in my dining room) (Weaver, 1993). 

Although the shape and color representation in this memory is unique, our theory does 

not address it as a separate representation as it is not directly used in reasoning (i.e. there 

are no processes that directly manipulate it). Rather, the representation is instantiated 

during imagery to support constructing the quantitative spatial or generating the visual 

depictive structure. 

As the processes along the ventral pathway are extracting visual object features, 

the dorsal pathway processes are extracting spatial properties from the visual cortex, such 

as an object‘s location, orientation and size, and transmitting this information to a short-

term spatial memory in the parietal lobe (Kosslyn, 1994; Palmer, 1999). This short-term 

spatial memory is associated with quantitative spatial representation. During perception, 

it is an egocentric representation (i.e. relative to the head direction), and during imagery, 

the representation can be either from an egocentric or allocentric viewpoint. Long-term 

memory for spatial representations are encoded as allocentric representations in the 

medial temporal lobe (Byrne, Becker, & Burgess, 2007). 

One of the problems with the ―what‖ and ―where‖ analogy is that there appears to 

be little understanding on how perceived objects are reconciled between the two 

pathways. That is, how do ventral path processes associate objects they are recognizing 

with objects from which the dorsal path processes are deriving spatial properties? 

Pylyshyn (2001) offers some insight here. In addition to a set of ―what‖ and ―where‖ 

processes, there seems to be a ―which‖ process responsible for indexing and tracking 

objects in the perceived scene even though their location and properties change. Pylyshyn 

calls his theory, visual indexing. As an analogy he compares it to a demonstrative in 

natural language, such as ―That is red,‖ where ―that‖ is the visual index we picked out 

from our visual field.  

In Pylyshyn‘s theory, there is a preprocessing phase where a process selects and 

indexes a few objects (4-5) in the scene. This phase is distinct and precedes object and 

spatial recognition. How the preprocessing selects the salient objects is beyond the scope 

of Pylyshyn‘s theory, but Itti (2000), Marr (1982), and Ullman (1996) suggest that 

contour, color, motion, and orientation patterns from the depictive representation 

contribute to the determination of salient objects. Pylyshn states that only indexed visual 
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objects enter subsequent processing and argues that such an indexing scheme facilitates 

recognition and tracking the objects. This ―binding‖ issue also has ramifications for 

imagery. That is, in order to inspect the features of a specific object or a spatial 

relationship between two objects there has to be an index, or referent, to the object(s) in 

question.  

Once we have adequately understood the visual and spatial memories and 

processes perception uses, we can begin to understand how imagery leverages these 

mechanisms. A commonly demonstrated phenomenon in behavioral imagery experiments 

is that the time to generate an image is linearly dependent on the number of parts, or 

objects, in the representation. The construction of mental images arises from the 

amalgamation of metric shape and descriptive, symbolic knowledge. The ease of 

visualizing an object is dependent on the number of parts composing the object and how 

the parts are arranged in the symbolic description (Finke, 1989; Kosslyn, 1980, 1994; 

Kosslyn et al., 1983; Kosslyn, Thompson, & Ganis, 2006). 

Another common behavioral phenomena, made famous by Shepard‘s and 

Metzler‘s (1971) ―mental rotation‖ experiment, is the ability to imagine the 

transformation of objects in a scene.  One can change either their viewpoint from 

egocentric to allocentric or translate, rotate, or resize imagined objects. Finke (1989) calls 

this the transformational equivalence principle.  

 

“Imagined transformations and physical transformations exhibit 

corresponding dynamic characteristics and are governed by the same laws 

of motion.‖  

3.2 Functional Constraints 

The functional constraints emerge from the behavioral constraints. The architecture must 

account for how imagery processing constructs, transforms, generates, inspects, and 

maintains the spatial and visual representations. These functional constraints must show 

through the architecture in the following ways. First, the descriptive representations of 

the objects, or parts, must be organized in a compositional manner. Objects may be 

composed of other objects (―has-a‖ relationship), which in turn may be composed of 

more primitive objects. For example, a village is composed of buildings and roads. 
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Buildings in turn are composed of many rooms, which are composed of chairs, tables, 

beds, etc. Local spatial relationships between objects and their parts, such as the chair‘s 

arm is above and to the right of the seat, are similarly organized. This organization occurs 

when the information is stored during perception rather than when it is retrieved from 

memory and is a result of the temporal or spatial sequence from which it was originally 

perceived in the environment (Kaplan & Kaplan, 1982). 

Second, imagery is an incremental addition or deletion of objects or shapes. It 

may involve a novel combination of objects (e.g. an elephant on top of a house), a 

previously seen object or scene (e.g. my living room), or novel patterns (e.g. imagining a 

path on a map) (Kosslyn, 1994). Object information, such as its shape and color originate 

from the long-term object memory. Spatial properties, specifying the location and 

orientation between objects, are activated from a declarative long-term memory and can 

be qualitative (i.e. left-of, above, disconnected) or quantitative. If in a qualitative format, 

the system must interpret the qualitative representation and convert it to a quantitative 

representation. In such cases the specification may be under constrained (e.g. imagine 

―A‖ to the left of ―B‖) and open to multiple interpretations. In these cases, task 

knowledge or default heuristics, such as the notion of an influence area (Kettani & 

Moulin, 1999) can define the distance between objects. 

The third way the architecture must reflect these functional constraints is to 

support the transformation, or manipulation, of a quantitative spatial or visual depictive 

representation. The quantitative spatial representation and associated processes must 

provide the ability to modify the viewpoint or change the location, orientation, or size of 

one or more objects in the scene. Manipulating visual depictive representations may be 

with mathematical processing (e.g. rotation, scaling, and filters) or algorithms that take 

explicit advantage of the topological structure and color.  

The fourth functional constraint, generation of a visual depictive representation, 

requires the architecture to provide mechanisms to render a scene from a privileged 

viewpoint. Again, rendering must be efficient and support the acquisition of an image. In 

Chapter 6 we will discuss how the transformation and generation constraints together 

influence our choice to use a scene graph for the quantitative spatial representation. 
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The ability to ―visualize,‖ or inspect, a quantitative spatial or visual depictive 

representation to infer spatial or visual properties reflects the primary purpose for spatial 

and visual imagery. Imagery does not have its own set of inspectors, or feature and 

spatial detectors. It simply relies on those mechanisms it shares with vision. Therefore, 

after the system constructs and, if necessary, transforms and generates the image, the 

flow of information proceeds as in bottom-up perception. 

Finally, since visual imagery and visual perception coexist, sharing the same 

region of the visual cortex, the architecture must support maintenance of the visual 

depictive representation. Our resulting architecture does not support image maintenance 

in the sense that the visual depictive representation must continually be ―refreshed‖ or it 

begins to fade (Kosslyn, Thompson, & Ganis, 2006). However, we do include 

architectural mechanisms that inhibit additional incoming stimuli from disrupting the 

focused representation. Otherwise, perception always trumps imagery, never allowing it 

to finish. 

3.3 Computational Constraints  

A cognitive architecture is the fixed set of memories and processes underlying an agent 

(Newell, 1990). The motivation behind a cognitive architecture is that with the addition 

of knowledge, it can support intelligent behavior across a wide variety of tasks and 

environments. The architecture must support knowledge acquisition through perception 

and learning and provide mechanisms to encode, store, retrieve, and process the 

knowledge to enable planning, coordinating, and executing actions in the world. 

Cognitive architectures have traditionally represented knowledge as symbolic 

(e.g., rules, semantic nets, frames) structures. Perceptual-based representations have 

received less attention as a form of knowledge representation. One of our motivations, 

reflected by our first two computational constraints (Figure 3-1), is the possibility that an 

agent can achieve a computational gain using perceptual-based representations while 

maintaining clear separation between knowledge and the architecture.
6
 As we will 

                                                 

6
 In a depictive representation, some of the ―knowledge" is tacitly in the architecture -- the grid geometry 

embeds knowledge of the plane that would have to be explicitly encoded in a purely symbolic system. That 

is one of the strengths of the depictive representation. 
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demonstrate through our architecture description and evaluation, specialized, 

architectural components processing these representations can achieve an order of 

magnitude (or more) gain over symbolic processing without trading off generality. 

Supporting reactive and deliberate behavior, our third computational constraint, 

is a hallmark of Soar and one that we wish to maintain with the addition of spatial and 

visual imagery. That is, the computations that the imagery subsystem performs must meet 

practical computational requirements. The computational cost of a single ―step‖ of 

building, transforming, generating, or inspecting a spatial or visual representation should 

work within the time constraints of one Soar decision cycle that is hypothesized to be 50 

milliseconds in humans. Otherwise, the system is not responsive to changes in the 

environment. Note that this constraint is different from the first computational constraint 

(support efficient processing of the representation). A specialized perceptual process 

could be more efficient relative to performing the same operation with symbolic 

computations, but not responsive. For example, one of our implemented feature detectors 

for identifying curves in a depictive image is much more efficient than trying to detect 

curves using symbolic computations (in fact, we are not sure if it is even possible). 

However, it requires too many computational cycles (~6 seconds real CPU time) to be 

considered reactive to the environment. This shortfall may be a result of the wrong choice 

of an algorithm, poor implementation, or non-parallel hardware, but as it is currently 

implemented, it is not reactive and thus violates this constraint.  

The final computational constraint (Figure 3-1), the problem space computational 

model (PSCM), provides the control constraint necessary for imagery processing. PSCM 

is a paradigm for realizing intelligent behavior and is the basis for Soar (Newell et al., 

1991).  A problem space consists of a set of states and a set of operators. An agent, by 

iteratively selecting and applying operators, effectively conducts a search through its 

problem space. During each cycle, the agent executes a knowledge search to bring all the 

relevant knowledge to bear in deciding what operator to choose next. 

In this computational model, imagery is a special problem space using specialized 

mechanisms for general spatial and visual processing. The architecture maintains control 
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with operators for constructing, transforming, generating, and inspecting a quantitative 

spatial or visual depictive representation. During each imagery cycle, the agent conducts 

a knowledge search of its memories to build a quantitative spatial representation, 

generate a visual depictive representation, or transform or inspect either representation to 

facilitate further reasoning. The imagery process is conditional and iterative. The agent 

may add more detail to its representation(s) and inspect it to refine the search. 

3.4 Theory Summary 

Figure 3-3 summarizes the theory. What Newell describes as central cognition 

encodes knowledge in the form of amodal, symbolic representations (Newell, 1990).  

Some of the knowledge is a representation of objects in the world or visual objects. 

During perception or memory retrieval, the architecture creates visual symbols 

representing these visual objects. The visual symbols denote either a prototypical object 

(e.g. a chair), a specific instance of an object (e.g. the chair in my dining room), or 

multiple objects (e.g. my dining room).  

Imagery is the combination of the imagery problem space and the specialized 

imagery subsystem. The agent initiates the imagery problem space when there is an 

impasse in problem solving and wants to resolve the impasse using spatial or visual 

imagery. Task operators direct the imagery problem space that in turn controls and 

communicates with the imagery subsystem through its operators (construct, transform, 

generate, inspect).  

The construct operator triggers the construction of a quantitative spatial 

representation. The imagery subsystem builds the structure by combining the general, 

metric shape of objects from a long-term object memory with qualitative or quantitative 

spatial information from a symbolic memory and encodes the resulting representation in a 

spatial short-term memory (STM). The transform operator controls the transformation of 

the spatial representation by manipulating its viewpoint or specific objects within it. An 

imagery generate operator creates a visual depictive representation in a visual STM by 

combining the quantitative spatial representation with each object‘s specific shape and 

color from the object LTM and renders it from a specified viewpoint. A transform 

operator manipulates the depictive representation by activating specific regions. During 
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inspection, perceptual visual and spatial processes perform reasoning by searching the 

visual STM or spatial STM for visual and/or spatial properties. The results of the 

inspection are transmitted to central cognition where the imagery problem space 

operators build the internal symbolic memories. Central cognition uses the inspection 

results to continue progress through the current task‘s problem space.   

 

 

Figure 3-3: Summary of Spatial and Visual Imagery Theory 

 

Note that although we have assigned the symbolic representation to central 

cognition‘s associative memories, the quantitative spatial representation to the spatial 

STM, and the visual depictive representation to the visual STM, this is not to claim that 

each memory contains that type of representation exclusively. Symbolic memories in 

central cognition may have quantitative representations; the spatial and visual memories 

may contain symbols, and so forth. What we do claim, however, is that each memory has 

specialized processing mechanisms for their primary representation, and these 

mechanisms are what distinguishes the memories. Therefore, although a symbolic 

computation in central cognition may be able to process a quantitative or depictive 

representation, it cannot do so as efficiently. Although it is not an established part of our 
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theory or resulting architecture, what it does indicate is that there is some redundancy so 

if one component is resource-constrained or incapacitated, alternate memories and 

processes can assist. 

In summary, decision-making proceeds by combining perceptual representations 

with task specific knowledge to construct an imagined scene. Analysis emerges through 

the manipulation of both sentential and depictive representations. Retrieval or inspection 

of the resulting representations provides new information that the agent uses to reason 

and produce action in the environment. We will reiterate how these design space 

constraints influence the architectural design in Chapter 6. First, however, we turn to 

describe previous computational approaches. 
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Chapter 4 

 

 

Related Work 

 

 

 

4.1 Cognitive Architectures 

Although cognitive science and artificial intelligence (AI) researchers have made 

enormous progress in peripheral disciplines, there has not been a previous effort to 

support spatial and visual imagery processing within a cognitive architecture. Until 

recently, architectures such as Soar (Laird, 2008) and ACT-R (Anderson et al., 2004) 

focused on higher-level cognition, or what Newell calls central cognition (Newell, 1990) 

and typically ignored perceptual and motor mechanisms.  There is strong evidence, 

however, that the environment plays a key role in cognitive processing and the perceptual 

and motor systems serve as the link that integrates the environment to higher-level 

cognition (Barsalou, 1999; Kaplan & Kaplan, 1982) .  

From its inception, the EPIC architecture (Kieras & Meyer, 1997) emphasized the 

perceptual and motor systems. However, rather than specifying and implementing the 

low-level details of perception and motor processing, (e.g. edge detection, joint 

coordinates), EPIC focuses on temporal constraints between perception, motor, and 

cognitive components to account for human dual-task performance. Perception provides 

symbolic input to cognition and cognition sends symbolic output to the motor system. 

There are no quantitative or depictive representations involved in the reasoning. 
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Following EPIC‘s lead, Soar and ACT-R extended their architecture to include 

integrated perceptual and motor systems. EPIC-Soar (Chong & Laird, 1997) integrated 

EPIC‘s perceptual and motor processor modules with Soar to evaluate the performance 

and acquisition of executive process knowledge that is required to support the execution 

of two concurrent tasks (i.e. dual-task). The architecture was similar to our approach in 

the sense that EPIC provided perceptual input to Soar, and Soar sent motor commands to 

EPIC. However, the EPIC-Soar hybrid architecture was two independent processes and 

not integrated where one component can take advantage of another‘s mechanisms. 

The current version of Soar takes a more functional approach, using an external 

module that translates an environment‘s perceptual information into a symbolic 

representation Soar can use for reasoning. Likewise, a module external to Soar, 

transforms the symbols Soar sends from its working memory into a format that produces 

behavior in the environment. Using these perception and motor modules, Soar has 

demonstrated success in modeling human behavior in dynamic environments to include 

military simulations with pilots flying fixed-wing or rotary-wing aircraft and soldiers 

conducting Military Operations on Urban Terrain (MOUT) (Jones et al., 1999; Tambe et 

al., 1995; Wray et al., 2005). Again, however, these modules do not perform any type of 

cognitive functions. 

Similar to EPIC, ACT-R‘s perception and motor modules focus more on the 

timing and content of modalities rather than the representational format and low-level 

processing capability (Anderson et al., 2004).  In the case of perception, productions 

request the visual module for information based on constraints. For example, a 

production may request the ―red‖ object or the object that is located ―on-top‖ of the 

current scene. One of ACT-R‘s important extensions to EPIC‘s model of the visual 

system includes breaking visual perception into two modules each with a short-term 

memory (buffers in ACT-R terminology). The visual-object, or ―what,‖ module holds the 

symbolic features of the object currently being attended to by the visual-location, or 

―where,‖ module. The visual-location module maintains the location of all the objects in 

the current scene. However, there is not long-term perceptual memory enabling the 

persistence of an object‘s shape or color and no short-term memories for manipulating 

perceptual representations and drawing inferences from them.  
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Gunzelmann and Lyon (2007) have recently proposed an extension to ACT-R that 

includes a module specialized for spatial information processing. The proposed module 

contains processes to perform both qualitative and quantitative, mathematical 

comparisons of spatial relationships between objects, such as direction and distance. 

They recommend that the spatial module have connections to the visual and motor 

modules (contrary to ACT-R theory of no direct connections between modules) for the 

purpose of extracting spatial properties from perceptual input and executing motor 

control. Their proposal appears to be similar to our theory of spatial imagery and 

corresponding implementation. Their proposal does not include plans for incorporating 

depictive representations and processing. 

Wintermute‘s and Laird‘s (2007) Soar Spatial Reasoning (SRS) system focuses 

on how the architecture projects qualitative predicates into a quantitative spatial 

representation, providing a more detailed implementation of the capability than our 

current system provides. Kurup and Chandrasekaran (2007) have also argued for multi-

modal architectures and augment Soar with their diagrammatic reasoning system. We 

will discuss the similarities and differences between our approaches shortly.  

There have been several other efforts to extend the perception and motor 

capabilities of each of these architectures (Hill, 1999; Hill, Han, & Van Lent, 2002; St. 

Amant et al., 2005).  Each contribution effectively pushes the architecture closer to the 

environment. The problem with these approaches, however, is that they assume the 

cognitive system abandons the perceptual representations rather than using them to 

participate in problem solving. Discarding these representations adversely affects the 

system‘s ability to perform visual and spatial reasoning and requires ad-hoc, bolted-on 

components that are tailored for specific domains (Best, Lebiere, & Scarpinatto, 2002; 

Wray et al., 2005). What we are missing from these architectures is the ability to 

amalgamate the cognitive and perceptual representations in a general-purpose way and 

then use the resulting information for reasoning.  

4.2 AI Systems 

There have been several AI diagrammatic reasoning systems built that use both symbolic 

and quantitative representations. Gelernter‘s (1959) geometry theorem proving machine 



 

 38 

is perhaps the earliest. Kurup‘s and Chandrasekaran‘s (2007) biSoar (discussed below) is 

the most recent and is the closest parallel with our work. With the exception of Funt‘s, 

(1976) WHISPER system, there have been few systems that reason with depictive 

representations. Funt argued that people solve problems on four levels, and AI was 

ignoring the last level. The levels were (1) the goal-oriented approach where the system 

searches for a solution; (2) the mathematical level where sentential equations enable 

progress; (3) the relational level where a complete structure of the explored search space 

is used for reasoning; and (4) the image level where representations were analogues of 

the situation. Funt argued that depictive representations overcame the ―frame problem‖ 

because objects move together so the system does not have to use computational cycles to 

infer new features and relationships. Empty space and new shape just emerge. Despite 

Funt‘s seemingly convincing arguments, the mainstream AI community has continued to 

ignore the use of depictive representations as a form of knowledge representation and 

reasoning. 

The specific problem WHISPER solved was determining the stability of a stack of 

arbitrarily shaped rigid bodies. WHISPER consisted of symbolic qualitative physics rules 

(―if a block is on a slant, it will slide‖), an image of the situation, encoded as a two-

dimensional array, and basic algorithms for modifying the image. The rules directed a 

simulated parallel processing ―retina‖ capable of extracting basic, domain independent 

features (e.g. object contact, object symmetry, finding the center area of an object). Each 

unit in the retina was constrained to communicate only with its immediate neighbors and 

a ―retinal supervisor‖ that consolidated each unit‘s inspection results for a particular 

query. The local communication constraints between retinal units resulted in algorithms 

similar in spirit to Furnas‘ (1990; Furnas, 1991; Furnas et al., 2000) pixel rewrite system 

that we use as motivation for some of our depictive processing. 

Marr (1982) addressed many of the underlying issues of how the visual system 

recognizes object features in a scene with his seminal work in computational vision   His 

work influences our design space in two important ways. First, we apply his notion that 

visual processing produces incremental, increasingly abstract levels of representations 

(i.e. the pixel image, raw primal sketch, 2 ½ D sketch, 3D model, symbols). In a similar 

manner, but in the opposite direction, imagery starts with the symbolic representation, 
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combines it with stored perceptual memories to produce increasingly concrete 

representations. Marr stressed how certain formats made certain types of information 

explicit and accessible. From the perspective of top-down cognitive processing, we can 

also make this argument,—which is a primary reason for pursuing quantitative spatial 

and visual depictive representations in problem solving. If certain representations are 

useful for extracting features such as surface contours, object orientations, or spatial 

relationships in bottom up visual perception, then these representations are also useful in 

top-down processing when the information is not explicitly encoded as symbols. This 

principle is in accordance with Newell‘s theory that intelligent systems should bring all 

knowledge to bear in solving a problem (Newell, 1990). 

Second, Marr‘s theories concluded that visual perception stores an object‘s 3D 

model, so it can recreate its shape if required. An important part of our architectural 

assumptions is that we assume the system does not just throw this shape information 

away after it recognizes the object. At a minimum, it must be encoded for subsequent 

recognition. In the case of spatial and visual imagery, it is activated to support further 

reasoning. 

Tolman (1948) articulated how rats represented spatial knowledge, or cognitive 

maps, to assist them in finding food in a maze. The cognitive map metaphor, or the 

representation of large-scale space, provide a psychological theory of how we acquire an 

object‘s location, orientation, and size relative to other objects in the currently perceived 

scene (Kaplan & Kaplan, 1982).  The theory also specifies how we connect individual 

scenes together. Cognitive map theory says that as you explore the world, you begin 

building up representations of the relationships between static objects or landmarks in the 

environment and the relationships between objects in individual scenes. Cognitive maps 

provide important concepts for spatial imagery because they provide a starting point as to 

how spatial knowledge is organized. Spatial imagery can rebuild scenes by composing 

objects together using the same local spatial relationships derived from cognitive maps. 

This provides a methodology for reconstructing representations of previously seen 

objects to infer new global spatial relationships. Cognitive map theory also advocates the 

idea that there is a viewpoint associated with the stored spatial relationships. Some have 
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hypothesized that these maps are stored from a first-person, egocentric viewpoint with 

gateways, or exits, separating the scenes (Chown, Kaplan, & Kortenkamp, 1995).   

Cognitive map theory differs from spatial and visual imagery in that it does not 

address how specific knowledge about an object (i.e. shape) is stored or later retrieved. 

The theory also does not address how task knowledge, information from other modalities, 

or dynamic objects are combined to form new spatial representations. For example, using 

cognitive map theory, you can recall the main intersection in the center of a small town. 

Your scene may contain the roads, buildings, and traffic signs but does not include 

dynamic objects, such as cars or people walking. The scene is ―remembered‖ from one 

particular vantage point. Spatial imagery enables one to imagine the scene, add dynamic 

objects to it, transform either the viewpoint or specific objects, and then inspect the scene 

for specific knowledge. 

Kuipers, leveraging the cognitive map metaphor, developed the Spatial Semantic 

Hierarchy (SSH) with the goal of explaining how a robot learns the spatial structure of 

the environment. Each hierarchical layer has qualitative and quantitative representations 

with global knowledge of the environment increasing as you move up the hierarchy from 

very specific control laws to topological maps of places, paths, and regions. At the 

highest level, or what Kuipers calls the global metrical map, SSH combines the 

qualitative (symbolic) topological relationships with the local, two-dimensional geometry 

to form a structure with one global, allocentric frame of reference. Whereas Kuipers 

focuses on how spatial structures are acquired, we concentrate on how the spatial 

structures are used in general problem solving. 

The closest parallel to our work, is that of Kurup (2008) and Chandrasekaran 

(Kurup & Chandrasekaran, 2007). Their system, biSoar, combines the Soar cognitive 

architecture with their diagrammatic reasoning system (DRS) and reasons using both 

symbolic and diagrammatic representations. Similar to imagery construction, 

transformation, and inspection, their system has a set of action routines to add 

diagrammatic elements and perceptual routines to extract spatial relationships from the 

diagram.  

There are a few key theoretical and implementation differences between our 

approaches, perhaps because they have focused more on diagrammatic reasoning and we 
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have considered the psychological and neurological constraints of imagery. First, they 

propose a single, working memory containing both symbolic and diagrammatic 

representations while we advocate separate symbolic and perceptual memories where the 

symbolic, procedural memory does not have direct access to perceptual-based 

representations. We base our decision on evidence that modality-specific representations 

(i.e. spatial, visual, auditory) are distinct posterior neural systems (see (Jonides et al., 

2008) for a review of working memory theories). From a computational standpoint, a 

primary reason for having a multi-representational system is to gain a computational 

advantage using processes that are specific to the representation. By embedding the 

perceptual representation into a symbolic computational system, you lose this efficiency 

without mechanisms to distinguish the two. Although the two implementations are 

similar (i.e. their diagrammatic reasoning system is outside of Soar), Kurup and 

Chandrasekaran base their theory on the notion that by having a single, multimodal 

working memory, automatic learning of both symbolic and diagrammatic representations 

can occur using Soar‘s chunking mechanism. We currently do not have such a theory of 

how results from imagery processing are learned (except, perhaps as an encoded 

episode), and are not clear as to how such a theory would be realized from a practical 

standpoint.  

Second, their diagrammatic reasoning theory specifies the type of objects (point, 

curve, and region) a diagram can contain while we leave the type of object open-ended to 

any shape and color the agent experiences in the world, imagines by composing known 

objects, or emerges from the manipulation of a depiction (i.e. a new shape). Our approach 

leaves the complexity, detail, and richness of an imagined scene much more open where, 

in addition to specifying distance, direction, and topology our representations and 

processes also consider the orientation (i.e. front), specific shape, and color of an object. 

 Finally, they are noncommittal as to whether diagrams are quantitative, algebraic 

equations or depictive, image representations. Their current implementation uses 

sentential, metric structures. For example, points are two-dimensional, Cartesian 

coordinates, lines are composed from two points, a curve is a sequence of straight lines, 

and a region is a closed curve. We make a distinction between the two representations, as 

there are different types of reasoning that can be performed on each (e.g. extracting visual 
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features from a depictive representation). In the end, however, we are both motivated by 

how a task-independent architecture uses amodal symbolic and perceptual representations 

in reasoning. 

4.3 Computational Models 

Previous efforts to build computational models of either spatial or visual imagery have 

not included the constraints of a general cognitive architecture. Kosslyn (1980) composed 

a detailed computational model of visual, depictive imagery. Although the model 

clarified his theories, Kosslyn did not build it with the intent of incorporating it into a 

cognitive architecture.  

Baylor (1971) implemented a computational model of the block visualization 

task.
7
 What is interesting about his approach is that he divided the knowledge into two 

problem spaces. The symbolic space manipulated generic information about blocks, and 

the image space (implemented with symbolic representations) had specific operators that 

manipulated visual information. This problem space division is similar to our 

computational theory. 

Moran built a computational model of spatial imagery using a production system 

(Moran, 1973).  The task he chose to model began with the agent at a specific location. 

The agent is then issued a series of directions (e.g. move north one-step, turn east, move 

forward one-step, etc.) and is to ―report‖ its final location and direction. Moran raised 

some valid points such as how these representations are constructed and controlled. 

However, we disagree with his hypothesis that imagery is entirely symbolic in nature. 

Since the task was spatial, rather than visual, depictive representations were not required. 

Moran argued that pictorial representations are uneconomical, as they require a large 

amount of information to be stored. We agree that recording every scene would quickly 

exceed our memory capacity. That is why an object long-term memory only stores 

compact shape and color representations. It is the task of imagery to recreate the picture. 

                                                 

7
The task requires a subject to start by visualizing a three-inch cube and imagine one of its side‘s red. Next, 

the experimenter instructs the subject to imagine two sides blue. The blue sides are adjacent to the red side 

but opposite each other. Finally, the subject imagines breaking the cube into one-inch cubes and deciding 

how many of the resulting cubes have exactly one red and one blue face.   
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Glasgow and Papadias (1992) built a molecular scene analysis application using 

mental imagery as motivation. Their system uses three separate representations 

(descriptive, spatial, visual) and the visual representation (occupancy array) is similar to 

our depictive representation with the exception that they only render convex shapes. 

Their long-term memory, where they store descriptive representations is similar to our 

symbolic representations in Soar. There are, however, three major differences. First, they 

built a specific application while we are taking a more general approach. While Glasgow 

and Papadias took significant strides to incorporate key findings in mental imagery, they 

did not design it with the overarching constraint of a cognitive architecture. Second, they 

represent spatial information using symbolic arrays rather than a quantitative format. 

Finally, they make no commitment as to how the visual representation is constructed, 

where the shape information is stored, or how more than one object is arranged in the 

visual representation. 

Tabachneck-Schijf‘s et al. (1997) CaMeRa model uses multiple representations 

and simulates the cognitive and visual perceptual processes of an economics expert 

teaching the laws of supply and demand. Their system includes both visual short-term 

and long-term memories that complement verbal memories. Visual STM includes a 

quantitative (node-link structure) and a depictive (bitmap) representation that is similar in 

design, although not in implementation, to our representations. The architecture‘s overall 

generality is unclear although it appears to be their intention. Their shape representation 

is limited to algebraic shapes (i.e. points and lines) and their spatial structure only models 

an object‘s location while ignoring orientation and size.  

Barkowsky‘s (2002) MIRAGE application relies on mental imagery evidence to 

reason about space in a geographic context. It focuses primarily on how mental images 

are constructed from qualitative geographic spatial relationships. Barkowsky (in press) 

proposes that any model of mental imagery must include the following: 

 

(1) Hybrid representational formats to include propositional and visual structures 

involving shape. 

(2) Coupling between imagery and visual perception.  

(3) Construction of images from pieces of knowledge. 
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(4) Processing with or without external stimuli. 

(5) Multi-directional distributed processing and control. 

 

Our architecture addresses (1) – (4). Our control structure initiates imagery 

processes in a top-down manner while perceptual mechanisms process results in a 

bottom-up fashion. In Soar, the contents of working memory determine which memories 

and processes are active without any centralized control (5). In addition to Barkowsky‘s 

list, we also propose that the architecture must support transformation and generation of a 

depictive representation.  
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Chapter 5 

 

 

Tasks and Environments 

 

 

 

When does an agent use spatial and visual imagery? How does it know which 

representation to use? This chapter begins by summarizing characteristics of the tasks and 

environments where spatial and visual imagery is useful. The characteristics include a 

discussion and examples of general tasks and specific sub-tasks requiring spatial or visual 

imagery. We then provide three concrete examples by introducing the tasks and 

environments we use to evaluate the architecture. The first two tasks are primarily 

internal problem-solving tasks where there is limited interaction with an external 

environment. The final task extends the first two tasks to a dynamic and continuous 

environment where the agent must interpret and act upon information from multiple 

sources and perception and imagery must interact and share the same resources. 

5.1 Characteristics of Tasks and Environments 

In general, spatial and visual imagery is useful in tasks requiring the inference of spatial 

relationships (direction, distance, orientation, topology, size) between two or more 

objects or detection of an individual object‘s spatial (e.g. width, height, orientation) or 

visual (e.g. shape, color) properties. In both cases, imagery is useful because the spatial 

or visual information required to make a decision is not directly accessible from either 

perceptual input or memory retrieval. These situations include circumstances where 

vision would normally perform the analysis, but the relevant objects or spatial 
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configurations are hypothetical, missing details, or not present. However, by combining 

the information into a quantitative spatial or visual depictive representation, one can infer 

the relevant spatial or visual detail. The external environment may have many spatial and 

visual characteristics or none at all, but the task is such that imagining the situation helps 

clarify its spatial and/or visual properties. 

As an example, consider a young child playing hide-and-go-seek with a parent 

inside their home. The parent, playing the role of the ―hider‖ may provide audio clues to 

assist the child‘s search. The child, having inadequate perceptual input (he or she does 

not see the parent), may use spatial imagery to retrieve a stored representation of the  

spatial layout of each room and combine it with the parent‘s audio signal to guide the 

search. As the child ―seeks,‖ she may use visual imagery to focus in on specific locations 

where the parent might ―fit.‖ In this example, both the environment (rooms in house) and 

the task (hide-and-go-seek) have many spatial and visual characteristics. The rooms have 

direction, distance, and topological relationships, hiding places have size, and the task 

requires filling in the missing spatial and visual details (e.g. what direction should I move 

to next? Will daddy fit in the closet? In the cupboard?)  

On the other hand, the immediate environment may not always include spatial or 

visual features. Consider when you read a story or someone is giving you verbal 

directions. In these examples, you may create an imagined scene to achieve a better 

understanding of the spatial and visual properties of the task. However, the surrounding 

characteristics of the environment are irrelevant. Even if the environment includes many 

spatial and visual features, imagery may not be useful if the task is repetitive and highly 

learned (e.g. driving to work). 

We suggest there are four general tasks where using imagery is useful to infer 

spatial and visual properties. 

 

 Filling in missing details of a situation 

 Recognizing novel shapes and spatial properties if not present visually 

 Analyzing or rehearsing an outcome of an action before executing the 

action 

 Replay of a previous event to inform a future decision 
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The previous two examples (hide-and-go-seek, imagine a scene from a story) are 

instances of the first two tasks where perception provides none or only part of the spatial 

and visual properties required for reasoning. Our three experimental domains described 

below are also instances of these first two tasks. The third general task uses imagery as a 

simulator to analyze or rehearse the possible outcomes of future actions where simulating 

actions involve moving imagined objects or looking at the scene from a different 

perspective. We explore this general task in our third experiment. The last general task 

also uses imagery as a simulator, but rather than simulating potential future states, 

reasoning simulates a previous state or event to inform a future decision. This form of 

reasoning requires the retrieval of previous experiences from an episodic memory. We do 

not evaluate this task but will address it as part of our future work. 

Each of these general tasks will include specific spatial and visual subtasks, some 

of which we describe next. Schultheis et al. (2007) have suggested the following criteria 

to distinguish between tasks and environments requiring a spatial or visual representation. 

The greater the number of criteria is an indicator that a visual depictive representation is 

more likely required rather than a quantitative spatial representation. Although they 

propose that these representations fall on a continuous spectrum, we ignore that for now 

as our theory states that the agent must make a commitment to one or another 

representation. The criteria are (with our slight modification):  

 

(1) Number of different types of spatial relationships (direction, distance, 

orientation, topology, size) 

(2) Number of spatial relationships 

(3) Specificity of the shape 

(4) Specificity of the color 

 

The following are the specific spatial and visual subtasks, one or more of which, 

support a general task. We provide a figure to illustrate some of these subtasks. Before 

looking at the figure, first try ―imagining‖ the situation. 
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(a) Infer global spatial relationships (i.e. direction, distance, orientation, topology, 

size) or visual properties (i.e. new shapes or color) derived from the combination 

of objects and their perceived or retrieved local spatial relationships.  

 

Example 1 (Figure 5-1a, NOTE: ―you‖ are the ―X‖): Target A is 500m to your left 

front. Target B is 250 meters to your right. What is the direction between Target 

A and Target B? What is the distance between Target A and Target B? In this 

example, there are two different types of spatial relationships (direction and 

distance) and three spatial relationships (X-A, X-B, A-B). Shape and color are not 

required so a spatial representation is sufficient for this example. 

 

Example 2 (Figure 5-1b): What is the angle between a ray from you to target A 

and a ray between you and target B? In addition to the direction and distance 

relationships, you now have an orientation to consider. This task is again spatial, 

but with an increase in the type and number of spatial relationships moves it 

closer to a task where visual imagery may be necessary. 

 
 

(a) (b) 
  

 
 

(c) (d) 

 
 

Figure 5-1: Spatial and Visual Task Spectrum 
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Example 3 (Figure 5-1c): Add a triangle with a vertex at your location and a base 

to your direct front. The interior angle of the vertex is 60 degrees and the height 

of the triangle is 750 meters. Is target A inside the triangle? Target B? Again, we 

have increased both the type of spatial relationships (triangle size and topology—

inside/outside) and the number of spatial relationships. 

 

Example 4 (Figure 5-1d): Superimpose what you currently have imagined onto 

the background in Figure 5-1d. Ignoring the triangle, are A and B in the same 

topological space (i.e. can you get from A to B without crossing a gray area)? The 

background contains non-convex shapes and more spatial relationships to 

consider. Visual imagery and a depictive representation are likely to be necessary 

for this task. 

 

Example 5: Are there any parts of a head of Iceberg lettuce that are a darker green 

than any parts of a Christmas tree? [Answer: yes – if the tree has some light green 

ornaments on it.] In this example, you have to combine the two objects in a visual 

depictive representation to make the specific color comparison. 

 

(b) Infer results after a transformation.  

 

Example 6 (Figure 5-1c Notice we are back to figure ―c‖): Rotate the triangle 

counterclockwise 45 degrees. Is target A inside it? Now rotate the triangle 

clockwise 90 degrees. Is target B inside it? Without specific shape, the spatial 

representation is sufficient. 

 

Example 7 (Figure 5-1d): Starting from the triangle‘s original orientation (i.e. 

north), rotate the triangle clockwise 90 degrees. Is there an enclosed gray region 

between you and target B? Similar to example 4, the task might benefit 
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significantly from visual imagery because of the specific shape and multiple types 

and number of spatial relationships.  

 

(c) Retrieve the spatial or visual properties from an exemplar. 

 

Example 8 (Figure 5-1d): Imagine a path from A to B avoiding all enclosed 

regions. Is there a location where the path turns approximately 90 degrees? 

Retrieving spatial or visual properties of an exemplar requires visual imagery as 

the exemplar‘s specific shape and, possibly color, are involved. In this example, 

the imagined path is a specific exemplar. 

 

Example 9: In what hand does the Statue of Liberty hold the torch? A specific 

instance of a visual object (i.e. Statue of Liberty) likely necessitates a visual 

depictive representation. 

 

(d) Retrieve a prototypical object’s spatial or visual properties when the property 

was not explicitly encoded 

 

Example 10: Does the letter ‗A‘ have an enclosed space? The letter ‗B‘? ‗X‘?  In 

these examples, the prototypical letter may have an explicit symbolic description 

(e.g. the letter ‗X‘ is two intersecting lines), but not enough information to 

perform the reasoning in the question. Since specific shape is involved, a visual 

depictive representation is likely necessary for the task. 

 

In summary, the previous discussion highlights the general tasks where imagery is 

useful for reasoning to include filling in missing spatial and visual details of a situation, 

recognizing novel visual features and spatial properties, analyzing or rehearsing the   

outcome of an action before executing it, and replaying a previous event to inform a 

future decision. One or more subtasks support these tasks and may require spatial or 

visual imagery depending on the number and types of spatial relationships and the 

specificity of the shape and color. The agent decides what representation is suitable for 
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the task. Subtasks include, but are not limited to, inferring global spatial relationships or 

visual features from perceived or retrieved local spatial relationships, inferring new 

spatial and visual properties after a transform, and retrieving a spatial or visual property 

from an exemplar or a prototypical object where the feature was not explicitly encoded. 

The environment may or may not play a role in determining the characteristics of the 

tasks. We now summarize our three experimental domains as concrete examples. We will 

refer to these domains when we discuss the architecture in the next chapter and revisit the 

tasks in more detail when we evaluate the architecture in Chapter 7. 

5.2 Geometry Gymnastics 

The geometry problem derives from Larkin‘s and Simon‘s (1987) work demonstrating 

the computational advantage of diagrams. In one of the problems they investigate, the 

agent must locate visual properties (e.g. vertices, line segments, triangles) and infer 

relationships (e.g. angles) that initial task knowledge does not specify. The problem, 

shown in Figure 5-2, consists of four lines (A, B, C, D). Line A is parallel to line B and 

line C intersects line A. Line D bisects the line segment formed by the intersection of line 

C with lines A and B. The goal is to show that the two triangles formed are congruent. To 

prove congruency, the model must employ a basic geometry rule, such as the angle-side-

angle (ASA) rule. The ASA rule states if two angles and the included side of a triangle 

are congruent to two angles and the included side of another triangle, then the two 

triangles are congruent. In Figure 5-2, the model must show E1=E2, e1=e2, and c=b.  

 

 

Figure 5-2: Geometry Problem 
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The environment is irrelevant in this task, as it only requires internal problem 

solving. The general imagery tasks are to fill in the spatial and visual details and 

recognize novel features and spatial relationships by combining objects (i.e. lines) based 

on their local spatial (i.e. direction, distance, orientation) relationships. Another way to 

look at the problem statement is that line B is in front of line A. Line C is in between line 

A and line B and oriented counterclockwise some random orientation between 30 and 60 

degrees from line A. Line D is also in between line A and line B oriented clockwise from 

line A. Because the number and type of spatial relationships are more than a few but 

specific shape and color are not required, this task only requires spatial imagery. In the 

results chapter we will discuss the comparison between an exclusive symbolic and a 

combined symbolic/quantitative spatial implementation. 

5.3 Alphabet Soup 

An experiment from Thompson et al. (in press) motivates the second domain. In 

their experiment, the subject hears a letter from the English alphabet, and the investigator 

asks the subject to visualize the letter in its uppercase format (Figure 5-3). Next, the 

subject hears a cue, such as ―curve,‖ ―enclosed-space,‖ or ―symmetry‖ and indicates (by 

pushing a button) whether the letter has the particular feature. For example, the letter ‗A‘ 

has an enclosed space and vertical symmetry while ‗U‘ has a curve and vertical 

symmetry. The Soar agent also ―hears‖ a question, visualizes the letter, searches for the 

desired feature, and then ―verbally‖ responds.  

While there are environmental cues in this domain (i.e. the agent ―hears‖ a 

question), like the geometry problem, it is primarily an internal problem-solving task. 

The general imagery task is to fill in the visual details by retrieving a specific feature 

from a prototypical, uppercase letter. As specific shape is necessary to infer the visual 

features, this task focuses on the depictive representation. Unlike the geometry domain, 

symbolic or quantitative representations may have significant challenges, both 

computationally and functionally, solving this task without explicitly encoding every 

feature.  
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(a) (b) 

Figure 5-3: Alphabet Experiment 

5.4 Scouts Out 

This evaluation environment is motivated by the U.S. Army‘s work in developing 

robotic scouts to provide situational awareness for a mixed manned/unmanned military 

force (Jaczkowski, 2002).  Supporting intelligent tactical behavior, rather than serving as 

a sensor platform on wheels, is one of the goals for the robotic scouts. That is, in addition 

to autonomously maneuvering to a position and transmitting video data, we would like 

the scouts to coordinate and attempt to improve their positions based on sound tactical 

behavior.  

In support of this effort, we built a simulation to model a section of two scout 

vehicles that must cooperate to maintain visual contact with an approaching enemy‘s 

three-vehicle reconnaissance element (Figure 5-4a). One scout, the section lead, is a Soar 

agent. The other scout, the teammate, is scripted. The team‘s primary goal is to keep its 

commander informed of the opposing force‘s movements by periodically sending 

observation reports (through the lead) containing their best assessment of the enemy‘s 

location. The agent cannot observe its teammate because of terrain occlusions. However, 

the teammate periodically sends messages regarding its position. The teammate scans the 

area in front of it and sends reports to its lead when it observes enemy vehicles (Figure 

5-4b). The teammate also responds to orders from the lead to reorient its view. The agent 

can look at the environment or its map (Figure 5-4c-d) and can reorient its view. We 

assume the agent and its teammate can distinguish enemy vehicles from other objects. 

However, the agent has to decide whether a sighted or reported enemy is a new or 

previously identified entity. 
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To motivate the capabilities of multiple-representations, consider how the agent 

makes decisions in this domain. Typically, a scout leader follows these steps after initial 

visual contact (Army, 2002).  

 

(1) Deploy and report 

(2) Analyze the situation 

(3) Choose and execute a course of action 

 

Analyzing the situation involves reasoning about known friendly and enemy locations 

and orientations, terrain, and obstacles. If the scout lead does not know the locations of 

all expected enemy, then he might hypothesize where other enemy vehicles are and 

imagine their positions (Figure 5-4d). Based on the analysis, the scout leader then decides 

if he should reorient himself, his teammate, or both. 

 

  

(a) Actual Situation (b) Teammate‟s View 

  

(c) Agent‟s View (d) Agent‟s Perceived Map / Imagined Situation 

Figure 5-4: Scout Domain 
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Analysis often involves visualizing the situation and mentally simulating 

alternatives. Military leaders rely on imagery to assist with decisions in the ―fog of war.‖ 

The U.S. Army‘s doctrine even goes so far to state: 

 

Visualize means to create and think in mental images. Human beings do 

not normally think in terms of data, or even knowledge; they generally 

think in terms of ideas or images—mental pictures of a given situation 

(Army, 2003).  

 

Using spatial and visual imagery, an agent can imagine each observed entity‘s 

map icon on its external map. If the agent is confident in the information, it can write it 

on the external map, in effect making it persist. As information changes the agent updates 

the map, keeping its perceived map of the situation up to date. Note that the agent may, 

but does not have to, keep the location and orientation in its head. It can simply ―look‖ at 

its external map and ―read‖ the information. In this sense, then the map serves as an 

external store. Using the external map as perceptual background, the agent can then 

imagine key terrain (enemy objectives), hypothesized enemy, possible enemy paths, its 

viewpoint, and its teammate‘s viewpoint. It can then imagine alternative course of action 

by simulating different viewpoints.  

This domain has environmentally rich spatial (e.g. relationships between entities, 

obstacles, terrain, etc.) and visual (e.g. terrain‘s topological shape and color) properties. 

In addition to the general imagery tasks of filling in the spatial and visual details and 

recognizing novel shapes by combining perceptual input with retrieved memories, 

imagery is used to analyze the outcome of an action before executing the action (e.g. 

imagining different viewpoints for the teammate and self). The sub-tasks cover both 

spatial and visual tasks with similarities to the examples provided in the beginning of this 

chapter. 

In summary, decision-making proceeds by combining perceptual representations 

with task specific and declarative knowledge to construct an imagined scene. Analysis 

emerges through the manipulation of symbolic, quantitative spatial, and visual depictive 

representations. Retrieval or inspection of the resulting representations then provides new 

information that the agent uses to reason with to produce action in the environment. 
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Chapter 6 

 

 

Architectural Design 

 

 

 

The previous chapters present the background necessary to appreciate the architectural 

design decisions. Although we introduce the theory and design space constraints at once, 

our research strategy is an iterative process. First, we analyze specific behavioral 

phenomena supporting a desired functionality. In our case, it was how humans use mental 

imagery, or visualization techniques, to make decisions and solve problems. We then 

determine plausible computational approaches motivated by the behavioral and biological 

evidence. Next, we design and implement a complete (i.e. perception, cognition, action), 

although rudimentary software system. Finally, we evaluate the system starting with 

simple tasks and progress to more complex scenarios. The evaluation process drives our 

future direction and requirements for subsequent iterations. 

For example, we initially did not consider how perceptual mechanisms 

constrained imagery. As we investigated the literature, however, it became clear that 

imagery and visual processing are not disjoint components, but rather use and share 

similar structures and processes. As part of that oversight, we did not include the visual 

depictive representation, as it initially seemed odd to us that humans would resort to such 

a low-level representation for reasoning after perception performed so much work 

extracting abstract representations. It became evident, especially when we began 

evaluating the requirements for the alphabet experiment, that a depictive representation 

was not only useful, but appeared necessary to achieve the desired functionality. Finally, 



 

 57 

when we evaluated the system in a more perceptually demanding environment (i.e. the 

Scout domain), where bottom-up, visual processing and imagery must cooperate and 

share resources, we had to look at issues such as the differences between perceived and 

imagined objects, synchronization of processes, race conditions between perception and 

imagery, and truth maintenance issues. While we do not claim to have implemented all 

functionality that humans show during spatial and visual imagery, the goal has been to 

design and implement a complete and general architectural framework with a few 

demonstrated capabilities that can motivate future work.  

Soar and the Spatial-Visual Imagery (SVI) module are the two major components 

in the architecture (Figure 6-1). Soar encompasses the symbolic representation and 

computations. SVI includes the quantitative spatial and visual depictive representations 

and processes. It encapsulates high-level visual perception, spatial, and visual imagery. 

Our modeling of visual perception, to include the separation between ―what‖ and 

―where‖ pathways, is theoretical and an approximation, but we include it for 

completeness. The architecture makes a distinction between memories (rectangles) and 

processes (rounded rectangles), and the terminology is either Kosslyn‘s et al. (2006) or 

our own.  

We present the architecture as follows. First, we provide an overview focusing 

primarily on the memories and corresponding data structures associated with Soar and 

SVI (Soar+SVI). Next, we suggest, primarily from a theoretical perspective, how 

perceptual visual processing emerges. We then describe our implementation of spatial 

and visual imagery processing. For more details, Appendix B illustrates some algorithms 

for manipulating and inspecting the visual depictive representation. Appendix C details 

the software engineering aspects and provides examples of the Soar symbolic structures 

used to represent and control imagery processing.  

6.1 Soar 

Soar (Laird, 2008; Lehman, Laird, & Rosenbloom, 2006) provides a fixed set of 

symbolic memories and processes (top of Figure 6-1). The symbolic memories include a 

declarative, short-term memory (STM), a procedural long-term memory (LTM), two 

long-term, declarative memories (episodic and semantic, not shown in Figure 6-1), and 
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two learning mechanisms (chunking and reinforcement learning). The short-term memory 

is a graph structure representing the agent‘s knowledge of its goals and current state. A 

symbolic structure in Soar may represent many things, including concepts (e.g., cheetahs 

run fast) or objects in the world. Within the Soar+SVI architecture, there are special 

annotated symbols that represent an object and its explicit spatial and visual properties. 

We call these symbols visual symbols. These symbols arise from perception, activation of 

a previously stored memory, or results from an imagery inspection. Visual symbols may 

be associated with other, non-visual symbols. We will discuss visual symbols in more 

detail later. 

 

 

Figure 6-1: Architecture Overview 

 

Soar‘s procedural long-term memory is a set of productions that control behavior. 

Each production has a set of left-hand side (LHS) conditions and right-hand side (RHS) 

actions. If a symbolic pattern in STM matches with the LHS of a production, then the 

production ―fires,‖ creating or removing symbolic structures in STM based on the RHS 
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actions of the production. During each phase of Soar‘s processing cycle (described next), 

all matching productions fire in parallel.  

Soar‘s processing cycle is based on the problem space computational model 

(PSCM) organizing an agent‘s knowledge into a set of states, and a set of operators, 

instantiations of which move the agent to different states. An agent, by iteratively 

selecting and applying operators, effectively conducts a search through its problem space. 

The processing or decision cycle (Figure 6-2) is hypothesized to be approximately 50 

milliseconds in humans, but is much faster in the actual implementation. 

The decision cycle begins with an input phase where an agent‘s current 

perceptions augment a fixed structure in STM called the input-link. The elaboration phase 

provides an opportunity, through the matching and firing of productions or retrieval from 

a declarative LTM, to elaborate all knowledge relevant to the current situation, propose 

potential operators, and create preferences for those operators. After the elaboration 

phase reaches quiescence, the operator selection, or decision phase, selects an operator 

from the set of proposed operators. The selection is based on the operators‘ preferences. 

If knowledge is inadequate to choose between the different operators, an impasse occurs 

and the architecture creates a subgoal enabling further reasoning.  

 

 

Figure 6-2: The Soar Decision Cycle 

 

After the decision phase, if there is a selected operator it applies, again through 

the firing of one or more productions, making persistent changes to short-term memory. 

These changes either update the agent‘s internal model or create motor commands on a 

fixed structure in short-term memory called the output-link. During the output phase, a 

process external to Soar reads the commands placed on Soar‘s output-link and produces 

action in the environment. In the Soar+SVI system, the SVI module filters all output-link 

commands. If the command is an imagery action then it is transmitted to the appropriate 
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SVI component handling the command. Otherwise, SVI passes it to the appropriate motor 

module. 

6.2 SVI 

SVI encapsulates the fixed memories and processes to support high-level visual 

perception, spatial imagery, and visual imagery (bottom of Figure 6-1). The memories 

include short-term memories for the quantitative spatial (Object Map) and visual 

depictive representations (Visual Buffer), a long-term memory (Visual LTM) that stores 

the shape and color of prototypical objects or specific instances that the agent has 

previously seen in the environment, and a short-term memory (Visual-Spatial STM) that 

binds the ―what‖ and ―where‖ pathways. 

6.2.1 Memories 

6.2.1.1 Visual Buffer 

The Visual Buffer (bottom of Figure 6-1) is a depictive, short-term memory activated 

from either bottom-up, visual-perception or top-down imagery processing. Space is 

inherent in the structure of the depictive representation and the encoding is of information 

rather than a denotation of information. The depiction as a whole represents shape, size, 

orientation, location, and color.  

Computationally, the Visual Buffer is a set of 2D image data structures where a 

single image, I, has a set of picture elements, or pixels, (x,y; I(x,y)). The first parameter, 

(x,y), is the pixel location and the second parameter, I(x,y), is the pixel value of I at 

location (x,y). There is always at least one image in the set, the base image or Visual 

Buffer layer (vb-layer) zero, representing the perceived scene from an egocentric 

viewpoint or an imagined scene from an imagined viewpoint. Visual perception or 

imagery may create additional, ephemeral images in the set that extract a subset of the 

base image (e.g. edges, marked regions). These subsequent image layers serve as an 

attention mechanism to support further computations. Algorithms, encoded in the ―What‖ 

or ―Where‖ inspectors (bottom of Figure 6-1) or the VBManipulator (shown later) 

process each image separately. The algorithms used to process the image(s) are algebraic 



 

 61 

(e.g. edge detectors, filter masks, rotation, scaling), or ones that take advantage of the 

topological structure using pixel-level rewrites (Furnas, 1990, 1991; Furnas et al., 2000). 

For example, in the alphabet experiment, a Hough transform is used to detect 

curves on letters and pixel-level rewrites are used to infer enclosed spaces. Both 

techniques require the instantiation of additional image layers to support reasoning. In the 

scout domain, the system creates a separate image for each enemy and ―key terrain‖ 

toward which the agent hypothesizes the particular enemy is maneuvering. Figure 6-3 

shows the agent‘s combined perceived and imagined scene inside the Visual Buffer box. 

The middle image represents the agent‘s imagined representation of one enemy 

maneuvering toward a piece of terrain along with a distance field flood and the 

hypothesized path (shown in orange). The image serves as an attention mechanism in that 

the agent is focused on a particular enemy/key-terrain pair and the path between them. 

The third image in the figure‘s upper right corner represents the portion of that path the 

agent hypothesizes it can view based on its current location orientation, and imagined 

field of view. 

 

Figure 6-3: Visual Buffer is a “Set” of Images 

6.2.1.2 Object Map 

The Object Map (middle right of Figure 6-1) is a short-term memory that 

maintains the quantitative spatial representation of the objects in the currently perceived 
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or imagined scene. This representation fixes an object‘s location (direction and distance 

from a fixed frame of reference), orientation, and size in space and includes a viewpoint 

to facilitate the generation of a depictive image. The computational processes that infer 

knowledge from this representation are sentential, mathematical equations. It also serves 

as an intermediate format when moving from a symbolic to a depictive representation. 

The Object Map‘s structure is sufficient for reasoning about objects‘ relative direction, 

distance, orientation, size, and general topology. However, if reasoning of spatial 

properties involves a non-convex shape or the reasoning is about an object‘s visual 

features, a depictive representation in the Visual Buffer is required. 

A key design decision was determining the Object Map‘s data structure. The 

structure had to support the quantitative spatial representation for spatial reasoning tasks 

and the rendering of a rasterized image for the Visual Buffer‘s depictive representation. 

For spatial reasoning, we desired a structure supporting hierarchical, containment 

relationships (e.g., a line is part of a geometric figure, a gun is part of a tank) and spatial 

relationships (e.g. line-C is in between line-A and line-B, enemy A is 500 meters to my 

left front). Together, the hierarchical containment and spatial relationship properties 

support spatial reasoning between objects and an object‘s parts (e.g. what is the 

relationship between the front wheel of a car and the steering wheel? Between the 

steering wheel and the stop sign?). Rendering to a rasterized image requires the ability to 

combine specific shape (i.e. vertices and indices) and color, spatial relationships, and a 

privileged viewpoint so that the image can be generated from a specific perspective.  

We chose to implement the Object Map with a scene-graph data structure and a 

viewpoint, or camera (Eberly, 2005). Every node in the scene-graph is an object or group 

of objects representing a portion of convex space in the perceived or imagined scene with 

the root node representing the entire space (Figure 6-4). The leaf nodes of the graph 

contain an object‘s shape (i.e. three-dimensional mesh of vertices and indices) and color 

(i.e. a red, green, blue vector) to support rendering to an image. Intermediate nodes 

represent the composition of one or more objects. The structure is called a graph (rather 

than a tree) because multiple leaf nodes may share the vertices and color.  

As an SVI convention, the root node of the Object Map‘s scene graph represents 

the current scene (Figure 6-4). The root‘s first child contains the agent‘s spatial 



 

 63 

information (location, orientation), the second child includes any perceived background 

information, such as terrain, and the third child contains all the salient or visual objects in 

the agent‘s scene. Figure 6-4 shows the number of visual objects to be N. From a 

psychological perspective, N is hypothesized to be four to five objects based on working 

memory capacity (Jonides et al., 2008; Pylyshyn, 2001). Note that there may be more 

objects in the environment, but N simply represents those objects that perception has 

determined ―salient‖ or imagery has added. Each visual object may be a single entity (i.e. 

a tank) or several entities (i.e. a group of tanks). 

 

 

Figure 6-4: Scene-Graph Data Structure 

 

SVI distinguishes between primitive and composite objects. Primitive objects, 

such as Visual-Object-1A‘s Node, have a single child encoding the vertices and color. 

Composite objects are composed of one or more primitive objects. The general shape, or 

―bounding volume,‖ of a primitive object is computed from its vertices. The general 

shape may be a convex hull, an oriented-bounding box, or a sphere. Each intermediate 
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scene-graph node, or composite object, captures the general, convex shape of an object it 

represents based on the combined general shape of its child objects.  

Every node in the scene graph encapsulates a local and world transformation 

where a transformation includes a 1x3 translation vector and a 3x3 rotation and scale 

matrix. A local transformation represents the direction, distance, orientation, and size of 

an object relative to its parent object. A world transformation is relative to some fixed, 

global frame of reference. For example, in Figure 6-4, Visual-Object-1‘s Node is 

composed of two parts, Visual-Object-1A and Visual-Object-1B. Visual-Object-1A‘s and 

Visual-Object-1B‘s local transformation represent the spatial relationship (i.e. direction, 

distance, orientation, size) between them relative to Visual-Object-1. The two parts‘ 

world transformation represents their global location, orientation, and size computed 

from Visual-Object-1‘s world transformation. That is, 

 

WorldVisual-Object-1A = WorldVisual-Object-1 * LocalVisual-Object-1A 

 

The general shape and transformations are computed recursively at run-time by 

traversing through the graph. Note that the ―world‖ transformation does not necessarily 

have to be ―global‖ coordinates. Rather, an alternative is to have the agent serve as the 

―world‖ origin and the transformations computed relative to this origin. Of course, in 

practice to compute an actual world location one would have to know the agent‘s 

location, perhaps through localization techniques or a global positioning system. 

6.2.1.3 Visual Long-Term Memory 

The remaining memories in SVI are not associated with a particular 

representation but are indirectly involved in reasoning. Visual long-term memory 

(VLTM) contains prototypical objects and specific instances encoded from previous 

experiences. VLTM is implemented as a hash table (Figure 6-5). A symbolic, visual-id, 

indexes each object. Each entry in the table is an object‘s scene-graph representation. The 

scene-graph in VLTM is distinct from the scene-graph in the Object Map as it is not an 

instance in the current perceived or imagined scene but rather a memory of a prototypical 

object‘s shape and color. Another distinguishing characteristic is that unlike an object 

instance in the Object Map, a VLTM object does not have a fixed frame of reference in 
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space relative to the agent (egocentric) or another object (allocentric). Rather the space 

representation in VLTM serves only to specify an object‘s configuration properties. To 

become an instance in the current scene, imagery activates this VLTM representation.  

 

 

Figure 6-5: Visual Long-Term Memory 

 

Similar to the Object Map, VLTM distinguishes between primitive and composite 

objects. For example, VLTM stores a tank from the Scout domain as shown in Figure 

6-5. The tank has a hull and a turret, the hull has road wheels and tracks. The advantage 

of this representation is its compactness. Only the leaf-node entries store the vertices and 

color of the primitive objects (i.e. road wheel). All other node entries are simply pointers 

and transformations describing the composition and relationships between the object‘s 

parts. Together the structure determines the object‘s shape. Details in the representation 

that are missing are just missing. Someone not familiar with a tank may think of it as a 

cylinder on top of a rectangle rather than containing all the features that a tank expert has. 

Thus, the primitive parts simply have fewer vertices and color details that the agent may 

elaborate as it experiences more objects in the world of a similar type. 
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The VLTM structure enables an agent to imagine an object (i.e. tank) or an 

object‘s parts (i.e. a tank‘s gun tube or road wheel) by simply traversing the nodes 

indexed from the visual-id and instantiating (i.e. copying) each child node to the Object 

Map. The vertices and color are shared between the instantiated objects in the Object 

Map, and the objects in VLTM. The vertices are involved in computations when 

determining the object‘s general shape for spatial imagery (e.g. computing the convex 

hull) or generating the depictive image in the Visual Buffer for visual imagery. 

6.2.1.4 Visual-Spatial Short-term Memory 

Visual-Spatial short-term memory (VS-STM) is a shared memory that effectively 

binds the ―what‖ and ―where‖ pathways and serves as a temporary symbolic store 

between Soar and SVI (center of Figure 6-1). It is a hierarchical structure with the top-

level representing the sets of salient, visual objects, spatial properties, and visual features 

that apply to the current scene--either perceived or imagined. Each salient object in the 

visual object set may have subsequent levels in the hierarchy with its own feature, object, 

and spatial sets (Figure 6-6). Visual processing expands the top-level sets and subsequent 

layers as details in the scene are elaborated. During imagery, results of processing also 

expand these sets in response to specific operations. Each visual-object in VS-STM has a 

corresponding instance-id distinguishing it as a salient object in the scene. If the visual-

object is recognized it will also have a visual-id. Note that the Visual Object in VS-STM 

is a separate structure from the Visual-Object Node in the Object Map‘s scene graph 

(Figure 6-4). A VS-STM Visual Object has direct access to its corresponding scene graph 

node but contains information not represented in this node such as any visual or spatial 

properties elaborated during perception or imagery, whether it has been recognized (i.e. 

visual-id), and  a marking-color and vb-layer. Our description of visual perception 

(discussed next) will discuss the marking-color and vb-layer. This VS-STM Visual 

Object then binds the ―what‖ and ―where‖ pathways. 
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Figure 6-6: Visual-Spatial Short-Term Memory 

6.2.2 Processes 

6.2.2.1 Visual Perception 

Again, our theory of visual perception is theoretical, but we include it to emphasize 

imagery‘s integration with visual mechanisms. Our implementation does model the flow 

of information as described here. A Refresher process activates the Visual Buffer from 

retinal stimulus (bottom right of Figure 6-1). Upon activation, a two-pass operation is 

performed on the depiction. During the first step, a Saliency Inspector determines and 

marks the salient regions, or objects, in the current scene by creating a separate image, or 

vb-layer, for each object. Each image is ―colored‖ with a unique marking where the 

colored region corresponds to the salient object‘s contour and interior in the perceived 

image (Ullman, 1996). The Saliency Inspector creates a Visual Object structure in VS-

STM for each salient object and augments it with a unique instance-id, marking-color, 

and associated vb-layer (Figure 6-6). The instance-id is similar to Pylyshyn‘s (2001) 
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Figure 6-7: “Bottom-up” Visual Processing and Data Flow 

 

During the second pass, two parallel processes initiate a more detailed inspection 

of the depictive representation, focusing their attention on the marked objects in the 

images in the Visual Buffer layers (Figure 6-7). The What Inspectors are responsible for 

extracting object features to support recognition by matching the features with a shape 

and color representation in VLTM. If the object is recognized, its associated visual-id 

from VLTM is stored in VS-STM (Figure 6-6).  

Simultaneously, the Where Inspectors extract the egocentric direction and 

distance (i.e. location), orientation, and size of the objects from the Visual Buffer, build 

the Object Map‘s scene-graph, and update the VS-STM‘s current scene spatial set (Figure 

6-6). Initially, the ―Where Inspectors‖ encode the general shape of the object in the scene 
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―Where Inspectors‖ associate the leaf nodes of the Object Map with their corresponding 

vertices in VLTM.  

Symbolic 

LTM 

SVI 

Input Output 

Symbolic STM 

Soar 

VLTM 
Listeners 

What 
Inspectors 

Where 
Inspectors 

Object Map 
Listeners 

Saliency 
Inspector 

VS-
STM 

VLTM Object Map 

Process Flow 

Data Flow 

Visual 
Buffer Refresher 

Stimulus 

Pass-1 

Pass-2 
Pass-2 



 

 69 

A set of listeners along the ―what‖ and ―where‖ pathways (VLTM and Object 

Map Listeners respectively) monitor updates to VS-STM and consolidate the results for 

input to Soar (Figure 6-1 & Figure 6-7). Operators in Soar‘s procedural memory, 

executing in a separate control path, attend to the listeners‘ input and associate it with 

existing knowledge to identify the object. For example, a recognized tank object may be 

associated with the fact that it is an enemy vehicle. If the visual object arriving on Soar‘s 

input-link does not have an associated visual-id (i.e. it is not recognized), imagery 

processing may commence in Soar to assist in recognition of the object. Soar encodes the 

visual objects in the perceived scene along with their egocentric direction, distance, and 

orientation. Note that these ―automatically,‖ extracted spatial relationships are relative to 

the agent.
8
 They do not include the relationships between every pair of salient objects in 

the scene. This type of inference requires imagery. 

In practice, the simulation environment provides the Saliency Inspector a list of 

scene graph nodes representing the ―salient‖ objects that the agent can currently observe. 

The simulation makes the determination of what the agent can and cannot observe. The 

first scene graph node in this list is always the ―background‖ node, which may represent 

terrain and other ―non-salient‖ objects (i.e. trees, buildings), etc. The Saliency Inspector 

instantiates the Visual Object structure in VS-STM and provides the ―What‖ and 

―Where‖ Inspectors the list of scene graph nodes. The ―What Inspectors‖ recognition 

process is a simple ―string match‖ and the ―Where Inspectors‖ build the internal Object 

Map structure from the provided list of scene graph nodes. For debugging purposes, the 

Refresher renders the internal scene graph from the agent‘s current viewpoint. The 

remaining information flow proceeds as previously discussed. Although the 

implementation of bottom-up visual processing is ad-hoc for now, it forces us to consider 

how visual perception and imagery interact. 

6.2.2.2 Spatial and Visual Imagery 

Given the above discussion, we can now describe how the architecture supports spatial 

and visual imagery processing. We will provide an overview of the processing, discuss 

                                                 

8
There may be some non-egocentric relationships automatically extracted during bottom-up perception 

such as several objects falling in a line. 
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the spatial and visual knowledge representation in Soar, and then elaborate on how SVI 

processes each imagery operator (construct, transform, generate, and inspect). We will 

use examples from both our experimental domains and the following ―place-setting‖ task: 

 

A Soar agent is setting the table for dinner. Its current goal is to set one 

place setting. In order to accomplish the goal it has to set each individual 

object (napkin, fork, plate, etc). It prefers to set the center object (i.e. 

plate) first so it can place the other objects relative to the center.  

 

An agent uses imagery when, in the context of its current goal, a spatial 

relationship or visual feature is not directly accessible from symbolic knowledge. For 

example, in the ―place-setting‖ task the agent is trying to determine the center object; in 

the geometry problem, the agent is trying to find vertices, line segments, angles, and 

triangles; in the alphabet experiment, the agent is trying to determine if the letter has a 

specific feature; and in the Scout domain, the agent is trying to determine where to orient 

its team for adequate coverage of hypothesized enemy routes. 

An agent invokes imagery through the application of an operator (construct, 

transform, generate, and inspect) in Soar‘s procedural long-term memory (top right of 

Figure 6-1). We use Soar‘s subgoaling mechanism to implement these operators. 

Therefore, if the agent is in an imagery problem space and ―important‖ information 

arrives (e.g., the teammate in the Scout domain sends the agent a report), the system is 

responsive, interrupts imagery processing, attends to the incoming input, and incorporates 

the new information.  

Whether the task requires spatial or visual imagery, the system first must 

construct the quantitative spatial representation by accessing and combining spatial 

configurations from Soar‘s symbolic memory with general shape information in VLTM. 

If a depictive representation is required, imagery generates a visual depictive 

representation by combining the quantitative spatial representation from the Object Map 

with each object‘s specific shape and color from VLTM. The agent may transform or 

inspect the representation in the Object Map or Visual Buffer. As imagery proceeds, the 

symbolic results of manipulations and inspections are stored in the VS-STM and 

transmitted to Soar via the listeners. Although we discuss the imagery operators in a 

sequence, the processing is conditional and iterative.  
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6.2.2.2.1 Symbolic Representations 

A symbolic structure in Soar is associated with a visual symbol via a visual-object 

attribute. For example, an agent‘s symbolic, short-term memory represents the place 

setting as shown in Figure 6-8 (only three objects shown). Each entity (napkin, fork, 

place setting, plate) has a visual symbol associated with it (V23, V9, V7, and V12 

respectively). A visual symbol with a visual-id (napkin, fork, plate) has an underlying 

shape and color representation in Visual LTM. Alternatively, as in the case of the place 

setting, a visual symbol may have a has-a attribute and a spatial description specifying 

how it is composed of other visual symbols. Note that in addition to the visual symbols, 

the symbolic representation enables one to associate other, non-visual, symbols to each 

entity (e.g. a napkin is used to wipe your mouth, a plate holds food). A visual symbol 

may arise from memory retrieval, perceptual input, or after imagery instantiates an 

imagined object in the scene (which is the same as perceptual input from Soar‘s 

perspective). An instantiated visual symbol will have an instance-id corresponding to the 

instance-id in VS-STM (Figure 6-6) signaling that it is a salient object in the scene. 

 

 

Figure 6-8: Example Short-term Memory Symbolic Structure 
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The spatial structure describing the configuration of a visual symbol includes a 

base visual symbol and a relative visual symbol so that a predicate relationship is defined 

as <spatial-relationship> (<relative>, <base>) (e.g. above(fork, napkin), 

disconnected(fork, plate)).
9
 The spatial relationships may be qualitative or quantitative 

(Figure 6-9 and Figure 6-10). In the place setting example, the fork is above (direction) 

and externally connected (topology) to the napkin and left-of and disconnected from the 

plate. In the Scout domain, a map-icon may be located 500 meters southeast of the 

agent‘s map-icon and above and externally connected to the background (i.e. place it on 

top of the terrain). When there is a topological relationship, the direction specifies where 

the topological relationship applies (e.g., fork is externally connected to the napkin in the 

―above‖ direction). Task knowledge may rearrange the spatial relationships or even 

synthesize composite objects to enable the creation of novel representations (e.g. 

imagining an elephant on top of a house). 

 
Type Qualitative Quantitative 

Direction left-of, right-of, in-front-of, behind, 
above, below, between, 
center-of 

3D vector <x,y,z> 

Distance near, far scalar  
or 

3D vector (distance in each 
direction) 

Orientation north, northwest, west, southwest, 
south, southeast, east, northeast 

scalar 
or 

3D vector (orient towards 
location) 

Topology 
(see Figure 6-10) 

disconnected (DC), externally-
connected (EC), partially-overlaps 
(PO), tangential-proper-part (TPP), 
non-tangential-proper-part (NTPP) 

None 

Geometry parallel, perpendicular, intersect, 
line-segment, triangle, angle, 
congruent 

None 

Size smaller, larger, equal scalar (1D length) 
2D vector (length,width) 
3D vector (length,width,height) 

Symmetry horizontal-symmetry, asymmetry, 
vertical-symmetry 

 

Figure 6-9: Spatial Properties 

Bold font indicates that the property has been used in the experimental domains 

                                                 

9
Ternary spatial relationships (e.g. between) are also possible where there are two base objects (e.g. 

between (plate, fork, knife)). 
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Figure 6-10: RCC-8 Topological Relationships 

(from (Cohn et al., 1997)) 

 

Type Qualitative Quantitative 

Shape point, vertex, line, line-segment, 
triangle, curve, curve-segment, 
enclosed-space 

3D vector <x,y,z> (set of 
points) 

Color red, green, blue, etc. 3D RGB vector <r,g,b> 

Figure 6-11: Visual Features 

Bold font indicates that the property has been used in the experimental domains 

 

Similar to VS-STM‘s visual object structure, the visual symbol in Soar‘s symbolic 

memory may have associated visual-features or spatial attributes encoded during 

perception, retrieved during an imagery inspection, or declared in a symbolic memory. 

For example, in the alphabet experiment, the initial, visual symbol for the letter ‗A‘ may 

be described as being composed of three line-segments with a specified spatial 

configuration (i.e. one line-segment has a counterclockwise orientation of 45 degrees, 

another line-segment is the same size as the first line-segment but rotated clockwise 45 

degrees, etc.). The agent, wanting to know if the letter A has an ―enclosed space‖, 

constructs the quantitative spatial representation in the Object Map and augments the 

letter A‘s visual symbol with an instance-id. After the visual depictive representation is 

generated and inspected for the enclosed space, the letter A‘s visual symbol is augmented 

with a shape visual-feature where the shape is an enclosed space. Figure 6-11 highlights 

the visual features SVI currently supports.  

SVI assigns a temporary emergent-id to shapes found during inspection so that if 

the agent desires more information regarding the feature, it can be retrieved from VS-

STM. For example, the agent may want to know the size (i.e. length) of the letter A‘s 

enclosed space and its direction and distance from the top of the ‗A‘. The emergent-id 

supports this capability, binding the symbolic shape representation in Soar to its 

underlying depictive representation in the Visual Buffer via VS-STM. In a similar 

NTPPI = Non- Tangential Proper Part Inverse 
TPP = Tangential Proper Part EQ     = Equal 

TPPI  = Tangential Proper Part Inverse 
EC  = Externally Connected NTPP = Non-Tangential Proper Part  

 
PO  = Partially Overlaps 

DC  = Disconnected 
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manner, retrieved spatial properties that apply strictly to the letter ‗A‘s‘ visual symbol 

(rather than the entire scene) augment the visual symbol as a spatial attribute (e.g. the 

letter ‗A‘ enclosed space‘s center is above its horizontal line-segment).  

6.2.2.2.2 Construction 

Although the symbolic structure of the place setting in Figure 6-8 encapsulates a lot of 

information, it does not indicate the center object of the place setting or whether the fork 

is wider than the spoon—either directly or through logical inference. When there is a lack 

of spatial or visual knowledge relevant to the agent‘s current goal, an impasse occurs and 

Soar creates a special, imagery state where the agent directs the processing. The first step 

in imagery processing is to construct the desired scene. The imagery construct operator 

has two sub-commands, compose, and add. The compose command is useful when the 

agent is imagining a scene by initially composing two objects retrieved from memory and 

adding them to a ―blank‖ scene. For example, the agent begins imagining the place 

setting by composing the fork and napkin. The add command is useful when adding an 

object to an existing perceived or imagined scene (e.g. add a knife to the right-of and 

disconnected from the plate, add a hypothesized enemy icon to the map relative to the 

existing enemy map-icon).  

Functional processes within SVI respond to the specific imagery command. In the 

case of construction, the Constructor receives the operator‘s symbolic information, 

interprets it, and builds the quantitative spatial representation in the Object Map by 

combining each object‘s general shape information from Visual LTM with spatial 

knowledge from Soar (Figure 6-12). The symbolic information includes the visual-id and 

spatial properties of the object(s) being composed or added. The visual-id enables the 

constructor to access the object(s) general shape, or scene-graph, and instantiate it by 

copying the structure.
10

 The spatial properties description includes a relative-visual-id 

and a base-visual-id or a base-instance-id.
11

 The relative-visual-id is the visual-id of the 

relative object in the spatial relationship (e.g. left-of (relative-object, base-object)). If 

composing objects, then the base-visual-id identifies the base object in the spatial 

                                                 

10
The color and specific shape representation (vertices) are not copied. VLTM and the Object Map share 

these structures and they are activated when generating a visual depiction. 
11

There is also a base-instance-id-tert for ternary spatial relationships (e.g. between). 
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relationship because the object has not yet been instantiated. Otherwise, a base-instance-

id, which is the instance-id of a visual object already in the Object Map, identifies the 

base object.  

Spatial properties may include any of the following: direction, distance, 

orientation, size, topology, and geometry (Figure 6-9). If the spatial properties are 

qualitative (e.g. left-of, northwest, externally connected), the Constructor converts the 

symbol to a metric representation. For example, left-of becomes a vector (<-1, 0, 0>) and 

northwest a scalar, absolute orientation (135 degrees). Topological information is 

computed from the appropriate object‘s bounding box or convex hull in the direction 

specified by the direction relationship (i.e. fork is externally connected in the ―above‖ 

direction). If direction is missing then the default behavior is to create the topological 

relationship in a random direction. Note that this is only a ―rough‖ topological 

interpretation and in order to determine a more accurate topological relationship requires 

constructing the ―rough‖ topology, generating a depiction, inspecting it, projecting the 

coordinates from 2D to 3D space, and making translation adjustments. We have not 

implemented this functionality. 

 

 

Figure 6-12: Imagery Construction 
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As an example of building a quantitative representation from qualitative symbols, 

consider the place setting where the agent first composes the knife and the plate by 

locating the knife to the right of the plate. If the construction operator does not include 

any distance constraints, as in this scenario, then the Constructor considers the general 

shape of the objects and uses a heuristic based on an object‘s area of influence (Kettani & 

Moulin, 1999). Locating the knife right of the plate without any distance constraints 

implies placing the knife next to the plate (externally connected) and then adding ―a 

little‖ empty space based on the length of the objects‘ convex hull in the direction of the 

placement (right-of). In order for the Constructor to orient a visual object, the system has 

to assume that each object stored in VLTM has a front and a canonical orientation. SVI 

assumes that each object stored in VLTM is oriented ―north‖ (e.g., the prongs of a fork 

face north). 

After the Constructor finishes composing or adding the visual object(s) to the 

Object Map, feedback to Soar proceeds in a similar fashion as automatic, bottom-up 

visual processing. The Constructor creates a visual object symbolic structure in VS-STM 

for each imagined object and augments it with an instance-id, thus fulfilling the role of 

the Saliency Inspector and ―What Inspectors.‖ Since the object(s) added to the Object 

Map has already been ―recognized‖ (that is the agent knows the object(s) it is 

imagining
12

), this processing is all that is necessary. In the case of the where pathway, the 

Constructor automatically invokes the ―Where Inspectors‖ to inspect the Object Map 

(rather than the Visual Buffer) for the recently added visual object(s) direction, distance, 

orientation, and size information relative to the current viewpoint. As in bottom-up 

processing, the ―Where Inspectors‖ add this information to the spatial set of the current 

scene (Figure 6-6). The VLTM Listeners and Object Map Listeners consolidate the 

results for input to Soar on the subsequent input cycle (Figure 6-7). 

In addition to constructing objects retrieved from Visual LTM, the Constructor 

can also imagine or ―draw‖ simple shapes such as those listed in Figure 6-11. This 

functionality is useful when the agent wants to imagine a shape it has never seen before 

                                                 

12
Although the agent ―recognizes‖ the objects added to the scene, it does not immediately recognize the 

resulting, composite object(s). The inspection process has to be invoked to facilitate recognition. For 

example, imagine a ‗D‘ rotated 90 degrees counterclockwise on top of a ‗J‘; the ‗D‘ and ‗J‘ are 

immediately ―recognized‖, but an inspection process must recognize the ―umbrella‖. 



 

 77 

(e.g. a view frustum). Alternatively, the shape may be the result from an inspection of the 

Visual Buffer that the agent wants to make a first class visual object. Making the shape a 

first class object facilitates spatial reasoning (e.g. determining the direction between the 

centers of the enclosed space and the letter A). In these cases, rather than sending a 

visual-id, Soar sends the vertices and indices describing the shape or its emergent-id to 

the Constructor.  

6.2.2.2.3 Generation 

If a depictive representation is required, the generate operator initiates processing (Figure 

6-13). The Refresher interprets the command and combines specific shape and color from 

Visual LTM with the Object Map‘s quantitative spatial representation to generate the 

visual depictive representation in the Visual Buffer. Generation may render all or some of 

the visual objects and, as previously discussed, create more than one image, or vb-layer, 

as a form of cognitive focus (see section 6.2.1.1). The agent may optionally specify a 

―generation color‖ for a visual-object to distinguish it as a unique object in the image. 

After the image is generated, the Refresher updates the current scene‘s visual object set in 

VS-STM with the generated vb-layer and its associated visual objects along with their 

optional generation color. This information is transmitted to Soar via the Visual LTM 

Listener during the next input-cycle. 

 

 
Figure 6-13: Imagery Generation 
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6.2.2.2.4 Transform 

The transform operator manipulates the Object Map‘s quantitative or a Visual Buffer‘s 

depictive representation through their respective Manipulator processes (Figure 6-14). 

Manipulation of the Object Map includes transforming (i.e. translation, rotation, scaling) 

a specified object in the scene or changing the viewpoint. The modification of the 

viewpoint enables the agent to change its perceptually based egocentric view to an 

imagined allocentric view in order to infer new spatial relationships. For visual imagery, 

viewpoint manipulations can serve as an attention mechanism where, prior to generating 

an image in the Visual Buffer, the system can transform the viewpoint to another 

perspective, focus the viewpoint in or out, or shift it in any direction. These 

transformations effectively focus attention on specific areas of the Object Map so that 

when the Refresher renders the scene to the Visual Buffer the generated pixels are 

representative of that viewpoint. Although we have implemented this viewpoint 

transformation, we have only used it for changing an agent‘s ―frontal‖ view to a top-

down ―map‖ view and for debugging. 

 

Figure 6-14: Imagery Transformation 
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In the case of transforming a visual object node in the Object Map, the transform 

operator sends the instance-id and desired transformation to the Object Map Manipulator. 

The Object Map Manipulator accesses the visual object‘s scene graph node by looking up 

its instance-id in VS-STM (Figure 6-6). It then modifies the local transformation of the 

node (Figure 6-4) and recursively traverses children of the node to update their world 

transformations (i.e. if you transform a car you want all of its parts to move with it). For 

example, in the scout domain, the agent modifies the orientation of the teammate‘s and its 

own imagined views to determine if they provide better coverage of possible enemy 

routes. As the agent receives reports from its teammate or visually observes changes in an 

entity‘s location or orientation it transforms the associated map-icon. When the agent or 

its teammate loses visual contact with an enemy, it can imagine simulated movement 

based on task knowledge of an enemy vehicle‘s velocity. Note that the ―simulation‖ in 

this case is a one-step process. Future work will discuss transformations that use motion 

models of a particular entity (such as a tank) to simulate movement over time. 

After the Object Map Manipulator finishes transforming a visual object, feedback 

to Soar proceeds in a similar fashion as described for the Constructor. The Object Map 

Manipulator automatically invokes the ―Where Inspectors‖ to inspect the Object Map for 

the modified visual object. The inspectors update the spatial information in the current 

scene‘s spatial set (Figure 6-6), and the Object Map Listeners consolidate the results for 

input to Soar (Figure 6-7). 

For Visual Buffer manipulations, the VBManipulator receives a vb-layer identifier 

and either a transformation command or a set of depictive rules from the transform 

operator and manipulates the image(s) corresponding to the vb-layer(s) identifier (Figure 

6-14). Image transformations include standard image processing techniques (e.g. rotation, 

scaling, and kernel filters). Depictive manipulations are based on the pixel-level rewrite 

system (Furnas, 1990, 1991; Furnas et al., 2000) and discussed in depth, to include 

examples from the Alphabet experiment and Scout domain, in Appendix B. We briefly 

summarize the details here. 

Unlike sentential, mathematical-based processing such as Gaussian filters or the 

Hough transform (Appendix B), pixel-level rewrites take advantage of the topological 

structure and color of a depictive representation. Similar to a production system, there are 
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a set of rules with a left-hand side (LHS) and a right-hand side (RHS), but rather than 

predicate symbols, the LHS conditions and RHS actions are visual depictive 

representations that operate on a shared image. The color and shape of each LHS 

depiction, determines a match rather than the syntactic structure of the symbols.  

Figure 6-15 illustrates an example of two depictive rules. The top rule is a 1x2 

rule stating, ―if there is a black pixel adjacent to a gray pixel then change the gray pixel to 

a white pixel.‖ Similarly, the bottom rule is a 2x2 rule that says, ―if there is a black pixel 

diagonally adjacent to a gray pixel then change the gray pixel to a white pixel.‖ The 

asterisks represent wildcard values, and a rule may specify alternate rotation orientations 

(90, 180, 270 degrees) for matching. While there are rule matches, the processing iterates 

over the image. When a rule matches a region of the image, the RHS action rewrites the 

appropriate pixel(s). Each rule has a priority associated with it to facilitate sequencing, so 

if two or more rules match, then the rule with the highest priority fires. Although the 

matching and modifications are local in nature, the cumulative effects have global 

consequences. 

 

Figure 6-15: Example Pixel-level Rewrite Rules 

 

We made three primary extensions to the pixel rewrite system to support 

processing in the Soar+SVI architecture. First, the depictive rules are encoded in Soar‘s 

production memory as a set of transform operator elaborations.
13

 If the operator is 

selected, the rules are added to Soar‘s output-link and sent to the VBManipulator. The 

VBManipulator receives the rules and executes the pattern matching over the image 

specified by the operator‘s vb-layer(s).  

                                                 

13
An operator elaboration is a type of Soar production or rule. 

* 
= wildcard 

* 

* 

* 
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Second, we have a notion of a rule-set and make a distinction between three types 

of depictive rules: threshold, pattern, and mark. A rule-set contains a set of rules of the 

same type (threshold, pattern, or mark). Similar to rules, a rule-set has an associated 

priority to enable sequencing among rule-sets. Processing of threshold rules makes one 

pass through the image, and, for each pixel, changes the value based on an exact match, a 

minimum, a maximum, or a range of pixel values. In the Scout domain, we found this 

rule type useful for marking known obstacles such as buildings and ―no-go‖ terrain. The 

functionality of the pattern rule is exactly as the pixel-rewrite system where the 

processing iterates over the image matching and firing rules until there are no more rule 

matches. An agent uses this type of rule for determining enclosed spaces in the alphabet 

experiment and creating a distance field flood in the Scout domain.  

We chose to distinguish the mark rule type as a signal to the VBManipulator that 

it should create a shape object for the marked region in VS-STM. Prior to processing the 

mark rules, the VBManipulator instantiates a shape object and adds it to the current 

scene‘s Visual Feature Set (or the appropriate Visual Object) in VS-STM (Figure 6-6). 

The shape object includes an emergent-id, the marking color, and the set of points 

marked during the processing. The subsequent Soar input cycle creates a symbolic shape 

structure in Soar‘s STM and records the emergent-id. The points remain associated with 

the shape in VS-STM to support inspection (e.g. what is the length of the shape?) and 

possibly construction (e.g. add the shape as a first-class visual object to the Object Map). 

Although we could achieve the same functionality with the pattern rule type, we 

also chose to distinguish the mark rule type for efficiency purposes.
14

 The 

VBManipulator processes mark rules in a similar fashion as the pattern rules, but the 

processing starts at a location specified in the transform operator and proceeds in the 

―active‖ direction based on the rule‘s RHS. Mark rules are either 1x2 or 2x2 diagonal 

rules where the RHS pixel rewrite is always the center pixel and the other active (non-

wildcard) cell determines the next processing direction. If a rule has more than one active 

match (i.e. by a rotation of the LHS), then the VBManipulator records other matching 

pixel locations by pushing them on a stack. After the VBManipulator exhausts processing 

in the chosen direction, the pixel locations on the stack are popped and, if not already 

                                                 

14
This type of processing may also be inherent to the pixel-rewrite system. 
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marked,
15

 processed. We found the mark set of rules useful for recording the 

hypothesized enemy paths in the Scout domain and propose that this form of processing 

is useful for marking salient objects by the Saliency Inspector during bottom up visual 

processing. 

The final extension we made to incorporate the pixel-rewrite system is to create 

an attention window (Kosslyn, Thompson, & Ganis, 2006) in order to keep the image size 

manageable for computational efficiency. One of our computational constraints discussed 

in Chapter 3 is that the processing of the representation must be efficient so that the agent 

remains reactive to changes in the environment. In our implementation, the attention 

window is a fixed, m x m region, where m is a multiple of two. The size of the attention 

window and its shift direction is task knowledge transmitted from Soar to the 

VBManipulator every decision cycle in which the manipulation is active. Note that this is 

a shift of the cognitive focus and not a shift of the agent‘s ―eyes.‖ 

6.2.2.2.5 Inspection 

After the system has constructed, transformed, and, if necessary, generated the 

depictive representation, conditions are set for the inspection process (Figure 6-16). 

Inspection may focus on the Object Map (spatial imagery) or the Visual Buffer (visual 

imagery), and the appropriate ―What‖ or ―Where‖ inspectors process the representations 

based on the query parameters. The inspect operator provides the symbolic query. For 

example, ―what is the center object of the place setting?‖, ―what is the orientation angle 

between line-A and line-B?‖, ―does the letter ‗O‘ have a curve?‖, or ―how much of the 

teammate‘s view covers enemy-1‘s hypothesized path?‖  

An Inspector process (not shown in Figure 6-16) intercepts the command from 

Soar and dispatches the appropriate What or Where inspector based on the query type. 

The query types are the same as the spatial and visual properties listed in Figure 6-9 - 

Figure 6-11. Each query type has an associated inspector. For example, the ―Where 

Inspectors‖ include a DirectionDistanceInspector, OrientationInspector, 

TopologyInspector, GeometryInspector, etc. and the ―What Inspectors‖ include a 

LineInspector, CurveInspector, ShapeInspector, etc. Each inspector maintains a reference 

                                                 

15
For example, when processing a closed region, the processing returns to the starting/ending point.  
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to the master Inspector so if a query involves multiple parts (e.g. direction and topology) 

the initial inspector handling the query can invoke another inspector as necessary. Each 

inspector also maintains a reference to the Visual Buffer Manipulator in the case a 

transformation of the Visual Buffer (e.g. detecting enclosed spaces) facilitates the 

inspection. As with bottom-up visual processing, the results of the inspection(s) are 

stored in the appropriate visual feature or spatial set in VS-STM, and the listener 

processes consolidate the results for Soar‘s symbolic memories. 

 

Figure 6-16: Imagery Inspection 

 

Spatial imagery entails queries of visual objects in the Object Map or comparisons 

between emergent shapes in VS-STM with visual-objects. ―Where Inspectors‖ receive at 

a minimum a relative-instance-id and possibly a base-instance-id
16

(Figure 6-16). When 

there is only a relative-instance-id and the spatial query is specified in qualitative terms, 

the inspector‘s behavior is to return all the visual-objects in the current scene meeting the 

constraints of the query (e.g. center-of (place setting), intersect (line-A), externally-

connected (napkin), southeast (agent-map-icon)). In the case where both the relative- and 

                                                 

16
Again, ternary spatial queries (e.g. between) include an additional base-instance-id. 
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base-instance-ids are provided, the inspection is an assertion of the truth (e.g. in-front-of 

(triangle, line-A), northeast (enemy-2-map-icon, agent-map-icon)). An agent signals a 

request for quantitative results by including an empty vector or scalar attribute (e.g. 

orientation (fork, scalar), intersection (line-A, line-C, vector), direction (enemy-1-map-

icon,key-terrain-A,vector)). For geometric and topological relationships, binary queries 

may optionally specify the creation of an emergent shape object that satisfies the 

geometry or topological relationship (e.g. intersect (Line-A, Line-B, create-vertex)).  

Visual imagery requires inspection of the Visual Buffer for spatial or visual 

properties. The appropriate inspector receives a vb-layer(s), a relative–instance-id (visual 

object), or relative-emergent-id (retrieved shape) and possibly a base-instance-id or 

base–emergent-id (Figure 6-16). The vb-layer(s) specifies the set of images involved in 

the inspection process for shape features. The instance- or emergent-ids give the 

inspector direct access to the visual-object or retrieved shape objects stored in VS-STM. 

As previously discussed, these symbolic structures may contain the object‘s marking or 

generation color and associated vb-layer(s) in which the object appears. The inspector 

uses this information to perform the desired inspection. For example, in the Scout 

domain, the visual depictive representation of the teammate‘s view is in one image, and 

each imagined path (three, one for each enemy/key-terrain pair) is in a separate image. 

Each image has an associated vb-layer identifier, each marked path has an associated 

emergent-id, and the teammate‘s view has an instance-id as it is an imagined visual-

object. 

Visual imagery inspections for visual-features (Figure 6-11) are implemented in 

qualitative, unary terms only (e.g. curve(letter-A), enclosed-space (letter-C)). If the 

appropriate inspector finds the feature, it creates an emergent shape object and stores it in 

the appropriate visual-feature set in VS-STM. The Visual LTM listener transmits the 

emergent-id of the shape to Soar. Inspection of spatial properties in the Visual Buffer are 

similar to spatial queries involving visual objects in the Object Map as the query may be 

qualitative or quantitative, and the number of instance- or emergent-ids in the query 

parameters determine the type of results the inspector returns. As with spatial imagery, 

unary queries return all visual objects (instance-ids) or shapes (emergent-ids) in the vb-
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layer(s) image satisfying the constraints. Binary or tertiary qualitative queries return a 

truth assertion.  

Similar to spatial imagery, for geometric and topological relationships, binary 

queries may optionally specify the creation of an emergent shape object that satisfies the 

geometry or topological relationship. For example, in the Scout domain the agent may 

ask the inspector to determine the subset of a hypothesized enemy path shape that 

satisfies the non-tangential-proper-part topological relationship with the teammate‘s view 

frustum (e.g. non-tangential-proper-part (path-1, teammate-view, create-shape)). For 

quantitative queries (e.g. size-of (path-1,scalar)), the inspector determines the specified 

scalar or vector value in the two-dimensional image space and converts the metric 

information into a three-dimensional space based on the current location and direction of 

the viewpoint. This conversion insures that the reasoning from Soar‘s perspective is 

based on the Object Map‘s three-dimensional Euclidean space. 

6.2.2.3 Synchronization of Perception, Imagery, and Cognition 

As discussed in section 6.2.2.1, bottom-up perceptual processing proceeds along two 

simultaneous pathways while operators in Soar‘s procedural memory, executing in a third 

processing path, attend to the listeners‘ input (Figure 6-7). Imagery processing initially 

deviates from these processing paths in that it originates from the application of an 

imagery operator in Soar and flows to the corresponding imagery process. This 

processing diverges into five possible paths to include construction, manipulation, 

generation, and inspection (two parallel paths). Figure 6-17 shows four paths emanating 

from Soar‘s output as we have combined the construct/manipulate path and, as in bottom-

up visual processing, the ―What‖ and ―Where‖ inspectors could process in parallel. The 

imagery process performs its function (i.e. construction, transformation, generation, 

inspection), and returns to the Soar decision cycle path where consolidated input from 

SVI‘s listeners is processed. Although the processing path is different from bottom-up, 

visual processing, the information (i.e. data) flows along the same paths. For example, 

after processing constructs or manipulates a representation, the information (e.g. the 

instance-id of the imagined/transformed visual object, automatically extracted spatial 

relationships from the current viewpoint) resulting from this construction/manipulation 
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are extracted by the inspectors, stored in VS-STM, and consolidated by the listeners for 

input to Soar. During imagery inspection, as in bottom-up perception, the inspectors 

extract information from the quantitative or depictive representation and encode it in VS-

STM. The listeners consolidate the results from VS-STM for input to Soar. 

 

 

Figure 6-17: “Top-down” Imagery Processing and Data Flow 

 

This top-down imagery processing propagates temporal and spatial constraints on 

the overall system. Imagery may inhibit incoming sensory input (bottom of Figure 6-17) 

and synchronize (i.e. ―lock‖) the memories to avoid race conditions. That is, sensory 

information from the environment continues to arrive, but in order to give imagery an 

opportunity to process the spatial and visual representations, there may be an ephemeral 

inhibition of sensations. Of course, such inhibitions cause the system to miss incoming 

information so there must be some sort of an ―override‖ to interrupt imagery and attend 

to the incoming sensory input. Although we do not have an adequate model of how such 

an ―override‖ is realized, for now we say that the system must be responsive to 
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―important‖ information. For example, in the Scout domain ―important‖ information is a 

moving object in the perceived scene or a message arriving from the agent‘s teammate. 

An orthogonal issue relevant to the processing flow of imagery and inhibition of 

sensory input is the system‘s overall truth maintenance mechanisms. That is, the 

architecture must address how the information states between sensory input, imagery, and 

cognition remain consistent. For example, if there are two salient, visual objects in the 

perceived or imagined scene, then that information must be reflected in at least one of the 

Visual Buffer‘s images, in the Object Map, in VS-STM, and on Soar‘s symbolic, input-

link. Similarly, if a previously imagined object is no longer in the current scene because 

the agent is ―perceiving‖ again, then the visual symbol instance in Soar‘s short-term 

memory must be tagged and eventually removed so that future reasoning does not assume 

the object is still in the scene.
17

 In most cases, the VLTM and Object Map Listeners will 

handle the updating of symbols on Soar‘s input-link, but if the agent creates any internal 

symbolic state in Soar, it has the responsibility through procedural knowledge to enforce 

consistency.  

From an architectural perspective, after imagery finishes processing, or when an 

―important‖ perception interrupts it, any temporary imagery state stored in the short-term 

memories is removed. For example, in the Scout domain if an observation report from the 

agent‘s teammate arrives while the agent is imagining a hypothesized enemy path, the 

architecture removes (1) the symbolic state created in Soar‘s imagery problem space,
18

 

(2) any imagined visual objects in the Object Map, (3) temporary images created in the 

Visual Buffer, and (3) any state containing imagined objects in VS-STM. It then updates 

those short-term spatial and visual memories based on the current visual perception. The 

effect then is that any state imagery creates is monotonic with respect to any pre-existing 

state. The agent, through procedural task knowledge, must decide what information to 

make persistent in one of Soar‘s symbolic memories and is responsible for enforcing 

consistency based on the spatial and visual information arriving on Soar‘s input-link.  

                                                 

17
Future work discusses the exploration of ―object permanence‖ or the memory of a visible object that 

disappears (through motion). 
18

The state for the imagery problem space is created by Soar‘s subgoaling mechanism. 
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6.3 Summary 

In summary, the architecture consists of two major components, Soar and SVI. 

Each contains a set of fixed memories and processes with Soar encompassing the 

symbolic representation and SVI including the quantitative spatial and visual depictive 

representations. A symbolic VS-STM binds the two processing pathways and serves as a 

temporary symbolic store. Imagery processing leverages the mechanisms high-level 

vision inherently provides and includes functions for constructing a quantitative spatial 

representation, generating a visual depictive representation, and transforming or 

inspecting either representation. The next chapter will focus on the evaluation of this 

architecture. 
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Chapter 7 

 

 

Evaluation 

 

 

 

This chapter presents the objective evaluation and continues the subjective evaluation of 

the architecture in three different domains. The objective evaluation is in support of our 

research goal to understand the computational capabilities of spatial and visual imagery. 

It focuses on three metrics: efficiency, functional capability, and problem-solving quality. 

As there are no existing cognitive architectures with an imagery component and 

corresponding experiments to compare our system against, the objective evaluation 

includes, where possible, comparisons between Soar agents with and without the Spatial-

Visual Imagery (SVI) component. This approach supports our research goal by providing 

quantitative evidence that the capability and computational gain an agent achieves is a 

result of spatial and visual imagery mechanisms and not task knowledge. 

The architectural description in the previous chapter is the start of our subjective 

evaluation. In this chapter, we will expand on that discussion as it relates to the 

computational constraints introduced in Chapter 3 (Figure 3-1). Although our primary 

goal focuses on functionality, we briefly touch on behavioral constraints when we present 

results from the Alphabet experiment. These results make comparisons with human data 

and highlight shortcomings in the architecture. These shortcomings include our 

uncertainty of the visual processing algorithms that humans use to recognize features, and 

the architecture‘s lack of an ―image maintenance‖ mechanism that regenerates the image 

when it decays (Kosslyn, Thompson, & Ganis, 2006).  
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The remainder of this chapter is organized as follows. We begin by presenting the 

evaluation criteria. We then provide, for each experimental domain, additional 

implementation details, relevant results for applicable criteria, and our subjective 

assessment. We present each experiment in chronological order corresponding to the 

evolution of the architecture. As such, the first two experiments do not always have a 

one-to-one mapping with the current architecture as we apply the lessons learned from 

earlier experiments to improve the architecture. We conclude the chapter with the major 

lessons learned. 

7.1 Evaluation Criteria 

This quote from Pylyshn (2002) serves as inspiration as to what we are attempting to 

achieve. 

 

"The search for a system of representation that retains some of the attractive 

features of pictures and yet can serve as the basis for reasoning has been the holy 

grail of many research programs, both in cognitive science and in artificial 

intelligence.‖ 

 

Figure 7-1 illustrates our evaluation criteria. There are four dimensions. The first 

dimension is the behavioral, biological, functional, and computational constraints 

influencing the architectural design space that we must continuously consider. The x-axis 

represents computational gains, the y-axis represents additional functional capability, and 

the z-axis is an indicator of the problem-solving quality. In the foreground of these 

evaluation dimensions is an assessment of the task and environments where spatial and 

visual imagery is useful (Chapter 5).  

As the architectural design considers the behavioral, biological, and functional 

constraints, our evaluation in this chapter focuses on the computational constraints as 

they relate to the other three dimensions. Specifically, we are concerned with the relative 

efficiency of a representation for a given task when compared to using another 

representation for the same task. We also want to analyze subjectively whether we can 

assign credit for the resulting efficiency to the architecture. Finally, even though the 

resulting representation may provide computational efficiency, we want to evaluate its 

impact on the ability of the architecture to support reactive and deliberate behavior.  
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Figure 7-1: Evaluation Metrics 

 

We evaluate computational efficiency by comparing either different designs or 

different agents with and without SVI. Agents using SVI are denoted Soar+SVI (Soar 

―plus‖ SVI) while agents not using SVI are denoted Soar-SVI (Soar ―minus‖ SVI). The 

comparisons include the amount of processing (in CPU time) and the amount of task 

knowledge in terms of Soar productions. In order to nullify any system or simulation 

variability, each result represents an average of 30 trials. Where appropriate, we also 

discuss opportunities for improved efficiency and generality.  

We measure functional capability with subjective observations derived from 

implementation of the task. Objective measurements of functionality compare an agent 

with and without imagery. Problem-solving quality measures whether the agent‘s overall 

performance improves with imagery processing. We evaluate this metric in the Scout 

domain. Finally, where appropriate, we highlight the tradeoffs in terms of design 

complexity, generality, and psychological validity.  

7.2 Geometry Gymnastics 

The first domain derives from Larkin and Simon‘s (1987) work demonstrating a 

computational advantage of a diagram. In this problem, the agent must locate objects 

(e.g. vertices, line segments, triangles) and infer relationships (e.g. angles, congruency) 

that initial task knowledge does not specify (Figure 7-2). We chose this task because it 
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stresses the construction and inspection of a quantitative spatial representation. As either 

symbolic or metric representations are sufficient, we can compare agents and determine 

computational and functional differences. The task does not require a visual depiction as 

initial knowledge specifies the objects (i.e. lines) from which other features can be 

directly inferred.  

 

Figure 7-2: Geometry Problem 

 
To review, the agent‘s goal is to prove two triangles formed by a given 

specification are congruent (Figure 7-2). The agent‘s initial knowledge is that there are 

four lines (A, B, C, and D). Line A is parallel to line B, line C intersects line A, and line 

D intersects line C at the midpoint of the line segment formed by the intersection of line 

C with line A and line B. To prove the two triangles are congruent, the agent employs the 

angle-side-angle (ASA) rule. The rule states that if two angles and the included side of 

one triangle are congruent to two angles and the included side of another triangle, the 

triangles are congruent. In Figure 7-2, if the agent shows E1=E2, c=b, and e1=e2, then it 

proves the triangles are congruent. 

To solve the problem with strictly symbolic representations (Soar-SVI), an 

agent‘s task knowledge must include rules for creating the different features (e.g. 

vertices, line segments, triangles) and spatial properties (e.g. angles, congruent). We 

implement the construction of these properties using Soar operators. Figure 7-3a provides 

an example of some of these operators. During each decision cycle, the Soar-SVI agent 

progresses towards its goal by creating the features required to solve the problem. For 

example, operator three creates a line-segment given that there are two vertices on the 

same line and production six states that alternate interior angles are congruent. The 

A 

B 

C D 

E1 

E2 

c 

e1 

e2 

b 



 

 93 

italicized operators are the key distinction between the two implementations (discussed 

shortly).  

 

 
 

(a) Soar-SVI (b) Soar+SVI 

Figure 7-3: Example Geometry Problem Operators (Pseudocode) 

 

The Soar agent using SVI (Soar+SVI) constructs and inspects the quantitative 

spatial representation with operators that invoke imagery (Figure 7-3b). When fully 

implemented the Soar-SVI agent requires 54 task productions, and the Soar+SVI agent 

requires 28 total task productions (not including imagery operators). Since the visual 

objects in this example are lines, there are two different ways we can model the agent 

(1) If two lines (L-1,L-2) are parallel, and 

L-1 intersects line, L-3, then L-2 

intersects L-3 

(2) If two lines (L-1, L-2) intersect, create a 

vertex, v-1, recording the two lines 

associated with the vertex. 

(3) If there is a vertex, v-1, on line, L-1, 

and another vertex, v-2 on line, L-1, 

then create a line-segment, ls-1, and 

record the two vertices associated with 

it. 

(4) If there are three line segments (ls-1,ls-

2,ls-3) and ls-1shares a vertex, v-1, with 

ls-2, and ls-2 shares a vertex, v-2, with 

ls-3, and ls-3 shares a vertex, v-3, with 

ls-1 and v-1 != v-2 != v-3 then create a 

triangle, t-1, and record the line-

segments that make up each side 

(5) If there is a vertex, v-1, create 4 angles, 

1 per region. Region 1, 2, 3, 4  (see 

Figure 7-4) 

(6) If there are two vertices, v-1,v-2, and v-

and v-1 is associated with line L-1 and 

L-2 and v-2 is associated with line L-1 

and L-3, and L-2 is parallel to L-3 and 

v-1 has an angle, a-1 in region 1 and v-2 

has an angle, a-2  in region 3 then  a-1 

is congruent to a-2 (Alternate interior 

angles congruent)  

(7) If there is a vertex, v-,1 with angles a-1, 

a-2, and a-1 is in region 1 and a-2 is in 

region 3 then a-1 is congruent to a-2 

(Vertical angles congruent)  

(8) etc. 

(9) Prove congruent with ASA rule 

 

54 Total Task Productions 

(1) If two lines (L-1,L-2) are parallel then 

Compose( L-1, L-2, geometry, parallel) 

(2) If scene has two parallel lines(L-1,L-2) 

and another line, L-3 intersects L-1 then 

Add (L-3,L-1,L-2,direction.in-

between,orientation.scalar 

random(30,60), size(L-1,2))  

(3) If scene has lines, L-1, L-2, and L-3, and 

line, L-4, intersects line L-3, then 

Add(L-4, L-3 orientation 

(random(30,60),size(L-3,1))) 

(4) If scene has four lines, L-1,L-2,L-3,L-4, 

then Inspect(intersect(scene, create-

vertex)) 

(5) If scene has vertices then  

Inspect (line-segment (scene), create-

line-segment) 

 Inspect (triangle (scene), create-triangle)  

(6) If triangle, t-1 with  line-segment, ls-1 

then Inspect(angle(center-of(t-1, ls-

1),scalar) 

(7) If vertex, v-1, on line L-1 and L-2 with 

orientation angles to triangle, t-1, center  

a-1 and a-2 respectively then create 

angle in region sign(a-1)/sign(a-2) 

(8) Alternate interior angles congruent 

(9) Vertical angles congruent  

(10) Prove congruent with ASA rule 

 

28 Total Task Productions 

 

This number does not include imagery 

operators (construct, transform, 

generate, inspect) that we consider 

―architectural‖. 
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imagining the lines. One way is to have the agent simply ―draw‖ each line by sending 

SVI a pair of vertices for each line. This model assumes that the agent has task 

knowledge defining the spatial arrangement of vertices for parallel lines, intersecting 

lines, etc.   

Another more general way and what we chose to model here, is to assume that the 

agent has a prototypical representation of a line in VLTM. Recall that each visual object 

stored in VLTM has a ―front‖ and canonical orientation. In this domain, we assume that a 

line‘s canonical orientation is due ―east‖ (i.e. an infinite ray extending east). The 

Soar+SVI agent‘s first operator (Figure 7-3b) states that if there are two lines with a 

parallel relationship, then imagine composing them in a parallel manner. Note that since 

both of the lines face ―east,‖ this is the same as saying compose the two objects with the 

relative visual object left-of (or right-of) the base visual object. The objects‘ area of 

influence, which is slightly larger than the length of their bounds, is the default distance 

between the two objects (i.e. lines).  

Continuing in a similar manner, operators two and three add lines C and D to the 

spatial representation. The second operator says to add line C in between line A and line 

B, oriented some random direction between 30 and 60 degrees and with a size twice as 

large as line A. The orientation and size specifications are required to form the 

intersection specified by the task instructions. Note that when line D is added to the 

spatial representation, it is added relative to line C meaning the origins of each line will 

be the same—thus the bisect relationship constraint is met. Line D‘s orientation is 

relative to line C‘s orientation so the end effect is that Line D is orientated between 60 

and 120 degrees relative to line A.  

Once construction is complete, the agent simply has to inspect the representation 

(taking advantage of the metric representation and analytical geometry) for the 

information it is seeking. In this problem, it requires the intersection points, or vertices 

between the lines (Figure 7-3b operators 4 and 5). Once it knows the vertices, it can infer 

the line-segments (through SVI) by determining the pairs of vertices that fall on the same 

line (again through analytical geometry), and find the triangles from the set of vertices 

and line segments (edges). This knowledge, together with the information of which side 
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the triangle‘s center is relative to each line (explained next), is sufficient to prove the 

congruency of the triangles with the angle-side-angle rule.  

7.2.1 Functional Capability 

One of the significant results from this experiment is that spatial imagery provides the 

agent with a ―sense of direction‖ enabling it to reduce its search space. The Soar-SVI 

agent cannot determine from the qualitative symbolic knowledge alone, where the center 

of each triangle is relative to each vertex because it does not have metric information or a 

notion of space. Therefore, it has to create four angles for every vertex, labeling them as 

the angle belonging to region 1, 2, 3, or 4 (Figure 7-3a production 5 and Figure 7-4). This 

leads to an explosion in the problem space as, in addition to the extra memory structures 

required for each angle, the agent has to reason about several congruency relationships 

between angles that are not inherent to the triangles (e.g. Figure 7-3a productions 6 and 

7). In fact, to solve the problem, the Soar-SVI agent must have specific task knowledge to 

apply the angle-side-angle rule (e.g. if there is a vertex representing the intersection of 

line A with line C, then the angle belonging to the triangle is in region 4).   

 

 

Figure 7-4: “Sense of Direction” 

 
The Soar+SVI agent, however, can take advantage of the canonical direction of 

each line and the metric information of the spatial representation to determine the angle 

belonging to each triangle vertex. One approach is for the agent to query SVI for the 
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orientation angle between each triangle‘s line segment and its center of gravity (COG) to 

determine if the triangle is on the positive or negative side of the line segment (Figure 

7-3b production 6 and Figure 7-4). SVI computes the COG as an average of the triangle‘s 

vertices. To determine the angle between the line segment and the COG, and the angle‘s 

corresponding direction (positive/counterclockwise or negative/clockwise) requires two 

computations:  

 

𝜃𝑑 =  cos−1 𝑑 𝑙𝑠  ∙ 𝐶𝑂𝐺 =  𝑎𝑛𝑔𝑙𝑒 𝑏𝑒𝑡𝑤𝑒𝑒𝑛 𝑙𝑖𝑛𝑒 𝑑𝑖𝑟𝑒𝑐𝑡𝑖𝑜𝑛 𝑎𝑛𝑑 𝐶𝑂𝐺  (1) 

𝜃𝑛  =  cos−1 𝑛  𝑙𝑠  ∙ 𝐶𝑂𝐺 =  𝑎𝑛𝑔𝑙𝑒 𝑏𝑒𝑡𝑤𝑒𝑒𝑛 𝑙𝑖𝑛𝑒 𝑛𝑜𝑟𝑚𝑎𝑙 𝑎𝑛𝑑 𝐶𝑂𝐺      (2) 

𝜃𝑑  𝑠𝑖𝑔𝑛 =   
0 < 𝜃𝑛  ≤ 90                 +/𝐶𝐶𝑊

90 <  𝜃𝑛  ≤ 180         −/𝐶𝑊
  

 

The first computation determines the angle between the line-segment and COG while the 

second computation infers the direction of this angle. If the resulting value of the second 

computation is between 0 and 90 degrees, then the triangle is on the positive side of the 

line segment (i.e. the line segment must be rotated in a counterclockwise direction to 

―hit‖ the COG). Otherwise, the triangle‘s COG is on the negative side of the line 

segment. With this information, the agent can infer the angle associated with each vertex. 

For example, in Figure 7-4, the triangle is on the positive side of line A and the negative 

side of line C. Therefore, the angle associated with vertex, vAC, is in region four (+/-). 

With this sense of direction, the agent only creates symbols for angles associated with 

each triangle.  

7.2.2 Computational Advantage 

The functional advantage gained from the ―sense of direction‖ directly influences the 

computational gain the agent achieves. The Soar+SVI agent requires less real and 

simulated computational time than Soar-SVI (Figure 7-5). The primary reason is the 

number of angles the Soar-SVI agent creates and the subsequent comparisons for 

congruency. For example, Soar-SVI creates 5 vertices x 4 angles = 20 angles compared to 

Soar+SVI‘s 6 angles (three per triangle). Subsequently Soar-SVI annotates congruency 

relationships for 24 vertical angles (i.e. 5 vertices x 4 vertical angles plus 2 pairs of 

vertices with 2 congruent alternate interior angles). This number does not reflect the 

additional congruency relationships that the agent has to consider between pairs of 



 

 97 

unnecessary angles (Figure 7-3a operators 6 and 7). In addition to the performance gain, 

the Soar+SVI model also requires less task knowledge as it only requires 28 productions 

compared to Soar-SVI‘s 54 productions. The Soar-SVI agent requires knowledge about 

geometric structures inherent to SVI‘s spatial imagery processing. Functionally, this 

suggests that SVI decreases the amount of knowledge required to learn such a task.   

 

Figure 7-5: Empirical Time for Each Agent 

Simulated time is decision cycles x 50 ms 

 

To measure whether the architecture supports reactive and deliberate behavior 

(i.e. is responsive to the environment), we estimate the amount of time an average 

imagery operation requires normalized to a hypothesized decision cycle time of 50 

milliseconds. We calculate the average imagery time as follows. First, the average 

decision cycle time is computed from Soar‘s total CPU time divided by the total number 

of decision cycles.
19

 The average amount of time spent in SVI per imagery operation (i.e. 

construction and inspection in this domain) is normalized to the hypothesized decision 

cycle time where normalized time = (average-real-time-in-SVI-per-imagery-operation x 

50) / average-decision-cycle-time. Note that each imagery operation encompasses all of 

the analytical geometry computations (e.g. calculating the rotation direction between a 

line segment and the COG of a triangle) required for that particular operation (i.e. 

                                                 

19
 A decision cycle is one iteration through Soar‘s processing loop (see Figure 6-2) 
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construction and inspection). In this task, the average normalized time spent in SVI for an 

imagery operation was less than one-half of a millisecond, suggesting that spatial 

imagery processing is reactive, as it requires less than one percent of a single decision 

cycle (i.e. 0.5 ms / 50 ms = 0.01).  

7.2.3 Geometry Problem Assessment 

Although the model is not psychologically plausible as we expect humans would ―write‖ 

the imagined structure to an external diagram, it does demonstrate imagery‘s 

computational advantages and added functionality. The quality of the resulting solution is 

the same whether the agent solves the problem with Soar-SVI and additional task 

knowledge or Soar+SVI. The architecture enables this behavior while maintaining 

responsiveness. It achieves these results because spatial imagery processing uses 

mathematical reasoning specialized for the quantitative spatial representation. 

There are tradeoffs, however. The resulting architecture is more complex and no 

longer includes one amodal representation. As a result, the agent must determine what the 

appropriate representation is for a given task or subtask. Although we model this problem 

as a spatial imagery task, individual differences may influence whether one uses visual 

imagery to solve the problem. For example, in order to find the vertices the agent may 

employ visual imagery by generating an image for each visual object (i.e. line) and 

coloring each object the same (e.g. white). It can then identify the vertices with depictive 

rules marking each pixel with a unique color when there are overlapping pixels in two or 

more layers. (e.g. if there is a white pixel in Layer 1 and a white pixel at the same 

location in Layer 2, 3, or 4 then mark a vertex). The tradeoff is that there are more 

imagery operations involved (generation and transformation of the visual depiction), but 

the processing is perhaps more general as it does not have knowledge that it is marking a 

vertex representing the intersection of two lines. That knowledge remains in symbolic 

structures. 



 

 99 

Achieving such a level of generality is a continuous struggle when considering the 

integration of new representations, as one, amodal representation is more parsimonious.
20

 

Consider the geometry experiment. For imagery construction, there is a distinct 

separation between knowledge and architecture. The agent has a finite set of ways to add 

visual objects to the spatial representation, and as long as it knows how to use them (e.g. 

the need to ―rotate‖ line C to have it intersect with line A), then it achieves the desired 

effects without the architecture having to encode any special task knowledge. The 

architecture does not know that the visual objects it is composing are lines.  

However, the inspection process does not provide as clear of separation as the 

processing immediately exploits the knowledge that the visual objects are lines.
21

 The 

fundamental issue is not whether the architecture should exploit the dimensionality (i.e. 

one-dimensional line, two-dimensional polygon, etc.) of a visual object, as we assume 

that at some architectural level there are low-level primitives for processing geometric 

representations of lines and their relationships. Rather the issue is whether these 

geometric properties (intersect, parallel, vertices, line-segments) belong to the set of 

spatial property primitives (direction, distance, orientation, size, and topology) 

communicated between the symbolic and quantitative spatial representations. 

The alternative is to recast geometric types as a combination of other spatial 

properties. For example, we previously described how constructing two parallel lines can 

be rephrased as ―left-of/right-of‖ (direction) and disconnected (topology). Similarly, for 

inspection, geometric intersection may be interpreted as the topological property of 

―partially overlaps.‖ The underlying architecture must then have mechanisms to 

determine whether the visual objects are one-, two-, or three-dimensional representations, 

perhaps by determining the dimensionality of their convex hulls and invoking the 

appropriate processing. The resulting shape returned to Soar, rather than being labeled a 

vertex, would simply be labeled a general shape with one point. The agent can then infer, 

perhaps through semantic knowledge, that a shape with one point represents a vertex. 

                                                 

20
Unless the architecture has to support vision as well in which case reuse of visual perceptual mechanisms, 

as we demonstrate in this dissertation, may be more parsimonious than mimicking imagery-type operations 

with the laborious churning of symbolic processing. 
21

The current implementation of the primitive visual objects, or scene graph leaf nodes, labels the nodes as 

―mesh‖ (i.e. vertices and indices), ―line‖ (i.e. two vertices and one edge), or ―point‖. Separate processing 

paths for each type of primitive object are then possible. 
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These are the types of issues we propose investigating for future work to include the 

integration between imagery processing and long-term semantic and episodic memories.  

7.3 Alphabet Soup 

In the geometry experiment, we explore spatial imagery and show that for tasks involving 

more than a few spatial properties, using a symbolic representation and logical reasoning 

is sufficient but not as computationally efficient as using the quantitative spatial 

representation and mathematical processing. In this experiment, our desire is to explore 

tasks where the use of visual imagery and depictive representations is more efficient and 

likely necessary to infer the desired information.  

The domain derives from Thompson et al. (in press). In this experiment, the 

subject hears a letter from the English alphabet and is instructed to visualize it in its 

uppercase format. Next, the subject hears a cue, such as ―curve,‖ ―enclosed space,‖ 

―horizontal symmetry,‖ or ―vertical symmetry‖ and indicates, as quickly as possible, 

whether the letter has the particular feature (Figure 7-6). Response times are measured. 

For example, the letter ‗A‘ has an enclosed space and vertical symmetry while ‗U‘ has a 

curve. We outline further experimental details in Appendix A. 

 
Figure 7-6: Alphabet Features Experiment 

 

We chose this task because, unlike the geometry problem, reasoning with 

symbolic or quantitative spatial representations may not be able to infer the required 

information without explicitly encoding every feature or task knowledge to support the 

inference (e.g. if three non-collinear lines then there is an enclosed space). Since an 

object can have an infinite amount of features, that approach is not scalable from either a 

psychological or a computational perspective. The task also includes an external 

environment (i.e. the person asking the question) emphasizing the interaction of imagery 

and cognition.  

A 

“curve” 
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Similar to the human experiment, the Soar+SVI agent ―hears‖ a question, 

visualizes the letter, searches for the desired feature, and then ―verbally‖ responds. The 

simulation models the audio input as a sequence of two symbols (e.g. ―A curve‖) and the 

verbal output as a simple ―yes‖/‖no‖ symbolic response. The agent‘s initial, declarative 

knowledge is a symbolic structure containing the 26 capital letter entities. Each letter 

symbol has the ―name‖ of the letter (e.g. ―A‖) for identifying it with the ―audio‖ input 

and the visual object symbol for the letter to support imagery. The agent‘s symbolic 

knowledge does not have any specific letter features.  

After hearing the question and searching its symbolic memory for the desired 

feature, the agent realizes it cannot infer the answer directly and constructs the 

quantitative spatial representation from the visual object of the letter. It then generates the 

visual depiction for the letter, invokes SVI to inspect the Visual Buffer for the desired 

feature, and ―verbally‖ responds after receiving the results. The simulation records the 

time from when the agent receives the question to when it provides an answer. 

The architecture detects curves using a Hough transform and enclosed spaces 

using depictive manipulations encoded in the architecture. Appendix B describes these 

algorithms in more detail. SVI‘s inspector determines symmetry by first generating a 

second image of the visual object for the letter and transforming (i.e. rotating) it around 

the given axis of symmetry. It then marks (with a different color) the pixels on the rotated 

image that overlap (i.e. have the same color pixel) with the original image. If the number 

of remaining pixels of the original color is below some threshold, then the inspector 

considers the letter symmetrical around the given axis of symmetry.  

7.3.1 Alphabet Results 

The requirement for generating and transforming depictive representations to infer 

features forced us to reconsider our original theory and design that did not include a 

visual depictive representation. Our previous discussion of the theory and architecture 

reflects this subjective assessment. A notable observation from this assessment is that 

there is a difference between the types of algorithms capable of processing a depictive 

representation. Some are mathematical-based while others take advantage of the color, 

topological space, and locality of neighboring pixels. That is, even though the 
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representation is depictive, the processing may be sentential or depictive. Many accounts 

of visual imagery processing do not clarify this distinction, and, as Anderson (1978) 

argues, every computational account of imagery must not only discuss the representation 

but also the types of processing.  

As an example, the Hough algorithm maps edge pixels from an image space to a 

parameter space and uses a ―voting‖ algorithm to determine the parameters of a curve. 

Although the algorithm has interesting perceptual characteristics (e.g. edge detection), it 

relies on sentential, algebraic computations. On the other hand, algorithms such as  pixel-

level rewrites (Furnas, 1990, 1991; Furnas et al., 2000), which we employ for detecting 

enclosed spaces, are depictive computations as they manipulate the representation based 

on the spatial configurations and color of neighboring pixels.  

The second observation from this experiment is that the gain in computational 

efficiency, functional capability, and quality of the problem solving is obvious. We 

cannot achieve this capability or solve these types of reasoning problems, at least in a 

practical sense, with symbolic or quantitative computations.
22

 Therefore, a comparison of 

computational efficiency between agents with and without imagery is immaterial. As an 

alternative, we compare the Soar+SVI agent‘s performance with human data. We make 

no claim that the algorithms are similar to how humans recognize these features, but we 

use the data to highlight shortcomings with the architecture.   

Figure 7-7 shows the comparison for each feature (horizontal and vertical 

symmetry are combined). We sort the letters for which we have human data
23

 along the 

x-axis from left to right according to human response time. The y-axis represents the 

response time in milliseconds. We scale the Soar+SVI agent response times for curves 

(1/10) and symmetry (2x) to fit within the human bounds. Although there is no 

correlation between the Soar+SVI agent and the human response times for individual 

letters, both humans and Soar+SVI show variability in the time to detect curves and 

enclosed spaces between various letters (Figure 7-7a&b). In the case of symmetry, 

however, Soar+SVI shows little variability while humans show a lot (Figure 7-7c).  

                                                 

22
As we explore in the Scout domain, there may be ways to have a symbolic processor, such as Soar, 

process low-level pixel data. However, as we will demonstrate, it is computationally expensive. Symbolic 

representations and computations do not facilitate efficient manipulation of depictions. 
23

 We would like to thank (Thompson et al., in press) for the data and collaboration on this experiment. 
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A possible reason why Soar+SVI is consistent in recognizing symmetry while 

humans are not, is that the architecture does not account for the human phenomena of 

having to continually ―refresh‖ the visual depictive representation as it fades due to 

perceptual interference (Kosslyn, Thompson, & Ganis, 2006). Additionally, the agent 

determines symmetry by transforming the original depiction around the axis of symmetry 

and comparing it with the original orientation. Rather than performing this operation in a 

single step, we hypothesize that humans must continuously rotate and regenerate the 

letter where the time to rotate the object is linear to the rotational angle (Shepard & 

Metzler, 1971). The results demonstrate that even if the overall architecture is correct 

(our hypothesis), the details of modeling human behavior is in low-level visual 

processing. 

These details become more evident when we measure the responsiveness of the 

architecture. Figure 7-8 illustrates the average amount of time for one imagery operation 

(construction, transformation, generation, inspection) normalized to the hypothesized 

decision cycle time in humans (log 50 ~ 1.7). Most of the reflected time is for inspection 

of the particular visual feature (i.e. visual imagery). Response times for determining 

enclosed spaces and curves are respectively one and two orders of a magnitude higher 

from what we consider supporting responsive behavior (i.e. ~50 ms). There are a couple 

of reasons for this seeming discrepancy. First, we assume that low-level visual processing 

exploits parallelism that we do not reflect in our architecture. Parallel hardware and 

algorithms may help, but a more fundamental issue may be that the architecture is 

attempting to process too much of the image in a single decision cycle. We attempt to 

address this issue with the incorporation of an attention window and evaluate it in the 

Scout domain. Second, it may be that visual imagery simply takes more processing time 

than spatial imagery using traditional computer hardware. Comparing the normalized 

response time from the geometry problem (< 1 ms) with Figure 7-8 suggests just that.  
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(a)Human 98:,610:  ,Soar

178:,611:   

(b) Human 65:,604:  , Soar 65:,605:   

 

(c) Human 104:,778:  Soar 12:,643:   

Figure 7-7: Comparison of Response Times to Detect Alphabet Features 
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Figure 7-8: Time Required for an Imagery Operation in the Alphabet Experiment 

Time is an average of all imagery operations normalized to the decision cycle time (50 ms). 

7.3.2 Alphabet Experiment Assessment 

The results show that visual imagery provides a functional advantage over symbolic 

processing when recognizing visual features. However, visual imagery appears to be less 

reactive then spatial imagery, at least in light of our current implementation. Since 

perceptual input in this task does not ―interrupt‖ the agent (i.e. the agent has as much time 

as required to answer the questions), it can imagine the situation for as long as it desires. 

However, in a task requiring reactive behavior, as in the Scout domain, the architecture 

must support the interruption of imagery processing when ―important‖ perceptual input is 

competing for cognitive and visual resources. 

Similar to the Geometry experiment, the Alphabet experiment demonstrates a 

clear separation between knowledge and the architecture for imagery construction and 

generation. Knowledge directs the processing of these functions and the architecture does 

not know if it is constructing or generating a letter from the English alphabet, the Chinese 

alphabet, or another visual object. It only knows that it is activating objects from VLTM 

based on a given spatial configuration.  

Questions linger, however, regarding the knowledge transparency for the 

inspection processes. As with the geometry problem, our assumption remains that at 

some architectural level there are primitives for detecting basic features such as lines, 
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curves, corners, enclosed spaces, etc., as visual processing requires these detectors to 

automatically perform their role during bottom-up processing. The algorithms and 

depictive manipulation rules for detecting these features are ―hardwired‖ into the 

architecture (or acquired early on in development). 

However, consider alternative recognition schemes for symmetry. Perhaps it is a 

property that is not ―hardwired.‖ Rather the recognition emerges from the combination of 

symbolic and perceptual representations where the agent‘s procedural and declarative 

knowledge plays more of a role (i.e. algorithms of a more richly hybrid sort). Within the 

context of Soar+SVI the processing may be realized when an agent‘s procedural 

knowledge determines it wants to recognize symmetry and generates two images of the 

letter transforming the second image around the given axis. Then, rather than having an 

architecturally embedded algorithm deciding if an object is symmetrical, an imagery 

command sends depictive rules to SVI. SVI marks the non-overlapping pixels in 

accordance with the rules and returns the resulting symbolic representation of the 

shape(s). Based on the number of points in the shape, the agent‘s procedural knowledge 

decides whether the object is symmetrical. Not only is this type of recognition for 

symmetry possibly relevant for imagery, but it is also relevant during perception where 

the inspection for it initiates after bottom-up processing fails to recognize an object from 

more primitive features.   

From a psychological perspective, the top-down explanation of how one may 

recognize symmetry clarifies to some extent why humans take longer, on average, to 

detect symmetry than to detect curves or enclosed spaces (Figure 7-7). Functionally, the 

advantage of this type of processing is that it facilitates learning as the procedural 

knowledge of how to recognize symmetry is available to Soar‘s learning mechanisms. 

This observation helped inform our decision to encode the knowledge embedded in 

depictive rules, at least for ―non-primitive‖ manipulations, within Soar‘s symbolic 

memories and send them to SVI‘s Visual Buffer Manipulator for processing. The Scout 

domain explores this design in more detail.  
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7.4 Scouts Out 

Our experimental results from the previous two domains are limited to solving internally 

represented problems. Although the Alphabet experiment includes perceptual input, it is 

not of the visual modality so the architecture does not have to consider issues such as the 

difference between perceived and imagined objects and the resource constraints between 

shared perception and imagery memories. Furthermore, the high-level goal of the 

previous two tasks was to answer a single question whereas more complex problem 

solving requires internally answering multiple questions where the information 

supporting the answer originates from multiple sources—both internal and external. 

In the Scout domain, we extend our results to a rich, dynamic environment where 

perception and imagery operate simultaneously. The agent must interpret and act upon 

information from multiple sources. By combining perceptual representations with task 

specific, procedural and declarative knowledge, an imagined situation supports higher-

level decisions. Analysis emerges through the manipulation of symbolic, quantitative 

spatial, and visual depictive representations and provides the agent with the knowledge 

necessary for reasoning and producing action in the environment. 

7.4.1 Simulation Environment 

To review, there are two scouts in the simulation (Figure 7-9a). One scout is a 

Soar+SVI/-SVI agent and the team‘s lead. The other scout, the teammate, is a scripted 

entity. The opposing force is a scripted, three-vehicle enemy reconnaissance unit that is 

attempting to determine possible routes and friendly locations in support of a follow-on 

attack by a larger force (the follow on attack is not modeled). The scout team‘s goal is to 

acquire and maintain visual contact with the approaching enemy to determine their 

maneuver intentions. Paramount in achieving this goal is keeping their commander 

informed of the opposing force‘s movements by periodically sending observation reports 

(through the lead) of their best assessment of the enemy‘s location. The commander uses 

this information to position/reposition other friendly forces and reallocate assets (not 

modeled).  
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(a) Actual Situation (b) Teammate‟s View 

  

(c) Agent‟s View (d) Agent‟s Perceived Map / Imagined Situation 

Figure 7-9: Scout Domain (Scenario-1) 

The agent‟s imagined situation in (d) is based on its current perceived/hypothesized knowledge. It 

has not yet received the teammate‟s report of the second enemy vehicle (Enemy Scout-1). 

 

Both the agent and its teammate scan the area in front of them and send reports 

when they observe enemy vehicles (Figure 7-9b&c). Because of terrain occlusions, the 

agent cannot observe its teammate but instead maintains situational awareness through 

the teammate‘s periodic messages that identify its position. Both the agent and the 

teammate can reorient their views, but the teammate performs this action only when the 

lead directs it. The agent can look at the scene or its map (Figure 7-9c&d), but not both 

simultaneously. We assume that the agent and its teammate can distinguish enemy 

vehicles from other objects. However, the agent has to decide whether a sighted or 

reported enemy is a new or previously identified entity. 

The simulation architecture consists of five major components (Figure 7-10): a 

World Representation, a Simulation Engine, several Simulation Actors, an Agent Proxy, 
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and Soar+SVI.
24

 We will discuss each of these components to provide an understanding 

of the modeling fidelity between the agent and the environment. The World 

Representation is a Wild Magic (Eberly, 2005) scene graph and includes the terrain and  

each object in the world (e.g. tanks, buildings, etc). Its purpose is twofold. First, from a 

simulation perspective it maintains the location and orientation state of each actor and 

provides a graphical representation of the simulation for debugging purposes. Second, the 

Agent Proxy provides the agent, as perceptual input, the portion of the world that is 

visible to the agent. We will discuss this implementation detail shortly.  

A Simulation Actor represents a unique entity in the simulation such as the agent, 

the teammate, the enemy, and buildings. Each simulation actor includes a set of basic 

behaviors (i.e. move, turn, send a message, etc.) and maintains a reference to its scene 

graph object representing its 3D model, where it is located, and its orientation. During 

initialization, the simulation creates the world and the actors from a configuration file. 

The file contains actor attributes such as their name, 3D model, initial location and 

orientation, movement velocity and angular velocity. For enemy actors, the simulation 

also loads the enemy ―plan‖ to include a set of waypoints, possible paths between 

waypoints, and a few ―decision points‖ where the enemy commander has the latitude 

(based on randomness) to split its force or modify the path of a subordinate. A tactical 

expert creates the enemy plan from an off-line analysis.  

The Simulation Engine is a discrete event simulation (DES) using the SimKit 

framework (Buss, 2002). At the most basic level, a discrete event simulation consists of a 

clock, an event list, and set of possible events that the system schedules for execution by 

placing them on the event list. During each ―tick‖ (t) of the clock, the simulation engine 

removes all events on the event list whose scheduled execution time is less than or equal 

to the current simulation time and processes their actions. After the simulation processes 

those actions, it increments its clock and the processing iterates. The general algorithm is 

the following:  

                                                 

24
During the discussion of the simulation when we refer to Soar+SVI, we also imply Soar-SVI as having he 

same external interface with the simulation. 
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The actions of an event change the state of the system and may schedule another event 

for future processing. From the perspective of the simulation, then any action that occurs 

in the world is the result of a scheduled event. The advantage of this approach is that the 

system can enforce temporal constraints on actions. 

 

 

Figure 7-10: Simulation Architecture 

 

For example, the simulation models the initiation of a tactical maneuver when one 

actor sends a message to another actor asking it to commence movement (e.g. reorient, 

start-move). Each actor can send a message to another actor by scheduling a ―send 

1. Create and initialize actors and world 

2. Set simulation time to 0 

3. Schedule the default (―Run‖) event 

4. While there are events on the event list 

a. While there are events on the event 

list with an execution time <= 

simulation time 

i. Execute the next event 

b. Increment the simulation time 
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message‖ event. The temporal delay between when the actor schedules an event and 

when it executes can be immediate (i.e. t + 0) or sometime in the future, t + ∆, where ∆ is 

a constant or generated random number based on a given statistical distribution. When 

the ―send message‖ event executes, the simulation changes the state of the message from 

―waiting‖ to ―in transit‖ and schedules a ―receive message‖ event. At some point in the 

future, the simulation engine processes the ―receive message‖ event by marking it as 

―received‖ and delivering it to the appropriate actor for further processing. The actor 

―reading‖ the message may, based on its information, schedule another event. For 

example, when the teammate receives a message from the agent to re-orient, the 

teammate schedules a ―turn‖ event. Likewise, when an enemy actor receives a message 

from the enemy commander to move to a checkpoint, the subordinate enemy actor 

schedules a ―move‖ event changing its status from stationary to moving. Note that this 

state change does not reorient or move the actor‘s scene graph object. The dynamic 

change occurs through another event that we explain next. 

To model animation, the simulation schedules a special ―update world‖ event that, 

after processing, reschedules itself for the next simulation tick so that it continuously 

processes (Buss & Sánchez, 2005). The simulation schedules this event with the lowest 

priority so that it executes only after all other events scheduled for that time have an 

opportunity to run. The basic algorithm for the update world event is the following: 

 

1. For each actor 

a. If motion status is turning or moving, update scene graph object‘s 

location and orientation based on the actor‘s movement/angular 

velocity (Newtonian physics) 

b. If one or more ―opponents‖ are visible and actor has not sent a report 

in ―awhile‖, then schedule event to send message to leader (NOTE: 

does NOT apply for the agent actor).  

c. Record status (for logging / debugging) 

2. Referee 

a. Determine what objects each actor can observe (detection algorithm) 

b. Tell each actor what they can observe  

3. Notify Simulation Clients 

a. Simulation user interface (for rendering the scene) 

b. Agent Proxy (to provide perceptual input to Soar+SVI) 

4. Schedule another update world event with the lowest priority for time t + 1 
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The update world event gives each simulation actor an opportunity to update its dynamic 

state, such as location and orientation and report status changes if it has not done so in 

awhile.
25

 The event processing then referees the current situation by determining what 

objects are visible to each actor using the following detection algorithm: 

 

The occlusion detector uses a ray-tracing algorithm and checks three different points on 

the object (top and two sides). The detection algorithm assumes the object is visible if 

two of the three points are visible (i.e. intersects the ray). Finally, the update world event 

notifies clients, such as the simulation‘s user interface and the Agent Proxy that the event 

is complete so they can process. This step is where the Soar+SVI agent receives its 

perceptual input from the Agent Proxy. 

The Agent Proxy serves as an interface between Soar+SVI and the simulation 

(Figure 7-10). After the update world event notifies the Agent Proxy that it can process 

perceptions, the proxy sends the agent its current perceptions through SVI. The 

perceptions include audio (i.e. messages), motion status, simulation time, and visual. For 

this domain, SVI has components to process the audio, motion, and time input from the 

Agent Proxy. These components simply pass the input on to Soar by creating symbolic 

structures on Soar‘s input-link.  

The visual input is a copy of the individual scene graph nodes from the World 

Representation that the detection algorithm determines the agent can observe. The Agent 

Proxy provides this list of nodes to SVI‘s Saliency Inspector. The first node in this list is 

always the ―background‖ node, which includes the terrain. As discussed in Chapter 6, the 

Saliency Inspector instantiates the structure of the current scene in VS-STM and provides 

                                                 

25
Defined as the opposing entity moving more than 500 meters from last reported location or 60 simulation 

ticks. 

1. For each actor that can ―see‖ (i.e. not buildings) 

a. Determine the objects in the actor‘s view frustum and 

sort closest to furthest 

b. For each object in view frustum 

i. If on periphery (camera plane), remove object 

ii. If a closer object in view occludes it (ray 

tracing), then remove object 

iii. If terrain occludes object (ray tracing), remove it 

c. Give actor its list of remaining visible objects. 
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the ―What‖ and ―Where‖ Inspectors this list of scene graph nodes. The ―What Inspectors‖ 

recognize the objects with a simple ―string match‖ and the ―Where Inspectors‖ build the 

internal Object Map scene graph from the provided list of nodes. For debugging 

purposes, the Refresher renders the scene graph from the agent‘s current viewpoint. The 

remaining processing proceeds as discussed in the architectural description.  

Although we do not literally model the two ―what‖ and ―where‖ control paths (see 

Figure 6-7), we do model the separation of control between cognition and perception with 

two separate threads. The Agent Proxy‘s thread processes the perceptual input, up to the 

point where SVI creates the structures in the Object Map and VS-STM (i.e. the ―what‖ 

and ―where‖ processing). Simultaneously, another processing thread is executing Soar‘s 

decision cycle beginning with input received from the VLTM and Object Map 

Listeners.
26

 

Recall that the visual perceptual processing in SVI automatically creates symbolic 

structures for Soar to include the recognized objects in the scene and their direction, 

distance, and relative size from the agent‘s egocentric perspective. In order to determine 

the object‘s orientation in this domain, the agent has to observe the entity move and then 

infer its orientation, or direction of travel, by taking into account its current and previous 

locations. One important point is that when the agent is looking at the scene, the scene 

graph nodes represent objects in the environment. When the agent is looking at the map, 

the terrain nodes represent the map and the salient, visual objects are the map-icons that 

the agent has previously ―written‖ on the map. In this case, rather than providing Soar the 

egocentric direction and distance of the map icons from the agent‘s eyes and then forcing 

it to ―read‖ the map to infer absolute locations, we simply provide the absolute locations 

and orientations. The agent‘s procedural knowledge must interpret the incoming direction 

and distance accordingly, based on whether it is looking at the scene or the map. 

When Soar sends commands to SVI, they may be imagery commands or 

instructions to create action in the environment. As with the extra perceptual components 

(i.e. audio, motion) in this domain, SVI also has some motor components that receive 

commands from Soar and communicate the instructions to the Agent Proxy. These motor 

commands include changing the agent‘s view from looking at the scene to looking at the 

                                                 

26
Unless running on multi-core machine, the threads are interleaved. 
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map (or vice versa), writing an object on the map, orienting in a given direction, or 

sending a message. The Agent Proxy interprets these commands and schedules the events 

through the agent‘s Simulation Actor. When the simulation processes the event, it 

produces the corresponding action in the environment by updating the internal state of the 

agent‘s Simulation Actor. The agent perceives the action‘s results via the Agent Proxy. 

Again, note that these events take time to process based on the modeling of their 

temporal constraints. Therefore, when the agent issues a command to write an object on 

the map or look at the scene, Soar will execute a few decision cycles before it perceives 

the change based on the action. This modeling produces some interesting behavior. For 

example, to write an object on the map the agent must first imagine it by constructing the 

quantitative spatial representation of the map icon. The agent can then issue a write 

command to simulate writing the icon on the external map, in effect making it persist. 

However, while writing the map-icon, the agent may be interrupted (e.g. the teammate 

sends a message), forcing it to attend to the perceptual input. Because ―important‖ 

perceptual processing inhibits imagery, the imagined map-icon ―disappears‖ before the 

agent has had an opportunity to finish writing it. The agent has to re-imagine and rewrite 

the object. The architecture‘s truth maintenance mechanisms must consider these types of 

perception and imagery interactions, for example by removing the imagined visual-object 

structure of the map-icon from Soar‘s short-term memory and removing any stale state in 

SVI referring to its visual-object. The agent‘s procedural knowledge must also wait until 

its symbolic perceptions inform it that it is perceiving, rather than imagining, the map-

icon and not assume that just because it sent the command the action occurred. 

7.4.2 Task Decomposition 

The primary goals of a scout team are to acquire and maintain visual contact with the 

approaching enemy and report all information rapidly so that the commander can make 

his assessment. After establishing visual contact, a scout‘s actions include the following 

steps (Army, 2002).  

 

(1) Deploy and report 

(2) Analyze the situation 

(3) Choose and execute a course of action 
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Analyzing the situation involves reasoning about known friendly and enemy locations 

and orientations, terrain, and obstacles. If the scout lead does not know the locations of 

all expected enemy, then he might hypothesize the location of other enemy entities and 

template their positions. Based on the analysis, the scout lead then decides if he should 

reorient himself, his teammate, or both.  

Figure 7-11 illustrates the Soar+SVI agent‘s task decomposition to perform this 

mission. The left-to-right ordering implies some task sequence although this is not a hard 

rule, as the reasoning is conditional, iterative, and sometimes interleaved. Tasks in bold, 

italic font use imagery operations to assist in the reasoning. Figure 7-11a shows the top-

level tasks. During a reconnaissance mission, the scout agent is continuously observing 

the situation, analyzing its possible courses of action, and deciding and acting on a course 

of action. Observing (Figure 7-11b) includes scanning the area attempting to establish 

visual contact with the approaching enemy. Once the agent or its teammate makes 

contact, the agent must identify whether the entity it is observing, or the teammate is 

reporting, is a new enemy or a previously identified enemy. We assume that the agent can 

distinguish between two different entities that it observes. For enemy vehicles that the 

teammate reports, however, the agent uses the quantitative spatial representation to 

determine if the distance between the reported location and a previously identified enemy 

is within a certain threshold (e.g. 150 meters). If the constraint is true, the agent assumes 

that the teammate is observing the same entity the agent is observing. After identifying 

the entity, the agent records the observation and sends a report to the commander. If the 

agent is confident in the observation it writes it on the map by first imagining the map 

icon (construct) and then issuing a ―write‖ command.  

Analyzing the situation (Figure 7-11c) begins by first determining if the agent has 

an observation for all expected enemy (i.e. three), and, if not, hypothesizing (i.e. 

template) the unknown enemy locations. The hypothesis involves retrieving semantic 

knowledge of a typical enemy reconnaissance element (e.g. three vehicles, one vehicle 

forward, two vehicles behind at a given distance and orientation) and imagining their 

locations (Figure 7-9d). The agent may also employ its knowledge of a typical enemy 
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vehicle‘s velocity to simulate movement when the last known location of an enemy is 

stale (i.e. recorded time is less than the current time). 

 

 

 

(a) Top-level Task (b) Observe Sub-Goal 

 

 

(c) Analyze Sub-Goal (d) Analyze-Position Sub-Goal 

Figure 7-11: Scout Domain Task Decomposition 

 

To analyze each enemy‘s avenue of approach or path, the agent must first make 

an assumption as to their next destination. An enemy can be terrain-oriented or force-

oriented. For this scenario, the agent assumes the enemy is terrain-oriented. One way the 

agent may determine an individual enemy‘s next destination is for each piece of 
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hypothesized key terrain,
27

 use spatial imagery to infer the direction, orientation, and 

distance from the enemy vehicle to the key terrain. With this information, the agent may 

employ a heuristic, such as preferring the minimum distance and change in orientation, 

which forms a hypothesis as to the individual enemy‘s next destination. The agent repeats 

this reasoning for each known or hypothesized enemy. 

After hypothesizing each enemy‘s destination, the agent uses visual imagery to 

imagine known obstacle barriers and restricted or ―slow-go‖ terrain (e.g. vehicles cannot 

drive through buildings, vehicles have problems with steep terrain, enemy scouts will 

attempt to avoid open spaces, etc.). It then marks a path by transforming the visual 

depictive representation. The agent‘s knowledge provides imagery with the enemy 

vehicle (source) and key terrain (sink) visual objects, the attention window parameters, 

and the set of rules for the depictive manipulations. Imagery then performs the 

manipulations, marking the path. The general procedure is the following (Appendix B 

provides more details): 

1. Mark all known obstacles and ―slow-go‖ terrain with a color (yellow) by applying 

a set of threshold values.
28

 Mark all other pixels gray. 

2. Grow an iso-distance contour field avoiding any previously marked barriers 

(Figure 7-12a). 

3. Walk the contour field from source to sink, marking the path along the way. 

(Figure 7-12b).  

 

  
(a) Distance field 

flood 

(b) Mark Path 

Figure 7-12: Imagining an Enemy Path  

Finally, the agent analyzes its position (Figure 7-11d) by imagining its 

teammate‘s view and its own view by first constructing and generating the views. 

                                                 

27
Key terrain is any location where control by either friendly or enemy forces offers a significant advantage 

because it provides good observation of converging paths, is a logistical hub, has psychological 

implications, etc. 
28

Threshold values are determined from an off-line analysis and encoded as part of the agent‘s declarative, 

task knowledge. 
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Generation takes into account some terrain occlusions (e.g. that a hill blocks the view). 

The agent determines the amount of coverage by inspecting the Visual Buffer images for 

the size (i.e. length) of each hypothesized path that is a topological proper part of each 

view (Figure 7-13). Soar‘s procedural knowledge then estimates the amount of coverage 

a particular view has on a path by dividing the covered portion of the path by the total 

path length. If there are paths with coverage below a certain threshold (i.e. 0.25), the 

agent attempts to improve coverage by simulating reorientations of its teammate, itself, or 

both. Again, the agent uses a combination of imagery and task heuristics embedded in 

procedural knowledge to determine who to reorient, what direction to reorient them, and 

how far to simulate the orientation. To execute the simulation, the agent issues imagery 

commands to transform and regenerate the views. It then re-inspects the visual depictive 

representations in the Visual Buffer to determine the resulting coverage. Based on its 

analysis, the agent makes a decision (Figure 7-11a) and issues a motor command to 

reorient itself and/or send a message to its teammate directing it to re-orient. The agent 

starts observing the scene again and the ―observe, analyze, decide, and act‖ process 

continues. 

 

Figure 7-13: Agent Imagining Its Coverage of One Enemy‟s Hypothesized Path 

Agent also imagines coverage for other paths and its teammate‟s coverage of each path 

 

As a summary of the agent‘s analysis and subsequent decision, Figure 7-14 shows 

a trace from one of the runs. Bold font indicates our own remarks to clarify the trace. 

Note that the agent‘s reasoning is non-trivial and that its functionality and problem-
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solving quality emerges from the combination of symbolic, quantitative spatial, and 

visual depictive representations.  

 

 

 

Agent decides to see if it can obtain better coverage on path P51 by reorienting its teammate. 
 

Reinspecting path-coverage by attempting to improve Scout-2's view to cover path P51 
 

Analysis results after simulating the reorientation of its teammate and subsequent inspection of 

path coverage. Teammate can adequately cover path P51 while also improving coverage on its 

current primary path, P49. 

  

Scout-2's path analysis path: P49 cf: 0.730275 distance: 1373.78 orientation distance: 18.8389 

Scout-2's path analysis path: P51 cf: 0.313793 distance: 772.466 orientation distance: 0. 

Scout-2's path analysis path: P53 cf: 0.182153 distance: 1337.91 orientation distance: 25.5324 

Analysis results after simulating the reorientation and inspecting for path coverage. 
 

Scout-1's path analysis path: P49 cf: 0.591979 distance: 1277.63 orientation distance: 3.5553 

Scout-1's path analysis path: P51 cf: 0.340073 distance: 590.454 orientation distance: 0.0989148 

Scout-1's path analysis path: P53 cf: 0. distance: 851.323 orientation distance: 56.6101 

 

Agent sees that after simulating the reorientation it has better coverage of path P51. However, 

it decides to reject the COA because its takes it off its primary path, P53. That is, its coverage 

factor of path, P53 has dropped below 0.25 and in the previous, initial analysis,  the agent‟s 

orientation distance to path P53 is 3.6 degrees (i.e. it has to orient 3.6 degrees to be oriented 

exactly on the path‟s center) whereas Scout-2‟s orientation distance to P53 is 63.7 degrees. This 

is an indicator that Scout-1 currently has primary coverage on path P53. Note, that rejecting 

this COA does not reject the possibility of reorienting both the agent and the teammate where 

each would assume responsibility for a new primary path. 

 

Rejecting COA because takes Scout-1 off  its primary path: P53 

Results from the analysis of Scout-1‟s (Agent) and Scout-2‟s (Teammate) current path 

coverage. 

cf = coverage factor (length of path covered by view / total length of path) 

distance = distance from entity‟s location to path center in meters 

orientation distance = how far entity has to orient (in degrees) to be in line with path center 

  

Scout-1's path analysis path: P49 cf: 0. distance: 1277.63 orientation distance: 49.4096 

Scout-1's path analysis path: P51 cf: 0.0663824 distance: 590.454 orientation distance: 53.0644 

Scout-1's path analysis path: P53 cf: 0.460498 distance: 851.323 orientation distance: 3.64507 

 

Scout-2's path analysis path: P49 cf: 0.676294 distance: 1373.78 orientation distance: 19.3111 

Scout-2's path analysis path: P51 cf: 0.126035 distance: 772.466 orientation distance: 38.1506 

Scout-2's path analysis path: P53 cf: 0. distance: 1337.91 orientation distance: 63.6824  

 

Agent decides to simulate reorienting itself (Scout-1) to cover path P51. The reason it chose P51 

over P49 is because Scout-2 already has adequate coverage on path P49 
  

Reinspecting path-coverage by attempting to improve Scout-1's view to cover path P51 
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Figure 7-14: Execution Trace of Scout Agent‟s Analysis and Subsequent Decision 

 

At this point, the agent has four possible COA‟s  (one of which it has already rejected): 

 COA 1: Do nothing (NOT SELECTED) 

 COA 2: Reorient self  (REJECTED) 

 COA 3: Reorient both (NOT SELECTED) 

COA 4: Reorient teammate (SELECTED) 

  

Agent decides to reorient teammate to achieve better coverage on path P51. Each COA along 

with its advantages follows. Note that even though COA 3 has a better cumulative total 

coverage, the agent does not select it as it leaves path P53 with less than 25 percent coverage. 

Coverage factors shown here represent a cumulative total for each path. Possible COA 

advantages are: 

  

better-path-coverage: overall (total) path coverage is better than current 

 maximum-coverage-on-different-paths: Agent‟s and teammate‟s maximum coverage 

are on different paths (i.e. they are not focusing on the same path). 

 all-paths-<twenty-five or fifty or seventy-five>-percent-covered: each path has at least 

the corresponding percentage of coverage 

  

COA 1: Do nothing (NOT SELECTED) 
Non-selected COA coverage factor: 0.676294 for path P49 

Non-selected COA coverage factor: 0.192417 for path P51 

Non-selected COA coverage factor: 0.460498 for path P53 

Non-selected COA total coverage factor: 1.329209 

Non-selected COA advantage: maximum-coverage-on-different-paths 

 

COA 2: Reorient self (REJECTED) 
Non-selected COA coverage factor: 1.26827 for path P49 

Non-selected COA coverage factor: 0.466108 for path P51 

Non-selected COA coverage factor: 0. for path P53 

Non-selected COA total coverage factor:  1.734378 

Non-selected COA advantage: better-path-coverage 

 

COA 3: Reorient Both (NOT SELECTED) 
Non-selected COA coverage factor: 1.32225 for path P49 

Non-selected COA coverage factor: 0.653867 for path P51 

Non-selected COA coverage factor: 0.182153 for path P53 

Non-selected COA total coverage factor:  2.15827 

Non-selected COA advantage: better-path-coverage 

 

COA 4: Reorient Teammate (SELECTED) 
Selected COA coverage factor: 0.730275 for path P49 

Selected COA coverage factor: 0.380175 for path P51 

Selected COA coverage factor: 0.642651 for path P53 

Selected COA total coverage factor:  1.753101 

Selected COA advantage: all-paths-twenty-five-percent-covered 

Selected COA advantage: maximum-coverage-on-different-paths 

Selected COA advantage: better-path-coverage 

COA chosen re-orienting teammate to 101.229 degrees 
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7.4.3 Computational Advantage 

One of our computational constraints is for a component to process its representation 

efficiently, yet remain task independent. As we discovered from the Geometry and 

Alphabet experiments, achieving this balance is not always clear. We had to consider 

similar tradeoffs in the Scout domain as we expanded the architecture to include 

transformations of the visual depictive representation using pixel-level rewrites. The new 

component, the VBManipulator, proves useful in determining the enemy‘s hypothesized 

paths as the visual depictive representation takes into account the specific shape of the 

terrain and obstacles. Alternative approaches (shown in the next section) that do not 

consider the specific shape have a lower problem-solving quality, as they do not provide 

as much accuracy.  

In order to incorporate the depictive manipulations, we had to consider not only 

the efficiency of the processing to insure it gave the resulting architecture a 

computational advantage, but also the demarcation between the knowledge and 

architecture. The architectural description in Chapter 6 (specifically 6.2.2.2.4) and the 

more detailed description of the depictive manipulations in Appendix B describe the 

tradeoffs we considered in achieving efficiency (e.g., minimization of the image size 

through an attention window). In our analysis of the separation between knowledge and 

architecture, we considered and compared three alternatives (Figure 7-15). 

Recall that a pixel-level rewrite system includes a shared image, a set of depictive 

rules, and processes to interpret the rules and manipulate the image. Clearly, the image 

structure and processing to modify the image belong in SVI‘s architecture, but where do 

the rules, which contain both procedural (i.e. topological structure of each manipulation) 

and declarative knowledge (i.e. color of pixels to match) reside? One alternative is to 

create a task specific component including both the procedural and task knowledge 

(obstacles, slow-go terrain, distance field colors, etc.) in the architecture. This approach is 

computationally efficient and serves as a baseline measure but if the task changes the 

architecture must change. A second design choice maintains all knowledge and the 

majority of processing in Soar where the pixel-rewrite rules are encoded as Soar 

productions. Each decision cycle SVI‘s VBManipulator sends Soar the current set of 

pixel values. The pixel rewrite rules in Soar determine the current match set and send the 



 

 122 

results to the VBManipulator for updating the image. An intermediate solution stores the 

depictive manipulations (i.e. the pixel-level rewrite rules) in Soar. Soar transmits the 

appropriate task-specific manipulations to the VBManipulator for processing. 

Figure 7-15 illustrates the amount of processing time (log scale) required by each 

of the alternatives where each implementation executes a distance field flood on a 16x16 

pixel image. As shown on the left of Figure 7-15, the first, task specific/representation 

specific implementation is very efficient compared to our other alternatives. Maintaining 

the majority of computations within the symbolic processor, as shown on the right of 

Figure 7-15, is two-three orders of a magnitude slower than the alternatives. The reason, 

similar to the issue with angles in the Geometry problem, is that there are too many 

alternatives for Soar‘s rule matcher to consider efficiently when the fringe layer in the 

distance field has several matches. Depictive processing that iterates over the image 

handles these fringe layers in a much more efficient manner as it is only considering the 

local (e.g. 3x3) topological structure at any one instance. The intermediate approach 

provides efficient execution (middle of Figure 7-15) coupled with flexibility to change 

task-specific manipulations dynamically. It also provides high-level control so that if 

―important‖ perceptual input interrupts imagery processing, the architecture can respond 

accordingly. 

 
Figure 7-15: Comparison of Processing Times of a 16x16 Pixel Image 
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A final alternative, evaluated subjectively, involves encoding the declarative 

knowledge in Soar (i.e. the color of the pixels to match), while keeping the procedural 

knowledge of the rules (i.e. rules for creating distance field flood, rules for marking path) 

embedded in the architecture. Again, as with the first task specific/representation specific 

design, we expect to have slightly better efficiency compared with the intermediate 

solution. However, this requires either knowing a priori every required manipulation that 

we desire the architecture to process or changing the architecture for every task--

defeating the purpose of having a general, purpose architecture. This design choice is 

more appropriate for manipulations that support the detection of low-level, primitive 

visual features (e.g. enclosed spaces). 

To evaluate the responsiveness of the architecture, as in the Geometry and 

Alphabet experiments, we compare the hypothesized human decision cycle time of 50 

milliseconds to the normalized amount of time for each imagery operation. To review, 

the average time of a single imagery operation is calculated as follows. First, the average 

decision cycle time is computed from Soar‘s total CPU time divided by the total number 

of decision cycles. The average amount of time spent in SVI per imagery operation 

(Construct, Transform Object Map, Transform Visual Buffer, Inspect) is normalized to 

the hypothesized decision cycle time where normalized time = (average-real-time-in-

SVI-per-imagery-operation x 50) / average-decision-cycle-time.  

Figure 7-16 illustrates the response times ordered left to right with the most 

responsive operation (Inspect) on the left and the least responsive (Transform Visual 

Buffer) on the right. The line represents the hypothesized human decision cycle time (log 

50 ~ 1.7). Spatial imagery operations (Construct and Transform Object Map) are 2-3 

orders of a magnitude faster, and appear more responsive, than visual imagery operations 

(Generate and Transform Visual Buffer). This result is consistent with our results from 

the Geometry and Alphabet experiments. The inspection processing includes inspections 

of both the quantitative spatial and visual depictive representations. Since in this domain, 

these inspection processes involved relatively few calculations (e.g. direction, distance, 

and orientation between object; size of path), it was very responsive.  

As we previously articulated, the higher response times for visual imagery 

operations may partially be due to our assumption that low-level visual processing 
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exploits parallelism, possibly requiring special hardware that we do not reflect in the 

architecture. For example, a reason for the reflected time to generate a visual depictive 

representation (~4 ms real CPU time) is that the operation includes the time to copy the 

rasterized image pixels from the graphical processing unit‘s memory to main memory. 

We assume that specialized hardware support would achieve a significant speed up. Even 

though the manipulation of the visual depictive representation (Transform Visual Buffer) 

is roughly an order of three magnitudes more efficient when compared to processing the 

representation with symbolic computations (Figure 7-15), it is not as responsive to the 

environment as we would like (right column of Figure 7-16). Note that one visual 

imagery operation (Transform Visual Buffer) includes the execution of many pixel 

rewrite rules (e.g. the rules to create the distance field flood in one attention window is 

counted as one imagery operation as its execution is within one Soar decision cycle).  

 
Figure 7-16: Time Required for an Imagery Operation in the Scout Domain  

Time reflects an average of an imagery operation normalized to the decision cycle time (50 ms). 

 

As with detecting curves and enclosed spaces, it may be that the system is 

attempting to process too much in one decision cycle. Limiting the processing to a 

64x64-attention window did achieve significant speedup (~250 ms real CPU time) and 

appeared ―adequate‖ for this domain. There are also much more efficient pixel-rewrite 

algorithms (Furnas & Qu, 2002), but their implementation is rather complex and not the 

main thrust of this research. Increasing the efficiency of the depictive manipulations 

would only strengthen the claims of this research. From a psychological perspective, it 

 D.C. 

Time 

(50 ms) 

 

 

 



 

 125 

may be simply that visual imagery take longer to process, suggesting that given a choice, 

humans tend to use spatial imagery in situations where speed is more important than 

accuracy.  

7.4.4 Functional Capability and Problem-Solving Quality 

Although reasoning using visual depictive manipulations is not as responsive when 

compared to the other imagery processes, its advantage is that it provides the architecture 

with functional capability that the system cannot achieve without it. These manipulations 

enable the architecture to support reasoning when there are arbitrary shapes involved (e.g. 

finding paths through undulating terrain, determining the intersection between the view 

and the winding path). Spatial imagery, using quantitative spatial representations, would 

require converting the shapes to convex polygons resulting in a loss of accuracy. Better 

accuracy results in better problem-solving quality.  

To evaluate problem-solving quality, we created three agents modeling the lead 

scout. The first agent (Soar+SVI) uses spatial and visual imagery to observe, analyze, and 

decide on a course of action. The second agent (Soar-SVI) uses the same task 

decomposition (Figure 7-11) but uses strictly symbolic and quantitative representations 

and processing in Soar. For example, it imagines the enemy‘s paths as straight lines and 

the views as a triangle without taking terrain or known obstacles into account. Path 

coverage is determined using basic trigonometry. This is a fair comparison because as 

just discussed, providing the Soar-SVI agent with all known obstacles to include the no-

go terrain would slow its processing significantly (see right hand column Figure 7-15), 

causing it to miss observations. The third agent (Observer) and its teammate simply 

observe the area to their front and send reports to their commander without any re-

positioning (i.e. it only executes the Observe sub task in Figure 7-11).  

To evaluate the generality of the system, we evaluate the same agents in two 

different scenarios. Figure 7-9 shows the first scenario. We will describe the second 

scenario shortly. In general, Enemy Scout-1 and Enemy Scout-2 maneuver in the general 

direction as shown in their initial configuration, but there is some variability in the paths 

they choose. For example, in Figure 7-9 Enemy Scout-2 may initially maneuver in a 

southeasterly direction and then make a sweeping maneuver to the south or west. Enemy 
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Scout-3 randomly decides to follow Enemy Scout-1 or Enemy Scout-2, typically at a 

distance ranging from 500 to 1000 meters. There are times, however, when it closes that 

gap to 50-100 meters. 

We have two evaluation metrics for problem-solving quality. The first is the 

cumulative amount of information the commander receives on the enemy‘s location over 

time (Figure 7-17). The second metric is the number of reported observations of each 

enemy entity (Figure 7-18). Both results reflect the average over 30 trials. In Figure 7-17, 

the x-axis is the current simulation time, and the y-axis measures the amount of 

information per unit time with 1.0 being perfect information and –1.0 indicating no 

information. The measure of information is an average over all three enemy entities at 

simulation time, t, calculated for each enemy as follows: 

𝐼𝑡 =  
−1 𝑖𝑓 𝑛𝑜 𝑜𝑏𝑠𝑒𝑟𝑣𝑎𝑡𝑖𝑜𝑛

1 −  𝛿 𝑜𝑡𝑕𝑒𝑟𝑤𝑖𝑠𝑒    
  

where: 

𝛿 =    𝑜𝑏𝑠𝑥 − 𝑎𝑐𝑡𝑥 2 +  𝑜𝑏𝑠𝑦 − 𝑎𝑐𝑡𝑦 
2

𝑑𝑎𝑐𝑐𝑒𝑝𝑡𝑎𝑏𝑙𝑒  

(obsx,obsy) is the reported location of an entity at time, t and 

(actx,acty) is the actual location of an entity at time, t 

𝑑𝑎𝑐𝑐𝑒𝑝𝑡𝑎𝑏𝑙𝑒 = 𝑡𝑕𝑒 𝑎𝑐𝑐𝑒𝑝𝑡𝑎𝑏𝑙𝑒 𝑠𝑞𝑢𝑎𝑟𝑒 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 =   𝑑𝑥
2 + 𝑑𝑥

2   

𝑤𝑕𝑒𝑟𝑒 𝑑𝑥 =  𝑑𝑦 = 500 𝑚𝑒𝑡𝑒𝑟𝑠 

The agent receives a positive score for a given enemy if at simulation time, t, the 

commander‘s knowledge of the particular enemy‘s location is within a 500 x 500 meter 

square of the enemy‘s actual location at that time. Otherwise, the information score is 

negative for that time with a minimum score of -1.0. Note that by assigning a -1.0 to 

unobserved entities effectively ―punishes‖ the scout team.  

The ―Tracker‖ in Figure 7-17 illustrates the amount of information a scout team 

would provide if each scout observed one enemy vehicle each at the beginning of the 

simulation and then ―tracked‖ that entity to the conclusion of the simulation. Assuming 

no terrain occlusions, instantaneous message passing, and the third enemy not in vicinity 

of the tracked entities, the ―Tracker‖ would receive an information score of (1.0 + 1.0 - 

1.0) / 3 = 0.33 for each time unit.  
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The results show that the Soar+SVI agent provides more information upon initial 

visual contact (the slope in Figure 7-17 is steeper) and over a sustained period. 

Furthermore, on average, it sends more observation reports to the commander, indicating 

that the team has detected the enemy more frequently and that the overall architecture 

continues to be responsive as the agent is able to perform other functions (observe, 

report) in addition to imagery (Figure 7-18). The reason the Soar+SVI agent is able to 

reposition its team more effectively is that its analysis is more accurate. The Soar-SVI 

agent often under or overestimates the required adjustments resulting in the scout team 

missing critical observations. 

 

 

Figure 7-17: Measure of Information over Time (Scenario-1) 
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Figure 7-18: Number of Cumulative Observations (Scenario-1) 

 

The purpose of the second scenario is to demonstrate the generality of the 

architecture and evaluate our hypothesis that the Soar+SVI agent analyzes the situation 

more accurately and thus, makes better decisions on where to orient its team. The second 

scenario uses the same terrain as in the first scenario, but the enemy‘s direction of attack 

is in the opposite direction and there are several buildings in the western sector that 

provide excellent coverage for the enemy scouts‘ movement (Figure 7-19a). The purpose 

of these reinforcing obstacles is to force the enemy to turn west before it can continue its 

movement north and determine if this sharp turn influences the agent‘s analysis.  

In this scenario, Enemy Scout-2 initially maneuvers north/northwest and 

establishes visual contact with Scout-2 (Figure 7-19a&b). Once it makes contact, Enemy 

Scout-2 signals to Enemy Scout-1 to begin movement in a northwest direction. Enemy 

Scout-1 takes advantage of the buildings and terrain to remain concealed as much as 

possible from Scout-1‘s observation during a majority of the simulation (Figure 7-19c). 

Enemy Scout-3 randomly decides to follow Enemy Scout-1 or Enemy Scout-2. Note that 

in this maneuver the Soar+SVI and Soar-SVI agents begin with the same information as 

both establish visual contact with Enemy Scout-2 at approximately the same time (again, 

with some simulation variability). However, our hypothesis is that the Soar+SVI agent 

will perform a more accurate analysis taking into account the terrain and the building 

occlusions and adjust accordingly.  
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(a) Actual Situation (b) Teammate‟s View 

 

 

(c) Agent‟s View (d) Agent‟s Perceived Map / Imagined Situation 

Figure 7-19: Scout Domain (Scenario-2) 

 

Figure 7-20 through Figure 7-23 illustrate the outcome. Figure 7-20 shows the 

cumulative information the agent provides to its commander over time. Initially, 

Soar+SVI and Soar-SVI provide similar amounts of information to the commander but at 

approximately simulation time 280, the Soar+SVI agent begins observing enemy 

movement again while the Soar-SVI agent, on average, does not. As Figure 7-20 shows 

cumulative information, to include Enemy Scout-2 which tends to cancel out the effects 

of observing the other two enemy scouts, Figure 7-21 and Figure 7-22 show the 

information that Soar+SVI and Soar-SVI agents provide on Enemy Scout-1 and Enemy 

Scout-3  respectively from simulation time 280 to 350. The results are more obvious for 

Enemy Scout-1 as Enemy Scout-3 sometimes follows Enemy Scout-2. 

Why is there such a difference in the amount of information and number of 

observations? Figure 7-24 shows that visual imagery, and specifically visual depictive 
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manipulations, provides a more accurate representation of the enemy‘s hypothesized 

path. Using this information together with the generated view frustum that takes into 

account some terrain occlusions, the resulting analysis provides the Soar+SVI agent more 

accurate information to base its assessment. 

 
Figure 7-20: Measure of Information over Time (Scenario-2) 

 

 
Figure 7-21: Measure of Information on Enemy Scout-1 over Time (Scenario-2) 

 

Observe Enemy 

Scout-1 and -3  
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Figure 7-22: Measure of Information on Enemy Scout-3 over Time (Scenario-2) 

 

 

 

 
Figure 7-23: Number of Cumulative Observations (Scenario-2) 
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(a) (b) 

Figure 7-24: Two Example Paths Imagined During Scenario-2 

The straight line reflects a quantitative spatial representation of the same path 

 

The gain in computational efficiency in processing the perceptual representations, 

functional capability, and problem-solving quality does not come without a cost. The 

resulting architecture is more complex and requires truth maintenance mechanisms to 

maintain consistency between the components when the agent stops imagining, either 

deliberately or because a more important perception interrupts it. Unlike the initial task 

knowledge of the geometry problem where the agent uses imagery for internal problem 

solving, Figure 7-25 suggests that because of the interaction with perceptual processing, 

additional task knowledge is required. Figure 7-25 shows the number of productions the 

Soar+SVI and Soar-SVI agents have in the Scout domain to include the ―architectural‖ 

visual processing and imagery productions. Although the basic task knowledge (i.e. 

Observe, Decide, Act) is the same between the agents, the Soar+SVI agent requires more 

task productions because of its ability to perform analysis using imagery. This analysis 

includes adding and moving imagined objects, encoding depictive manipulations, and 

writing objects on the map—tasks that the Soar-SVI agent does not perform. The tradeoff 

then is that there is less task knowledge to perform ―internal‖ cognitive tasks but more 

task knowledge to perform the ―external‖ imagery operations and interact with 

perception. 
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Figure 7-25: Number of Productions in the Scout Domain 

 

7.4.5 Scout Domain Assessment 

The Soar+SVI agent, by combining the symbolic, quantitative spatial, and visual 

depictive representations and then reasoning with them, can paint a relatively accurate 

picture of the situation for its commander sooner and for a longer sustained period of 

time than its counterpart Soar-SVI agent. Visual imagery enables it to provide a better, 

more fine-grained assessment than if it relied solely on spatial imagery. Furthermore, due 

to the number of observation reports, the results show that it is still able to perform other 

cognitive functions (receive and send reports, perceive the environment), demonstrating 

that the imagery system is working in conjunction with the complete cognitive system. 

Although SVI‘s depictive manipulations are not as responsive as we would like, they 

provide a significant computational advantage when compared to processing the 

representation with sentential algorithms and much more generality than a task specific 

implementation. 

7.5 Lessons Learned 

The evaluation demonstrates that the power of incorporating spatial and visual imagery 

mechanisms in a cognitive architecture emerges from the ability to combine their 

representations and reason with them. The experiments highlight tasks where spatial and 
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visual imagery fills in a missing details of a situation, recognizes novel shapes if not 

present visually, and assists an agent analyzing its actions before deciding and acting on 

them. As the results show, imagery is useful for inferring spatial relationships where 

metric information facilitates the reasoning between two or more objects (e.g. ―sense of 

direction,‖ orientation between the enemy and relevant key terrain) or detecting an 

object‘s spatial or visual properties (e.g. curves, enclosed spaces, path size, view 

coverage). In tasks where there are more than a few types of spatial properties or where 

visual features are not explicitly encoded, imagery provides an advantage from a 

computational, functional, and problem-solving standpoint. However, the advantages 

come at a cost to include architectural complexity and challenges in incorporating low-

level components where the separation between knowledge and architecture is not always 

clear.  

As we discussed in Chapter 2 (see section 2.2), each representation offers a 

functional and computational tradeoff. The Alphabet experiment and Scout domain 

highlight both these tradeoffs as visual imagery processing offers a functional advantage 

for reasoning about specific shapes but is less responsive than spatial imagery processing, 

suggesting that it requires greater capacity. Perhaps humans, when given a choice, tend to 

use spatial imagery in situations where speed is important. Maybe this observation is 

another reason why the mental imagery debate continues.  
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Chapter 8 

 

 

Summary and Conclusion 

 

 

 

Our research presents a synthesis of spatial and visual imagery, visual perception, and 

cognition. We demonstrate that it is computationally feasible to extend a general 

cognitive architecture with comprehensive mechanisms to support spatial and visual 

imagery processing to include quantitative spatial and visual depictive representations; 

shared mechanisms with vision; and incorporation of imagery‘s primary functions. Our 

empirical results and subjective assessment assert that for demanding spatial and visual 

tasks, the resulting architecture provides a computational gain and additional capability 

without trading off generality. As a summary of our work, this chapter reviews our major 

contributions, presents possible directions for future work, and concludes. 

8.1 Research Contributions  

The following list summarizes our major research contributions: 

 

 Integration of spatial and visual imagery‟s functional constraints 

(construction, transformation, generation, and inspection) in an implemented 

cognitive architecture (Chapters 3, 6, 7). We seriously consider the underlying 

behavioral and biological constraints in the design of the system. However, the 

integration focuses on functionality. We describe the representations and 

processes that are architectural and define the knowledge that is necessary to 
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create these representations and control the processing (e.g. visual object 

representations in VLTM, VS-STM, local spatial relationships in symbolic STM, 

a set of spatial and visual primitives, operators to control the high-level 

processing). As evidenced by the experimental results, we demonstrate these 

functions and their advantages in a working system.  

 

 Inclusion of a visual depictive representation and associated processing 

(Chapter 6, 7). An explicit mechanism for encoding and using the visual 

depictive representation is a major distinction between this work and other 

proposals. We demonstrate how the visual depictive representation provides the 

architecture with additional capability for recognizing visual features and spatial 

properties involving specific shapes. Furthermore, we show how it improves 

problem-solving quality when there is sufficient time for reasoning. 

 

 General mechanisms to support efficient processing of the quantitative 

spatial and visual depictive representation (Chapters 6, 7). Specialized 

processing is associated with each representation to gain efficiency. The inclusion 

of specific spatial and visual primitives facilitates communication between the 

processes in a general manner. We describe the challenges associated with 

achieving this generality and articulate the difficulties of determining how an 

agent (or human) decides when to use the appropriate representation. We suggest 

that functional capability, time, and desired accuracy are factors in this decision. 

 

 Description of the types of tasks where imagery provides a computational 

gain, additional functionality, or improved problem-solving quality 

(Chapters 2, 5, and 7). We describe and demonstrate several tasks where 

imagery processing is useful for reasoning because the task has many types or 

numbers of spatial or visual properties. These properties include direction, 

distance, orientation, size, topology, geometry, shape, and color. We suggest there 

are four general tasks where using imagery is useful to infer spatial and visual 

properties and demonstrate the first three tasks in our evaluation. 
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 Filling in missing details of a situation 

 Recognizing novel shapes and spatial properties if not present visually 

 Analyzing or rehearsing the outcome of an action before executing the 

action 

 Replay of a previous event to inform a future decision 

 

 An initial computational theory describing the functional integration of 

visual perception with spatial and visual imagery (Chapter 3, 5, 6). We 

provide a computational theory of how imagery leverages the mechanisms 

provided by higher-level vision to facilitate its processing. Our theory includes the 

shared memories and processes between the two systems along with how bottom-

up visual processing and top-down imagery processes coexist and mutually 

support one another. 

 

 Software engineering tools to support the evaluation and debugging of 

imagery components (Chapter 7, Appendix C). We built two tools to support 

the design, testing, and evaluation of the architecture. First, we integrate an SVI 

module with the SoarJavaDebugger (Figure C-6) to support viewing the contents 

in Visual LTM, the Object Map, and the Visual Buffer. Second, the simulation 

provides an initial attempt at defining an interface between an agent using 

Soar+SVI and an external environment.  

8.2 Future Work 

Based on our lessons learned from our evaluation (see section 7.5), we propose four 

possible directions for future work. There is some overlap between the research 

directions. We will explain each in more detail below. 

 

1) Push down. Push the architecture closer to sensory input and low-level perceptual 

processing. 
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2) Push up. Explore the integration of spatial and visual imagery with Soar‘s 

declarative long-term memories (episodic and semantic). 

3) Push out. Expand the capability of the current system by improving current 

functionality and expanding to other types of imagery processing such as motor 

imagery.  

4) Push in. Build detailed cognitive models and compare to human data. 

 

The first research direction is to expand our current perceptual theory by pushing 

the architecture closer to sensory input. One domain we would like to explore in more 

depth is robotics and specifically how cognitive processing, to include spatial and visual 

imagery, can provide a robot with higher-level reasoning abilities. Paramount in this 

exploration is an understanding of how our theory of perceptual processing would 

incorporate typical robotic sensors (e.g. light detection and ranging, stereoscopic video 

images, global position system, etc.) and how imagery may prime robotic effectors 

(motor imagery). Kuipers (2000) spatial semantic hierarchy, Yeap‘s and Jefferies‘ (1999) 

absolute space representation, and Ullman‘s (1996) object recognition schemes provide 

some insights here.  

This research direction could also consider the role of imagery in top-down visual 

perception. For example, imagery may support the recognition of an object when bottom-

up visual perception initially fails to recognize the object but suggests possible candidate 

objects (i.e. partial matches). Top-down visual processing using imagery may generate a 

visual depiction of each candidate object transformed from their stored, canonical 

orientation to an orientation congruent with the unrecognized object. The architecture 

attempts to recognize the perceived object by comparing its extracted visual features with 

the features extracted from the visual depiction of the imagined, transformed object. 

Relevant research questions include how many candidate objects to consider and how to 

determine when the transformed imagined object is ―congruent‖ with the orientation of 

the unrecognized object. 

Imagery processing may also support object permanence. Object permanence is 

the memory of a visible object that disappears (through motion) behind another object. 

The architecture may realize such behavior by maintaining the object‘s quantitative 
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spatial representation for some time after it visually disappears from the perceived scene. 

If the object was in motion the architecture combined with knowledge about the object‘s 

motion model (discussed below), may simulate object movement until it reappears from 

behind the occluding object or decays from memory. An important research question to 

address is how long the object should persist after it disappears from the scene.  

The second approach is to explore how imagery integrates and interacts with 

episodic and semantic memories. As an agent has experiences, episodic learning may 

store certain aspects of the experience, including perceptions, internal state, and resulting 

action, as structures in memory. These structures may include symbolic, quantitative 

spatial and, possibly, a few specific visual depictive representations. At some time in the 

future when the agent recalls the experience to inform a decision, it may use imagery 

processing to replay the experience and infer spatial and visual properties that perhaps it 

did not explicitly encode or use as part of its original decision-making. This imagery 

replay capability also presents an opportunity for ―offline‖ learning as the agent can 

reason about new spatial and visual properties that it did not attend to during the actual 

situation (e.g. Alice was seated to the left of Bob at the party last night). 

Semantic memory stores knowledge that is more general rather than specific 

instances. In the context of imagery, this memory is useful for encoding the local spatial 

and visual properties that imagery uses to construct the scene. For example, the fact that a 

place setting has a fork, plate, knife, etc., and that the knife is right of the plate or that the 

enemy typically configures itself in a particular formation (i.e. doctrine) are examples of 

semantic memories. Note that imagery can help keep the encoding of semantic or 

episodic memories compact, as only the local spatial relationships between the objects 

and their explicit visual properties need to be stored. Reconstructing the situation with 

imagery enables the inference of global spatial relationships and visual properties not 

explicitly encoded. 

Together imagery and these long-term declarative memory mechanisms have 

potential to lead to more informed reasoning. For example, in the Scout domain, an agent 

may initially construct the imagined parts of its scene from its semantic knowledge of the 

enemy and the terrain. As the agent acquires more experiences, it may adjust its 

templates. The enemy may change the spatial characteristics (distances, directions, and 
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orientations) of their tactics or maneuver through an area the agent previously thought 

was impassable. With these experiences, the agent may then construct and analyze its 

imagined scene using the adjusted templates from its episodic memory. 

The third research direction involves extending our current work by improving 

the communication primitives and algorithms for spatial and visual properties, refining 

our notion of the Visual Buffer‘s attention window, and using motion models in addition 

to one-step transformations to simulate movement. We have designed the system to 

incorporate the basic spatial and visual properties listed in Figure 6-9 thru Figure 6-11. 

Although we offer a small contribution in this work with this list of properties, there does 

not appear to be a cohesive theory detailing the spatial and visual primitives that humans 

use in reasoning. There are researchers (Biederman, 1987; Cohn et al., 1997) who offer 

theories for a specific spatial or visual property type. However, without a coherent theory 

there remain challenges in designing a general-purpose architecture because, as we have 

discussed, the interpretation of these properties tend to constrain each other (e.g., 

constructing a topological relationship between two objects requires knowledge about 

their specific shape and orientation, symmetry may or may not be a primitive feature, 

etc.).  

Related to this issue are the factors an agent uses to determine the representation 

to use for reasoning. The factors we suggest are the following: 

1) Functional capability. I am detecting curves so I have to use visual imagery. 

2) Speed/Accuracy tradeoff. If both representations provide a result but one is 

more accurate and I have time, then use the visual representation. 

3) Number and types of spatial and visual properties. The greater the number and 

types, the more likely reasoning requires a visual depictive representation. 

A future research effort then is to continue to review the literature in an effort to refine 

and improve these low-level primitives and investigate how learning mechanisms may 

use the factors, such as what we suggest above, to assist in choosing the appropriate 

representation.  

The attention window proves useful in improving the efficiency of the depictive 

manipulations. However, its design is brittle as it has a fixed size and shifts only in a 

linear direction based on procedural knowledge. A more flexible approach is to allow the 
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attention window to ―grow‖/―shrink‖ and also shift based on a visual cue (i.e. shift to the 

red object). For example, in the Scout domain if the terrain is very restrictive, it will 

impede the distance field flood. An architectural mechanism could possibly detect this 

―impasse‖ and either inform cognition or automatically expand or shift the attention 

window so that processing can continue. The major research questions for this direction 

is how does the architecture detect and signal this type of ―impasse‖ and how does the 

resize and/or shift occur-- automatically or deliberately through procedural knowledge? 

One interesting phenomenon in humans is their use of motor imagery to rehearse 

potential actions. Such a priming of the motor system, rather than executing a one-step 

transformation, appear to take into account factors such as force and torque using motion 

models of the particular subsystem (Grush, 2004). The use of motion models for 

simulating the motion of other objects, such as the trajectory of a thrown baseball or the 

movement of a vehicle is also applicable here. Note that these motion models may be in 

the form of a quantitative, dynamical system or a set of depictive manipulations. In these 

types of transformations, time is a key parameter, as the architectural processing must 

know how long to run the simulation. A few of the major issues for the incorporation of 

motor imagery and, specifically motion models, is to determine what memory structure(s) 

store these models, how they originate and dynamically adjust, the granularity of time in 

simulating the model, and insuring that the simulation of the model is not an 

unconstrained computation. Wintermute and Laird have begun to investigate these issues 

(2008). 

The final research direction is to explore detailed cognitive models and attempt to 

match human data. As we previously alluded to in the Alphabet Experiment, modeling 

the details of low-level perceptual processing dominates this goal and thus relates back to 

our first research direction of attempting to push the architecture closer to sensory input. 

However, it also relates to our other research directions, as there are some higher-level 

issues to address such as continuing to flush out the spatial and visual primitives to refine 

what knowledge should be ―hardwired‖ into the architecture rather than being encoded in 

a declarative or procedural memory.  

One of our specific ideas for this research path is to run an experiment with 

human subjects performing the same task as the agent in the Scout domain. During the 
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experiment, we would capture fMRI and eye-tracking data, measure response times for 

major decisions (i.e. when the subject decides on a course of action), and conduct post-

experiment interviews in an effort to understand how the individual solved the problem. 

Assuming this dataset provides us with enough evidence that some form of imagery is 

being used (e.g. parietal or visual cortex activation, subject says they ―imagined‖ the 

situation), we could then start building models and try to match the human data in this 

domain. 

8.3 Conclusion 

Past research in cognitive architectures has primarily taken the stance that amodal, 

symbolic representations are sufficient for thought. This research expands this notion by 

beginning to link perceptual-based representations with cognition. This union provides 

functional and computational advantages for reasoning about spatial and visual 

properties. The new capabilities of the resulting architecture that includes both Soar and 

its Spatial-Visual Imagery (SVI) component emerges from its ability to combine multiple 

representations and reason with them. Soar‘s symbolic memories and processes provide 

the building blocks necessary for high-level control in the pursuit of goals, learning, and 

the encoding of amodal, symbolic knowledge sufficient for general, abstract reasoning. 

SVI encompasses the quantitative spatial and visual depictive representations and 

processing specialized for efficient construction and extraction of spatial properties and 

visual features not encoded as symbols. Together these mechanisms are necessary if we 

hope to achieve general intelligence. 
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Appendix A 

 

 

Supporting Behavioral and Neuroimaging Experiments 

 

 

 

While modeling human performance on these tasks is not a goal of this research, the 

following experiments
29

 motivated our theory, design space constraints, resulting 

architecture, and evaluation domains. Each experimental description includes the 

reference, the described imagery functionality (construction, transformation, generation, 

inspection), its task type (spatial or visual imagery), a summary of the experiment, the 

relevant results, and a short discussion.  

A.1 Image Units and Relations 

a. Reference. (Kosslyn et al., 1983). 

b. Functionality. Construction, Generation, Inspection. 

c. Task Type. Visual. 

d. Summary. The experimenters gave the subjects specific instructions on how to 

encode geometric objects (Figure A-1) using either coarse or fine object parts (see 

figure for definition of object parts) and their spatial relationships. After the 

subjects indicated that they had visualized the image (by pushing a button), they 

were probed for a specific feature. For example, in the first figure they might be 

asked if they see a ―bow,‖ a ―cross,‖ or whether the object is symmetrical about 

                                                 

29
The ―island scan‖ experiment discussed in Chapter 2 is another experiment that influenced our theory. 
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the vertical axis. The experimenters recorded the time to visualize the image and 

response to the probes. 

 

 

Figure A-1: Stimulus Patterns 

(1) 2 triangles, 1 square vs. 4 triangles, 4 squares; (2) 1 triangle, 1 square vs. 2 rectangles, 3 triangles; 

(3) 1 hexagon, 2 triangles vs. 2 diamonds, 4 triangles; (4) 2 triangles, 1 square vs. 6 triangles; (5) 2 

triangles vs. 4 triangles, 1 diamond; (6) 2 rectangles vs. 5 squares; (7)  2 squares vs. 2 L‟s, 1 square; 

(8) 1 square, 1 parallelogram vs. 3 triangles; (9) 2 triangles vs. 4 triangles; (10) 2 L‟s vs. 2 rectangles, 

1 square. 

 

e. Results. Subjects who encoded the figures with more parts took more time to 

generate their visual images of the shape. Subjects required less time to see a 

pattern in the image when the feature was congruent with the original description. 

The authors concluded that (1) people construct visual images by amalgamating 

an object‘s parts. The addition of each part to the image requires time. (2) In 

addition to metric shape information, people use descriptive (symbolic) 

information in constructing images; and (3) the ease of visualizing and inspecting 

an object depends on how many parts composes it and its symbolic description. 

f. Discussion. This experiment corroborates the theory that images are constructed 

incrementally by adding parts. It also highlights that the descriptive or symbolic 

representation is dependent on how one originally encodes the object. The 

symbolic description of the object, or its super ordinate category, will not include 

all of the object‘s spatial and visual properties such as whether it has an enclosed 

space or contains four squares. Thus, there is the necessity to visualize and inspect 

the object when attempting to recall these properties. The second capability that 
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this experiment demonstrates is extracting emergent objects (bow, cross) or 

features (symmetry) by composing known objects in novel ways.  

A.2 Detecting Implicit Object Features 

a. Reference. (Thompson et al., in press). 

b. Functionality. Generation, Inspection. 

c. Task Type. Visual. 

d. Summary. The researchers‘ purpose was to gather evidence for the depictive 

nature of representations during visual imagery and compare the underlying 

mechanisms used to those used in visual perception. For both the visual perceptual 

and visual imagery trials, they compared the ease of judging shape properties for 

uppercase letters of the English alphabet. Some of the shape features were 

propositionally explicit (and thus, immediately accessible to the verbal system) while 

others were properties that the subject had to infer because they were not explicitly 

encoded (i.e. in a symbolic representation). Their hypothesis was that that the 

mechanisms enabling visual imagery are similar to visual perception. 

The researchers first determined what features of an uppercase letter are 

explicit by having a group of participants classify each visual appearance of each 

letter and describe its shape properties as though they were talking to a blind person 

who someday may be able to see the letter. For example, the letter ‗A‘ may have been 

described as one diagonal line slanted to the left, connected at the top to one diagonal 

line slanted to the right, with one horizontal line centered between the two diagonal 

lines. The researchers considered the feature explicit if the subjects mentioned it more 

than 50 percent of the time and not explicit if it was mentioned less than 5 percent of 

the time. They discarded features mentioned between 5-50 percent of the time. The 

most represented explicit features mentioned were ―line,‖ ―diagonal line,‖ ―curve,‖ 

and ―semi-circle.‖ The features deemed not explicit (mentioned less than 5 percent) 

were ―enclosed space‖ and ―symmetrical.‖ 

Next, the researchers split a different set of subjects into two groups:  a 

perception group and a visual imagery group. The task for each group was similar 

(Figure A-2). Each group first heard a letter. Then the participants would either see 
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the letter on a display (visual perception) or visualize (imagery) the letter based on the 

previous instruction. Next, the participants heard the feature to evaluate (e.g. 

―enclosed space,‖ ―curve,‖ ―diagonal line,‖ ―vertical symmetry,‖ ―horizontal 

symmetry‖)  and responded by pressing a ―yes‖ or ―no‖ key as quickly as possible. 

The experimenters measured the subjects‘ response times (RT) and error rates.  

 

 

Figure A-2: Trial Format for Detecting Alphabet Letter Features 

 

e. Results. There was no interaction between the visual mode (perception, imagery) 

and method of encoding indicating that visual perception and visual imagery rely on 

the same mechanisms. Additionally, explicitly encoded features (i.e. curves and 

diagonal lines) required less response time than implicitly encoded features 

(symmetry and enclosed spaces) for both visual perception and visual imagery. The 

―symmetry‖ features also produced the largest error rate. 

f. Discussion. This experiment was the basis for one of our evaluations. What it 

demonstrates is that visual perception and visual imagery share similar mechanisms 

and that there are some object features humans do not explicitly encode as a 

descriptive, symbolic representation. Therefore, it highlights the visual imagery 

capability of being able to reacquire these features.   

A.3 Imagery Transformations 

a. Reference. (Shepard & Metzler, 1971). 

b. Functionality. Transformation, Inspection. 

c. Task Type. On a spatial and visual spectrum, this task falls somewhere in 

between. Our hypothesis is that the spatial representation is used to perform the 

transformation, and a visual depictive representation is required to recognize if the 

two objects are the same.  

Auditory  

presentation 

of letter name 

(300 ms) 

Participants 
visualize  
(imagery)   
or perceive  
(perception) 

appropriate letter . 

A 

Participants 
hear probe 
indicating which 
property to  
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Response 
(yes or no) 

RT 
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d. Summary. Shepard and Metzler showed subjects pairs of three-dimensional, non-

standard objects and asked them to determine if the objects were the same shape 

(Figure A-3). Some pairs were identical but with one of the objects rotated at a 

different angle than another. Other pairs were mirrored reflections of one another 

so could not be brought into correspondence by a rotation. After shown a pair of 

objects, subjects pulled a right-hand lever if they thought the objects were 

congruent and a left-hand lever if they did not think they were congruent. 

Response times were measured.  

 

Figure A-3: Mental Rotation Shapes 

 

e. Results. Shepard and Metzler measured response times for each subject and found 

that the response times were linear with the rotation angle. The subjects‘ 

introspective reports claimed that in order to make the comparison they had to 

―mentally rotate‖ one of the objects. These two pieces of evidence led them to 

hypothesize that there is some sort of an imagined transformation process in 

three-dimensional space. 

f. Discussion. We are using this experiment to highlight not only the phenomenon 

of being able to rotate three-dimensional objects but also as motivation for 

transformations of quantitative spatial and visual depictive representations in 

general.  

A.4 Combining Perception and Imagery 

a. References. (Kosslyn et al., 1993; Podgorny & Shepard, 1978) 

b. Functionality. Construction, Generation, Inspection. 

c. Task Type. Visual. 
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d. Summary. Experiment originally devised by Podgorny and Shepard to measure 

the functional correspondence between visual perception and visual imagery. 

There were two experimental groups. Each experiment started by displaying a 

two-dimensional 5x5 grid to the subjects (Figure A-4a). The perception subjects 

viewed one or two English letter(s) in the grid. A visual probe in the form of one 

or more dots would appear in the grid and the subjects responded as quickly as 

possible as to whether a dot fell on the letter(s). Podgorny and Shepard measured 

response times and recorded other factors such as number of dots and distance 

(number of grids) of the dot(s) from the letter.  

The second imagery group, rather than viewing the letter(s), were 

instructed to visualize it in the grid and press a pedal when they had the letter 

imagined. At that time, the dot(s) probe appeared, and as in the first case, the 

subjects indicated their response as quickly as possible as to whether a dot fell on 

their imagined letter.   

 

F 

  

(a) Subjects saw a letter in grid (perception task), 

visualized letter based on a “script cue” (imagery 

task), or waited for „X‟ mark to be removed 

(sensory-motor task) 

(b) Subjects saw script cue, then a 

perceptually degraded upper case 

version of cue (perceptual task), and 

a degraded „X‟ (both tasks) for the 

amount of indicated time 

Figure A-4: Identify the „X‟ On / Off the Letter 

 

Kosslyn et al. (1993) extended the experiment in several ways, a few of 

which are described here. First, they used PET (Positron Emission Tomography) 

to measure the emissions from a radioactively labeled chemical injected into the 

subject‘s bloodstream. The PET data produces two- or three-dimensional images 
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of the distribution of the chemicals throughout the brain and provides an 

indication where brain activity is occurring. Second, rather than seeing one or 

more dots, subjects would see a single ‗X‘ in one of the grids (Figure A-4a). Half 

of the time the ‗X‘ fell on the letter; half of the time if fell off. Additionally, half 

of each type (on/off) was drawn near the segment of a letter that was thought to be 

imagined early in the visualization sequence. The other half was drawn closer to 

those segments thought to be imagined later. The purpose of this experiment 

variability was to test Kosslyn‘s hypothesis that humans build the image of an 

object (in this case a letter) by composing the parts, one part at a time. Third, 

Kosslyn included a control group (the sensory-motor group) that simply saw an 

‗X‘ in the grid and responded when the ‗X‘ disappeared. The purpose of this 

control group was to exclude the activated brain areas and response times that 

sense the ‗X‘ and control the motor response. 

Finally, Kosslyn et al. ran another experiment to induce the recall of visual 

memories (Figure A-4b). They hypothesized that the first task may not access 

visual long-term memory because the tasks were what they call ―attention based 

imagery.‖ In this second task, subjects in the perceptual group were shown a 

script letter, followed by the letter and the grid. Then the ‗X‘ appeared for 200 ms 

in a degraded form. In the imagery group, only the grid and ‗X‖ appeared. The 

idea was that the task would no longer be based solely on attention because the 

subjects could not just fix attention on that region. Rather, they would have to 

recall the letter and the grid from visual memory for both perception and imagery. 

e. Results. In Podgorny and Shepard‘s experiment, they found that the response 

times varied with the number and locations of the dots (whether they were on or 

off the letter) and, as expected, the response times for the imagery group were 

longer than for the perception group. However, the factors influencing the 

variance in response times had a similar affect for both perception and imagery 

leading them to conclude that perception and imagery use similar mechanisms. 

Kosslyn‘s group found subjects required less time to evaluate probes 

where the ‗X‖ fell closer to the line segments of a letter believed to be added 

earlier in the image construction process. The neurological evidence indicated 
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greater activation of visual cortex during visual imagery than during perception 

for both tasks. In addition, for Task 2 they discovered activation in other areas, 

such as the dorsolateral prefrontal cortex (DLPFC), occipital-temporal pathway, 

and parietal regions.  

f. Discussion. This experiment features the intersection between vision and imagery 

to included shared memories (visual cortex, temporal lobe, parietal lobe) and 

processing. It also serves as an example of the ability to ―perceive/imagine/re-

perceive‖ behavior. That is, imagined spatial and visual representations can 

augment visual perception to aid in the decision-making process. The grid and the 

dot/‘X‘ arrive in the visual buffer from vision and are not generated from 

imagery. The subject adds an imagined letter to this perceived scene. This is 

similar to our Scout domain where the agent augments its map by imaging 

different objects and features on it and then re-perceives the image. 

A.5 Map and First-Person Perspective Recon 

a. References.  (Mellet et al., 2000) 

b. Functionality. Construction, Inspection. 

c. Task Type. Spatial. 

d. Summary. The experiment tested the two major sources of information to build a 

topographic representation of an environment, actual navigation within the 

environment (route perspective) and map learning (survey perspective). The 

experimenters used positron emission tomography (PET) to compare the neural 

substrate of the topographic representation built from these two modes.  

Mellet et al. broke subjects into two groups: a ―route perspective‖ and a 

―survey perspective‖ group. The experiment had three phases:  (1) learning, (2) 

training, and then (3) testing. During the learning phase, the ―route perspective‖ 

group walked through a park they had never seen before (Figure A-5). An 

instructor led the walk by taking subjects to seven key landmarks (statue, tower, 

lake, etc) in the order they later would be expected to recall. After the instructor 

led iteration, the subjects repeated the walk two more times following the same 

path.  
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The ―survey perspective‖ group‘s learning phase consisted of studying a 

map of the park with the same landmarks annotated on the map as seven different 

colored dots. A path linked the dots. Experimenters then ran subjects through a 

series of seven slides showing each landmark in the same order that had been 

presented to the walking group. The experimenter told the subjects the color of 

the dot on the map that represented the landmark so the subjects could associate 

the dot to the landmark. To insure the subjects learned the map, they were 

required to pinpoint each dot location on a blank map at the end of the learning 

phase. 

 

Figure A-5: Park Map Used in Mellet et al. Experiment 

 

During the training phase (3-4 hours before the testing phase), the route 

perspective group trained on a mental navigation task by being presented with two 

landmark names ("gas station," "phone box") and then were instructed to visualize 

the walk between the two locations by mentally simulating it. When the subject 

imagined their ―arrival‖ at the second location, they pressed a key. The map group 

similarly trained on the mental navigation task by visualizing the map as 

accurately as possible including the seven dots. They were then presented with 

two dot colors (―red,‖ ―blue‖), and had to imagine a laser dot following the path 

segment on the original map between the two dots. Once the second dot was 

reached, the subject pressed a button triggering the release of the next pair of dots. 

The training consisted of three sessions with each session including the mental 
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navigation between five pairs of landmarks. Path segment length varied between 

48 and 172 meters. During the testing phase, the experimenters administered a 

PET scan while the subjects in both groups were either (1) resting with eyes 

closed or (2) mentally navigating as described above. 

e. Results. The right hippocampal and intraparietal sulcus were active in both groups 

indicating the spatial imagery component of the task. There was no activation 

observed in the visual cortex. 

f. Discussion. These two different tasks highlighted differences in encoded material 

(2D vs. 3D) and task demands (egocentric vs. allocentric view). However, both 

showed similar activation. Hippocampus is associated with what we call episodic 

memory indicating possible interaction between the imagery system and episodic 

memory. Task properties included (1) recall of spatial locations and landmarks, 

(2) maintenance of spatial relationships in the scene, and (3) mental simulation of 

displacement from one location to the next. The experiment has some similarities 

with the Scout domain as the agent has to imagine an enemy‘s current location by 

simulating its movement. 
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Appendix B 

 

 

Algorithms 

 

 

 

This appendix describes specific algorithms used for detecting curves and manipulating 

depictive representations. For the purposes of this appendix, an image, I, consists of a 

spatial domain X and an F-value set. X is a topological space consisting of points and the 

topology providing the notion of connectivity. For example, a two-dimensional point, x, 

is described as (xi,yi) where xi and yi describe the location of the point in a two-

dimensional space. The graphical representation of a point set, X = nm ZxZ    , is shown in 

Figure B-1. An F-value set is a set of possible values together with a finite set of 

operations. In this discussion, we are concerned with integer and real (float) value sets. 

The image, I, is then represented by a data structure I = s and an element of I, (x, I(x)) is 

called a picture element or pixel. The first coordinate, x, is the pixel location and the 

second coordinate, I(x), is the pixel value of I at location x (Ritter & Wilson, 1996). 

 

Figure B-1: Point Set X = nm ZxZ      
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B.1 Hough Transform 

To detect lines and curves in an image, we use the Hough transform (Mat Jafri  & Deravi 

1994; Olson, 1999; Ritter & Wilson, 1996). The Hough transform is a ―voting‖ algorithm 

that maps edge points in an edge-detected image to parameters in a parameter space. That 

is, given an edge point, x from the edge point-set, E; a set of parameters, Ω, that 

describes the curve; and either an analytical function, f, or a lookup table that 

parameterizes the curve; the Hough transform, h, is described mathematically as 
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Each edge point in the edge-detected image has an opportunity to ―vote‖ on one 

or more sets of parameters. The algorithm collects votes in an array of counters, called 

the accumulator or vote array. The array is a discrete partition of a continuous 

multidimensional space spanning all feasible parameter values defined by either the 

analytical equation or a shape lookup table. Larger counts in the vote array indicate a 

higher probability that the parameter indices of the array are the parameters of the shape 

in the image. A threshold algorithm must determine what set of parameters, if any, are a 

representation of the sought-after shape. Computer vision researchers have used the 

Hough algorithm to detect lines, circles, ellipses, and other non-analytical shapes that 

have an associated lookup table describing the shape. 

There has been little published on using the Hough Transform to detect parabolic 

curves, but it appears to be a good fit for finding general curves in any orientation. We 

use Mat Jafri and Deravi‘s (1994) algorithm and extend it to detect false positives. We 

can define a parabola as a locus of points equidistant to a fixed point called the focus, F, 

and a fixed straight line called the directrix, d. Figure B-2 shows a parabola in its 

―canonical‖ form with its vertex, (x0,y0) at the origin. Its focus, F, is on the x-axis a 

distance, a, from the origin, and its directrix, d, is parallel to the y-axis at a distance, a, 

from the y-axis. This canonical form of a parabola has an equation of 
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2                                                                       (1) 

where a represents the length between the focus and the vertex. In the canonical form the 

focal point is located at (a,0), and the focal length, a, defines the "curvature" or the width 

of the curve. The default value for a given the equation x = y
2
 is 0.25. As a approaches 0 

the parabola becomes "skinny" to where the two ends would eventually converge into a 

line. As the focal length approaches infinity, the parabola widens. At infinity the curve 

straightens into the line, x = 0 (the y-axis).   

 

 

Figure B-2: Parabola in Canonical Form 

 

Figure B-3 shows a parabola in its general form with the vertex translated (x0 y0) 

from the origin and a counterclockwise angle of rotation, Θ, from the x-axis. We can 

describe a translated parabolic curve without rotation as the following equation: 

2

0 )()(4 yyxxa o                                                                     (2) 

When we apply the angle of rotation equation (2) becomes the more generalized 

equation: 
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Figure B-3: General Parabola 

 

If we then differentiate y with respect to x in equation (3), we obtain the following 

equation: 
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Substituting (4) back into (3) results in the equation: 
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Simplifying the equation: 
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Equation (5) serves as the analytical function, f, which we use to determine the possible 

set of parabolas where a particular edge pixel may fall. The parabola is parameterized by 

Ω = (x0, y0, Θ). To calculate the slope of the line tangent to the parabola at a pixel edge, 

p, (dy/dx in equation (4)) we use the edge gradient information (Figure B-3). The 

gradient is determined by,  
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where 

gx = edge gradient in the x direction 

gy = edge gradient in the y direction 

Φ= orientation of the edge normal vector 
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λ = orientation of the edge direction vector  

dy/dx = slope of the line tangent to the parabola at a point, p. 

 

Each pixel in the edge image over a certain threshold votes for all the possible 

parabolas (defined by the parameters) constrained by the analytical function in equation 

(5). Parabolas are then ―peaks‖ in the parameter space. We use a simple threshold to 

calculate a peak. For each possible parabola detected, the algorithm must also maintain 

the calculated focal length, a,  for the parabola ―peak‖ where ―peak‖ is defined as the 

edge pixel furthest from the parabola vertex. Again, the focal length determines how 

narrow or wide the detected parabola is.  

We add a post-processing step to remove false positives and consolidate several 

similar detected parabolas. The false positive parabolas are the result of discretetization 

errors (assumption that each edge pixel center is the center of the pixel) and localization 

errors. Localization errors result either when the parameters of a curve do not receive 

votes from edge pixels that are a part of the curve or because the discretization errors 

causes a single bin in the vote/accumulator array to receive a large number of votes from 

edge pixels that cannot lie on the same curve. The assumption is that the bin size is 

sufficient to receive the votes for parabolas of interest but small enough not to receive 

votes from false positives (Olson, 1999).  Because of this induced error, we post process 

the parabolas by ―walking the parabola‖ a few pixels in either direction from the vertex to 

make sure there are a sufficient number of edge pixels on the parabola to classify it as a 

curve.   

The general algorithm follows: 

1. Convert the source image to a grayscale image 

2. Use an edge detector (we used a rotation invariant kernel mask) 

to find the set of edge pixels in the image along with their 

associated gradient information in both the x and y directions (gx, 

gy). 

3.  For each edge pixel 

a. Calculate the edge slope, dy/dx, according to equation (6) 

b. Iterate through some fixed rotation angle, Θ, from 0 to π by 

some step size, s 

1. Iterate through each possible x0 (x coordinate of 

possible vertices) 

a. Calculate y0 according to equation (4) 
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b. If (x0 ,y0) is an edge  

1. Transform to canonical form (zero degrees of 

rotation from the x-axis with the vertex at the 

origin). 

2. Determine actual angle (angle may be Θ + π) 

3. Determine focal length, a, based on equation (1) 

4. If the focal length is within constraints (i.e. not a 

straight line and the parabola has an edge pixel 

opposite the current edge pixel), then cast a vote for 

the curve parameters (x0 ,y0, Θ). If the current pixel 

is the ―peak‖ pixel, then record its focal length for 

these parameters. 

4.  Post process to remove any false positives. 

    

Parameters: 

 amin  = 5 

 amax = 40 

 vote threshold = 340 

 step size, s = 5 degrees (0.087 radians) 

 

Although the representation used for detecting curves is ―depictive,‖ the Hough 

transform is a ―sentential‖ algorithm. That is, the algorithm detects curves by fitting the 

representation to analytical algebraic equations. One could argue that it is ―biologically‖ 

inspired since it is highly parallelizable with a short dependency tree. We could 

parallelize an iteration through the set of edge pixels and angles of rotation, as each edge 

pixel vote is independent of the others. The current implemented algorithm is 

significantly slow, )(
m

seO


, where e is the number of edge pixels in the image, s is the 

angle step size, and m the width of the image in pixels. We may obtain speedup using 

randomization and decomposition as described in (Olson, 1999) and implementing with 

multiple processors. 

B.2 Depictive Manipulations 

Some of the VBManipulator‘s (Figure 6-14) processing units are implemented as a pixel-

level rewrite system (Furnas, 1990, 1991; Furnas et al., 2000; Yamamoto, 1996). Unlike 

sentential algebraic algorithms, such as a Gaussian filter or the Hough transform that take 

advantage of the geometric properties of the depiction, this type of processing takes 

advantage of the topological structure and color of a depictive representation. This 
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section will discuss our specific implementation details of this type of processing and the 

rewrite rules used in the experiments.  

A pixel-level rewrite system has a set of depictive rules and a shared image. 

Similar to a production system, the depictive rules have a left-hand side (LHS) and a 

right-hand side (RHS) but rather than predicate symbols, the LHS conditions and RHS 

actions are visual depictive representations. The color of each LHS pixel and their spatial 

arrangement, or shape, determines a match rather than the syntactic structure of the 

symbols. Figure B-4 shows an example of two depictive rules. The top rule is a 2x1 rule 

stating, ―if there is a black pixel adjacent to a gray pixel, then change the gray pixel to a 

white pixel.‖ Similarly, the bottom rule is a 2x2 rule that says, ―if there is a black pixel 

diagonally adjacent to a gray pixel, then change the gray pixel to a white pixel.‖ The 

asterisks represent wildcard values where the processing ignores those pixel values in the 

determination of a match. Note that ―color‖ simply implies that the pixel has an integer 

value (F-value). In addition to the orientation shown, a rule may specify that the 

processing also check for matches at 90, 180, and 270 degrees or for reflection. For 

example, the second rule, rotated 90 degrees counterclockwise matches a pattern in the 

image where there is a black pixel in the lower right corner and a gray pixel in the upper 

left corner. The RHS action changes the upper left pixel to white.   

 

 

Figure B-4: Pixel-level Rewrite Rules 

 

The processing iterates over the image, searching for a match of any rule‘s LHS 

pattern. If there is a match, the RHS action rewrites the appropriate pixel(s). Processing 

terminates when there are no rules matching a pattern in the image. To achieve control, 

each rule has a priority associated with it so if there are multiple matches in a particular 

pixel neighborhood, then the rule with the highest priority fires. Although the matching 
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and modifications are local in nature and extend no further than a 3x3 neighborhood in 

our particular algorithms, the overall effects of the manipulations have global 

consequences. The pixel rewrite model used in this first implementation has some details 

that might not be biologically reasonable (e.g., global conflict resolution with only one 

rewrite proceeding at a time), its essential nature of computation by iterated local 

transformations does not seem at all beyond the realm of neuro-biological possibility. 

In order to integrate the pixel-level rewrite rules with the Soar+SVI architecture, 

we made the following three extensions. Yamamoto (1996) also investigated some of 

these extensions. First, one or more depictive rules are encoded in Soar as operator 

elaborations
30

 (Figure B-5). When Soar selects the operator for application, the depictive 

rules are added to Soar‘s output-link. The VBManipulator receives the rules, and 

specialized processing units interpret and execute the matching and firing of rules. As 

shown in Figure B-5, each depictive rule has a name (for debugging), a priority, number 

of pixels (to indicate if it is a 1x1, 1x2, 2x2, or 3x3 rule), and any other rotation angles to 

check for a match (90, 180, 270). Rules may also have reflections associated with them 

although we did not use them in any of our tasks. 

The second extension we made is to distinguish processing between three types of 

rules. Each rule is a member of a rule-set where all rules in a rule-set are constrained to 

be of the same type. The rule-set type signals to the VBManipulator the form of 

processing, and the rule-set number serves as a sequencing method (i.e. process rule-set 

0, then 1, then 2, etc). We define three types of rule-sets: Threshold, Pattern, and Mark. 

Threshold rule-sets are rules with either a 1x1 or a 1x2 image on both the LHS and a 1x1 

image (i.e. 1 pixel) on the RHS. The VBManipulator processes these rules by making one 

pass through the image and ―thresholding‖ each pixel based on the LHS value where a 

1x1 LHS signals an exact match and a 2x1 LHS image indicates a minimum and 

maximum range of values.  

This functionality is different from a pixel-rewrite system in that rather than 

specifying a rule for each possible pixel value requiring change, a 2x1 LHS in a threshold 

rule specifies a range of pixel values where the values are on an ordinal rather than a 

nominal scale. We found this functionality useful in the Scout domain for marking known 

                                                 

30
An operator elaboration is a type of Soar production or rule. 
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obstacles such as buildings and ―no-go‖ terrain that could be defined roughly as a range 

of pixel values in the original image. We think a similar type of rule-set based on location 

may also be useful (e.g., we know the enemy is maneuvering through locations in a 9x9 

region centered on location (x, y) even though it is considered impassable). However, we 

have not implemented this type of rule.  

 

 

Figure B-5: Example Soar Operator Rule (in English format) for Depictive Manipulations 

 

The second type of rule-set is the pattern. The pattern rule-set processing is 

similar to the pixel-rewrite system (Figure B-4). The general algorithm for processing the 

rules is:
31

 

 

                                                 

31
Much more efficient algorithms are possible (Furnas & Qu, 2002), but their implementation is rather 

complex and not the main thrust of this research. Their increased efficiency would only strengthen the 

claims of this research. 

while (!quiescence) 

quiescence = true 

 for each pixel in the image 

    get the 3x3 neighborhood  

     check for a match in order of rule priority 

    if match then quiescence = false 

If there is an imagery operator proposed to transform a visual buffer layer with a set of depictive 

rules and there are distance-field-flood color layers then elaborate the operator as follows: 

   rule: 

 name: <rule-name>             # for debugging 

rule-set: <rule-set-number>  # 0 – N 

type: <rule-type>             # Threshold,Pattern,Mark 

 priority: <rule-priority>     # priority within this rule-set 

 number-of-pixels: 1,3,4,9    # 1x1, 1x2, 2x2, 3x3 

 rotate: 90 180 270            # rotations to check for match 

 lhs:              # Left-hand side (lhs) 

      pixel:                  # one for each pixel (2, 4, or 9) 

          number: 0 - 8         # pixel number based on its location in the 1x1, 2x1,  

      # 2x2, or 3x3 LHS image 

           type: exact min-value max-value wildcard # type of match 

           vector: 

  red:   <red-value>    # 0-255 

  green: <green-value>  # 0-255 

  blue: <blue-value>    # 0-255 

 rhs:              # Right-hand side (rhs) 

     similar to lhs 
 

Legend: 
        #              Comment 
 <var-value>   Variable 
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The algorithm asymptotic run time is O(nr) where n is the number of pixels in the image 

and r is the number of rules. If n or r is large, then we pay a computational cost. We 

currently have no constraints imposed on the number of rules (r). However, by focusing 

the computations on a subset of the image, we can keep n small so our algorithm is 

effectively linear in the number of rules.  

One way to keep the image size small is a consideration of our third type of rule 

processing, the mark. Again, processing is similar to the pixel-level rewrites in that the 

local neighborhood of the pixel determines activation. However, rather than processing 

the entire image, the processing starts at a location specified in the rule-set header (not 

shown in Figure B-5) and only considers the local 3x3 neighborhood of the current pixel. 

The rule-set may specify location as a pixel location or a visual object in the Object Map 

that is then projected onto its 2D pixel location. For this type of rule, the processing only 

considers the local 3x3 neighborhood of the current pixel rather than the entire image. 

The processing proceeds in a fashion similar to pixel rewrites in that if there is a match in 

the current pixel neighborhood, the pixel is marked according to the rule RHS. For mark 

rules, the RHS always specifies a modification of the center pixel. The next 3x3 

neighborhood considered for matching is in the direction of the current match.  

For example, in Figure B-6, if the current pixel is white and its diagonal pixel is 

gray (in any direction), then the current pixel is marked orange, and the processing shifts 

to the gray pixel. If the rule has a match in more than one orientation, then the processing 

records any other matching pixel locations and pushes them on a stack. After processing 

in the chosen direction is exhausted, the pixel locations on the top of the stack are 

iteratively popped and, if not already marked,
32

 they are processed. For these types of 

rules, their depictive specification automatically includes all rotational directions (i.e. 90, 

180, 270), and they are constrained to a 2x1 or 2x2 diagonal rule. 

 

 

Figure B-6: Mark Type Rule 
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This situation may occur when processing a closed region. 

Shift processing to this 
cell’s 3x3 

neighborhood 
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* 

* 
* 
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A mark rule-set is also distinguished from a pattern rule in that in addition to 

performing the pixel rewrites, the VBManipulator creates a symbolic shape object and 

adds it to the current scene‘s Visual Feature Set
33

 in VS-STM. The shape object includes 

an emergent-id, the marking color, and the set of points defining the shape. We found this 

rule-set type useful for marking the hypothesized enemy paths in the Scout domain and 

propose that this form of processing is useful for marking salient objects by the Saliency 

Inspector during bottom-up visual processing. 

The final extension we made to the pixel-rewrite system is to create an attention 

window in order to keep the image size (n) small. Since the depictive representation in the 

Visual Buffer contains more information than can be processed, an attention window 

focuses the processing effort (Kosslyn, Thompson, & Ganis, 2006). In our 

implementation, the attention window is a fixed, m x m region of the image, where m is a 

factor of two. The size of the attention window and its shift direction is task knowledge 

transmitted from Soar to the VBManipulator every decision cycle in which the 

manipulation is active.  

For example, in the Scout Domain the attention window is set to 64x64 pixels. 

During the distance field flood, the attention window starts centered at the key terrain. 

After the flood completes in the current attention window, a Soar operator tells the 

VBManipulator to shift the window towards the enemy map-icon. Since the visual object 

of the enemy map-icon is in VS-STM, the VBManipulator simply looks up the visual-

object‘s scene graph node, determines its location, and then projects that 3D location to a 

2D pixel location on the image. It then ―shifts‖ the attention window a fixed distance in a 

straight-line towards the provided location based on the attention window dimensions and 

a shift factor sent from Soar. For example, if the attention window is 64 x 64 and the shift 

factor is 0.25, the shift is 64 * 0.25 = 16 pixels towards the given location. Note that this 

is an internal shift of the cognitive focus. The agent‘s ―head‖ is not turning. We use the 

rectangle shape for simplicity and its amenability to the rest of Soar (of importance 

because of the strategic role of attention allocation). Furnas and Qu (2003) have also 

                                                 

33
If the marked shape is a subset of a specific object (e.g. the enclosed space of the letter A), then it is 

added to the Visual Feature Set of the corresponding Visual Object in VS-STM. 
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explored the notion of an attention window but where the processing is restricted to 

arbitrarily shaped regions rather than a fixed rectangular region. An interesting extension 

would be to explore using this more depictive (rather than spatial) notion of attention 

control. 

As an example of how an agent uses pixel-level rewrites to infer new visual and 

spatial properties, consider the following rules from the Alphabet experiment. To find 

enclosed spaces in a letter, there are two basic pattern-matching rules (Furnas, 1990, 

1991; Furnas & Qu, 2003). Blob reduce modifies a 2x2, 2x3, or 3x2 blob by removing 

the center pixel (Figure B-7a). Nibble tips reduces columns or rows of pixels in the image 

by removing the end of the column or row segment (Figure B-7b). Using these two basic 

algorithms, the general algorithm for finding enclosed spaces is as follows (sequenced 

using rule priorities): 

 

Figure B-8 shows the letter B before and after processing using these manipulations. 

 

  

(a) Blob Reduce (b) Nibble Tips 

Figure B-7: Enclosed Space Pixel Rewrite Rules 
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1. Reduce 2x2 blobs 

2. Reduce 2x3 or 3x2 blobs 

3. Nibble Tips 

4. If there is a remaining shape then there is an enclosed space. 
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Figure B-8: The Letter B Before and After Pixel Rewrites  

 

As another example, consider a task from the scout domain. The agent may 

analyze its team‘s position by imagining a hypothesized path from the current location 

(source) of each enemy vehicle to a key terrain location (sink). After the imagined path(s) 

are marked for each enemy/key-terrain pair, the agent imagines the team‘s view to 

determine if they have adequate coverage of the paths. The analysis should take into 

account the agent‘s knowledge about the surrounding terrain and known obstacles. A 

possible solution is the following: 

 

 

 

  

(a) Distance field 

flood 

(b) Mark Path 

Figure B-9:  Example Use of Pixel Rewrites from Scout Domain 

 

This task knowledge can be encoded as depictive rules using the following three 

rule-sets (Figure B-10). The first rule-set, shown in Figure B-10a in order of rule priority, 

1. Mark all known obstacles and ―slow-go‖ terrain on the map with a color 

(yellow) by applying a set of known threshold values. Mark all other pixels 

gray. 

2. Grow an iso-distance contour field avoiding any previously marked barriers 

(Figure B-9a). 

3. Walk the contour field from source to sink, marking the path along the way 

(Figure B-9b).  
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is a set of threshold rules to mark the known obstacles, steep terrain, and open terrain. For 

example, the agent marks known obstacles in green on the original depiction so the top 

rule changes those values to yellow, signaling an obstacle or barrier. Likewise, the middle 

two rules mark the steep and open terrain as yellow obstacles based on pixel ranges 

determined from an off-line analysis. The last threshold rule signals that any pixel in the 

image not meeting the above criteria should be marked gray to facilitate building the 

distance field flood.  

 

  

(a) Obstacles (b) Distance Field Flood 

 

(c) Mark Path 

Figure B-10: Depictive Rules for Scout Domain 

 

The second rule-set, shown in Figure B-10b, are a subset of the rules used to 

create a temporary iso-contour distance field flood starting from the ―purple‖ sink (i.e. 

key terrain). These rules create alternating layers of four colors: purple, black, white, 
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green (not shown), purple, black, etc around the sink one pixel layer at a time (Furnas et 

al., 2000). Figure B-10b shows the rule for layer 0 (purple) to layer 2 (white). The even-

to-odd layers match both orthogonal and diagonal pixels while the odd-to-even layers 

match only orthogonal pixels. Four colors are sufficient to preserve the topological shape 

around the yellow obstacles. The processing fills in the gray background pixels with the 

contours. The end effect is a downhill field gradient that has both distance and directional 

information that serves as an attractor for the subsequent, path-marking phase. 

The final rule-set, shown in Figure B-10c, are rules that mark the path starting 

from the red source (i.e. enemy map icon) to the purple sink (i.e. key terrain). The rules 

take advantage of the direction and distance information of the iso-contor distance field 

to find the shortest path from source to sink that avoids the yellow obstacles. Figure B-

10c illustrates the first few rules that fire, marking the path orange (assuming the red 

source is initially adjacent to a white distance field layer—other rules are required for the 

remaining initial possibilities). Note that once the top rule fires, moving the processing 

from the source (i.e. red) to a distance field color (purple, black, white, or green), the 

rules are simply the opposite from the rules in Figure B-10b used to create iso-contour 

field. Each layer ―attracts‖ the path from the previous layer while avoiding obstacles. 

Orthogonal directions are preferred (i.e. have a higher priority) than diagonal directions. 

 There is a default rule (not shown in the figure) that fires when there is not a 

match on the current pixel, and the current pixel is not purple (i.e. not the sink). In the 

Scout domain, this situation may occur at the start or sometimes on the border of an 

attention window when the current pixel being processed is yellow, or an obstacle. For 

example, the enemy map-icon may be located on a piece of terrain that the agent thought 

was ―no-go‖ terrain. In this situation, the default rule behavior is to move towards the 

sink based on the annotated default direction preference of the rule. 
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Appendix C 

 

 

Software Engineering and Implementation 

 

 

 

The following appendix describes the software design and implementation in enough 

detail to give the reader an understanding of the major software components, classes and 

their associations, and the symbolic representations in Soar‘s working (i.e. short-term) 

memory. We will start by listing the software libraries and their dependencies. Then, 

similar to the architectural discussion in Chapter 6, we will discuss SVI memories and 

processes for spatial and visual imagery processing (Figure 6-1) using the Unified 

Modeling Language (UML) diagram notation. As outlined in the architectural view, 

connections between components imply both data and control constraints. We model 

these constraints as UML associations (aggregate, composition, inheritance). The last 

section describes the relevant Soar structures. 

For performance, functionality, and usability reasons, the system is a layered 

architecture with the mathematical functionality and image processing written in the C++ 

programming language and the software interfacing SVI, Soar, and its debugging tool, 

the SoarJavaDebugger, written in the Java programming language. We use the following 

open source software packages: CImg (Tschumperlé 2008), OpenGL (Shreiner et al., 

2006) and the corresponding LWJGL ("Lightweight Java game library (LWJGL)", 2008), 

Soar ("Soar", 2008), SWT ("The standard widget toolkit (SWT)", 2007), SWIG (Beazley 

et al., 2002), and Wild Magic (Eberly, 2005).  Wild Magic provides the basic 

mathematical package and scene graph support, CImg has the image data structure and 
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algorithms, OpenGL is a software interface to graphics hardware, and SWT is a toolkit 

for graphical user interfaces. We use the Soar Markup Language (SML) to interface Soar 

with SVI and SWIG to generate the wrapper code for bridging C++ and Java code. 

Figure C-1 and Figure C-2 illustrate the major software components and dependencies. 

 

 

Figure C-1:  SVI Libraries 

 

 
Figure C-2: Component Dependencies 
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C.1 Class Diagrams 

The VisualObject is a basic class in the system. It is composed of zero or more 

VisualObjects, VisualFeatures and SpatialProperties (Figure C-3). Along with its 

instance-id, and if ―recognized,‖ visual-id, a VisualObject has a boolean flag indicating 

whether or not it is perceived or imagined. A VisualFeature may be a Color or a Shape 

and has a unique emergent-id. A SpatialProperty is an instance of Direction, Distance, 

Orientation, Topology, Geometry, or Size and has a relative-instance-id or –emergent-id 

and perhaps a base-instance-id or –emergent-id depending on the type (i.e. unary, binary, 

tertiary) of spatial property and the VisualObject(s) or Shape(s) defining it. Visual-Spatial 

short-term memory (Figure 6-6) is simply an instantiation of a VisualObject that 

represents the current scene. The VisualBuffer, ObjectMap, and VisualLTM share this 

VisualObject, effectively binding the ―what‖ and ―where‖ pathways.  

 

 

Figure C-3: Visual Object Class Diagram 

 

Within the Java SVI component, a SoarAgent class serves as an object adapter for 

the SML Agent and Kernel classes (Figure C-4). A SoarAgent has zero or more 
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ISoarComponents (‗I‘ is the Hungarian notation for ―interface‖) that are either memories 

(i.e. VisualLTM) or processes (i.e. an Inspector). The SoarAgent class defines two inner 

classes, InputLink and OutputLink, each consisting of a collection ISoarInputLink and 

ISoarOutputLink objects. During initialization, each ISoarInputLink and 

ISoarOutputLink object in the system registers with the SoarAgent‘s respective InputLink 

and OutputLink objects for the commands it handles. During Soar‘s output phase, the 

OutputLink object parses Soar‘s output-link and, for each type of command, calls 

ISoarOutputLink object responsible for parsing and executing the specific symbolic 

structures. Likewise, prior to the input phase, the InputLink object calls each of the 

registered ISoarInputLink objects to create or modify symbolic structures on Soar‘s 

input-link.  

 
Figure C-4: Soar Agent Class Diagram 

 
Every SVI component derives from either an AgentMemory or AgentProcess class 

that in turn derive from the AgentComponent class (top of Figure C-5). AgentComponent 

encapsulates basic information and behavior that all of the processes and memories 

require such as its type, its Soar agent, and functionality for gathering run-time statistics. 
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AgentMemory includes basic memory behavior, such as storing and retrieving, posting 

inspector results, and notifying listeners of those results. AgentProcess simply serves as a 

placeholder to distinguish between the two types of components using run-time type 

information. 

 

Figure C-5: Visual Buffer Class Diagram 

 

The VisualBuffer derives from AgentMemory and contains attributes for its 

height, width, and background color (Figure C-5). It encapsulates the depictive 

representation that the VisualBufferRefresher creates by rendering the scene to a display 

canvas (for debugging). The VisualBufferRefresher reads the pixels from the graphic 

processing unit (GPU) pixel buffer into a CImg (Tschumperlé 2008) data structure by 

calling the VisualBuffer‘s CreateDepictiveRepresentation function. For efficiency and 

functionality purposes, the pixel buffer is read only when the agent issues a generate 

command. Otherwise, the VisualBufferRefresher renders the image to the display canvas 

only. The image read from the GPU is the base visual-buffer layer (vb-layer 0). The 
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VisualBufferManipulator and inspection process create other images from the base image 

as required and store them temporarily in the VisualBuffer as a set of CImg structures. 

All agent components written in C++ for SVI are extended in Java and have a 

corresponding Soar<ComponentName> class (e.g. SoarVisualBuffer). These classes 

serve three purposes. First, they implement the ISoarComponent (Soar Component 

Interface) providing them with the interface to register as components of the SoarAgent 

object (Figure C-4 and Figure C-5). This requirement is for ownership purposes so that 

the SoarAgent object maintains responsibility for the memory allocation of its 

components. Second, some of the Soar+SVI classes interface with Soar‘s input and/or 

output links. For example, the SoarVisualBufferRefresher and 

SoarVisualBufferManipulator implement the ISoarOutputLink interface. This standard 

interface provides each component with the functionality to receive commands (i.e. 

generate, transform) from Soar. Third, the Soar+SVI classes may provide additional 

functionality specific to their Java implementation. For example, the SoarVisualBuffer 

implements an SWT OpenGL drawing canvas (GLCanvas) that is specific to Java 

facilitating the integration of SVI with Soar‘s debugging tool, the SoarJavaDebugger 

(Figure C-6). The SoarVisualBufferRefresher implements the necessary threading and 

Lightweight Java Graphics Library to draw a scene to the GLCanvas.  

 

 

Figure C-6: SoarJavaDebugger with SVI Interface 
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VisualLTM (Figure C-7) is a hash table indexed by a visual-id. Each VisualEntry 

includes a visual-id, a scene graph representing the object, and an association with other 

entries containing the object‘s parts. To assist construction, the VisualEntry class stores 

basic statistics concerning each object‘s vertices (e.g. minimum and maximum vertices). 

VisualLTM also provides an interface to load and store scene graph objects from a file 

system. SoarVisualLTM extends VisualLTM so it can register as a Soar component.  

 

 
Figure C-7: Visual Long-term Memory Class Diagram 

 

Every memory has one or more IMemoryListener interfaces associated with it. 

For VisuaLTM there is a C++ IVisualLTMListener and a corresponding Java 

SoarVisualLTMListener (Figure C-7). The SoarVisualLTMListener implements the 

ISoarInputLink interface, enabling it to communicate with Soar‘s input-link. After 
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recognition of a visual object, manipulation of the VisualBuffer, or inspection for visual 

features, the SoarVisualLTMListener receives a signal from the appropriate process. 

During the subsequent input phase, the SoarVisualLTMListener creates the appropriate 

symbolic structures on Soar‘s input-link from the information in VS-STM.  

The ObjectMap and IObjectMapListener have a similar design to VisualLTM and 

IVisualLTMListener (Figure C-8). The ObjectMap has a Node representing the current 

scene graph and a View that represents the location and direction of the agent‘s 

viewpoint. The ObjectMapConstructor and ObjectMapManipulator have direct access to 

the ObjectMap so that they can construct and manipulate the scene graph or change the 

ObjectMap‘s viewpoint. Their corresponding Soar class definitions implement the 

ISoarOutputLink interface in order to receive commands (construct, transform) from 

Soar. The SoarObjectMapListener communicates spatial query results stored in VS-STM 

by creating symbolic structures on Soar‘s input-link. 

 
Figure C-8: Object Map Class Diagram 
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An InspectorManager object maintains a reference to all registered 

VisualSpatialInspectors in the system (Figure C-9). These processes inspect the 

VisualBuffer or ObjectMap in response to an automatic bottom-up query or top-down 

imagery inspection. There are three types of VisualSpatialInspectors. The first is a 

SaliencyInspector that is responsible for initially marking and attempting to recognize 

objects in the perceived scene. To facilitate recognition, the saliency inspector through 

the InspectorManager may call the other two types of inspectors, VisualFeatureInspector 

and SpatialPropertyInspector. Both of these classes have several derived, concrete 

classes implementing the algorithms for a specific type of visual or spatial property (i.e. 

line, enclosed spaces, direction, topology, geometry, etc.).  

 

 

Figure C-9: Inspector Class Diagram 
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The SoarInspectorManager (bottom of Figure C-9) is responsible for parsing the 

inspect command from Soar and initiating the inspection process within SVI. When the 

SoarInspectorManager receives the command to inspect, it first creates an 

InspectorQueryResult object (top right of Figure C-9) that encodes the specific query and 

stores the collected results. The InspectorQueryResult has a query-id (a unique symbol 

generated by Soar prior to the inspection for tracking purposes), an optional set of query 

parameters (e.g. parameters for Hough transform, attention window size, query 

constraints) and one or more VisualSpatialProperties. The VisualSpatialProperty is an 

abstract base class for the VisualFeature, VisualObject, and SpatialProperty classes 

previously discussed (Figure C-3). 

After marshalling the query by creating the InspectorQueryResult structure, the 

SoarInspectorManager calls the inspect function of the base class. Based on the run-time 

type information of the first visual-spatial property in the query, the InspectorManager 

determines and dispatches the appropriate VisualSpatialInspector by calling its 

corresponding Inspect function (Figure C-9). The InspectorManager knows what 

inspector to dispatch because during initialization, each inspector registers the type of 

visual-spatial property it is capable of processing.  

The first inspector called during a query becomes the lead inspector and is 

responsible for posting any results to VS-STM. If during the inspection, the lead 

inspector comes across a visual-spatial property that it cannot handle, it dispatches the 

appropriate inspector through the InspectorManager by calling the second Inspect 

function shown in the VisualSpatialInspector class (Figure C-9). This function signals to 

the called inspector to perform the inspection, store the results in the provided 

VisualSpatialProperty object, and return to the caller without posting results. For 

example, if the first visual-spatial property in a query is for the direction between two 

visual objects and after finishing the inspection, the DirectionDistanceInspector comes 

across a request for the topological relationship of the visual objects, it accesses the 

TopologyInspector via the InspectorManager and dispatches it. When the 

TopologyInspector finishes, it stores its results and returns control to the 

DirectionDistanceInspector. The DirectionDistanceInspector consolidates the results in 
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the original InspectorQueryResult structure, stores it in VS-STM, and notifies the 

appropriate memory listener that there are results waiting processing.  

C.2 Soar Symbolic Structures 

Now that we have discussed the SVI classes, we can explain within this context how 

spatial and visual imagery processing works from Soar‘s perspective. We will discuss the 

symbolic structures from the point of view of someone writing an agent. Soar‘s short-

term or working memory elements (WME) are a three-tuple (identifier, attribute, value). 

A value may be a primitive (integer, float, string) or another symbolic identifier. In most 

cases we only represent the attribute with a caret (e.g. ^attribute). If the attribute has sub-

structure, we represent it either with a new-line and indentation or by connecting it with a 

dot to its parent attribute (e.g. ^attribute.sub-attribute). Bold entries are permanent 

architectural structures. Entries shown in italics are WMEs that the system creates 

(currently through productions) in response to input or a command. Normal text entries 

are working memory elements (WMEs) the agent creates with productions (i.e. task 

knowledge). Finally, entries in <angle brackets> are items suggesting the types of values 

that might augment the existing structure. 

The imagery subsystem includes SVI and a set of Soar productions that initialize 

some working memory structures and facilitate communication with SVI through Soar‘s 

input- and output-links. We consider these productions and structures as ―architectural‖ 

rather than knowledge. The imagery system uses Soar‘s subgoaling mechanism to 

implement the imagery processing specific to the input- and output-links. Soar‘s top-state 

working memory structure has a visual-spatial working memory (vs-wmem) attribute 

(Figure C-10a). This attribute has three architectural substructures: imagery, visual-ltm, 

and visual-object-instances. The agent issues imagery commands (construct, transform, 

generate, inspect) and receives results by augmenting the imagery attribute. We discuss 

this structure in more detail shortly. When a VLTM listener informs Soar that a visual 

object has been stored in VLTM,
34

 an operator creates a visual-object structure under the 

visual-ltm attribute. Figure C-10b shows an example of a visual-object structure. Based 

                                                 

34
In the current implementation, this input implies that the visual-object scene graph has been loaded from 

the file system. 
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on input from the VLTMListener, only the visual-id and has-a attributes are initially 

present in a visual-ltm visual-object. The name is optional and added by the agent to 

assist in identifying instances of the object and associating it with other symbolic 

structures (e.g. enemy tank). The agent adds explicit visual features and spatial properties 

as it acquires them (programmed or learned). Although we implemented the visual-ltm 

structure in working memory, we assume that it is better suited for one of Soar‘s long-

term declarative memories (i.e. episodic or semantic).  

 
 

(a) (b) 

 

 
(c) (d) 

Figure C-10: Top-state Visual-Spatial Working Memory Structure 

 

The visual-object-instances (Figure C-10a) also store a set of visual-object 

structures. Unlike the structures augmenting the visual-ltm attribute, however, these 

symbols are short-lived instances of what the agent has recently perceived or imagined. 

^spatial 

      ^relative-visual-object/shape 

      ^base-visual-object/shape 

      ^base-visual-object/shape-tert 

      ^direction 

           ^qualitative above below left-of 

                             right-of  in-front-of behind  

             ^vector 

      ^distance 

            ^qualitative near far 

           ^scalar  
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           ^qualitative n nw w sw s se e ne 

           ^scalar 

     ^topology 

          ^qualitative dc ec po tpp ntpp eq 

     ^geometry 

          ^qualitative angle intersect parallel  

                             perpendicular congruent 

      ^size 

           ^qualitative small medium large 

           ^scalar 

           ^vector 

 ^visual-feature 

     ^emergent-id 

     ^color 

         ^qualitative red green blue 

         ^scalar <color-index> 

         ^vector 

             ^red 

            ^green 

           ^blue 

      ^shape  

           ^number-of-points 

           ^is-closed true false 

           ^color <marking-color> 

           ^qualitative point line curve    

                          triangle general 

 

 

^visual-object 

   ^visual-id <unique-integer> 

    ^instance-id <unique-integer> 

    ^is-imagined 

    ^has-a <visual-object-parts> 

   ^name <name-assigned-by-agent> 

   ^visual-features 

   ^spatial-properties 

 

 

^vs-wmem 

      ^imagery 

          ^command 

           ^result 

     ^visual-ltm 

           ^visual-object         

     ^visual-object-instances 

           ^visual-object         
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When the architecture first recognizes a visual object (i.e. an incoming visual-object 

structure on Soar‘s input-link with a visual-id and an instance-id), it builds a visual-object 

working memory structure under the visual-object-instances. The agent identifies the 

visual-object by associating it with its entity (e.g. the visual-object, ―S‖ is associated with 

the letter ‗S‘, the visual-object ―enemy-tank‖ is associated with an enemy entity). The 

visual-object structure contains a visual-id, instance-id, and, if the agent ―imagined‖ 

rather than perceived the object, an is-imagined attribute. The has-a, visual-features, and 

spatial-properties attributes are inherited from the visual-object‘s corresponding visual-

object structure with the same visual-id encoded in visual-ltm. The agent optionally adds 

a name.  

Subsequent observations of a visual-object do not create a new visual-object 

structure but simply match the incoming instance-id with the stored instance-id. If there is 

not a match before building a new visual-object structure, the system determines if the 

perceived object is the same as an existing visual-object based on the visual-object‘s 

egocentric location and known velocity (semantic knowledge). If the incoming visual-

object is within a certain radius (task knowledge) of an existing visual-object instance, 

the system assumes the incoming and existing visual object are the same and does not 

create a new structure. Any imagined visual-object is removed when the system switches 

from imagining to perceiving. Other visual-object instances, in theory (not implemented), 

decay over time and are removed from working memory when the current episode 

completes. 

Figure C-10c-d also shows examples of a working memory structure for a single 

visual feature and spatial property that is similar to the SVI class diagram for those 

properties (Figure C-3). This information arrives on Soar‘s input-link from either the 

VisualLTMListener or ObjectMapListener and may augment a visual-object‘s visual-

features or spatial-properties. The visual-feature attribute has an emergent-id and either a 

shape or a color sub-attribute. The color is expressed qualitatively (e.g. red, green, etc.) or 

quantitatively as a scalar or RGB vector. The shape attribute has a type (line, curve, etc.), 

number of points, a flag signaling whether or not it is closed (i.e. a region), and marking 

color. The spatial attribute describes the visual-object(s) or shape(s) involved with the 
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relative- and base-instance/emergent-ids. Except for topology and geometry, each spatial 

property may be described in qualitative or quantitative terms. 

An agent invokes the imagery system by creating a command on the 

^imagery.command structure (Figure C-11). The system augments each command with 

a unique command-id and after processing the request, creates a corresponding result 

structure with the same command-id. The purpose of the command-id is to facilitate the 

tracking of an agent‘s request with the result from the system. 

An agent composes two visual-objects or adds a visual-object or shape to the 

current scene by augmenting the ^imagery.command structure with a compose or add 

command (Figure C-11a). The command includes a spatial structure (Figure C-10d) 

signaling to SVI how to configure the visual-object/shapes. For a compose command, 

both the relative- and base-visual-objects are from the set of visual-object structures in 

the vltm structure (Figure C-10a-b). The relative-visual-object is also from the vltm 

structure for an add command, but the base-visual-object is from the visual-object-

instance structure as it is already an instance of the scene. If adding a shape as a first-

class visual-object, then the agent must either specify the shape structure with its 

corresponding emergent-id so that SVI can access its vertices, or the agent must specify a 

set of points and their connections (not shown in Figure C-10c). After processing the 

command, the imagery system creates the visual-object structure on the ^visual-object-

instances structure (Figure C-10a) and records the instantiated visual-object(s) on the 

^imagery.result.retrieved structure (Figure C-11b). To manipulate the quantitative 

spatial or visual depictive representations, an agent creates a transform-om or -vb 

structure (Figure C-11b-d). To transform a visual object in the ObjectMap, the agent 

builds the spatial structure (Figure C-10d) with the relative-visual-object as the 

transforming entity. The agent may change its imagined viewpoint by specifying 

qualitative or quantitative information. To transform an image in the VisualBuffer, the 

agent creates the transform-vb structure with the information shown in Figure C-11e. The 

vb-layer is the image to transform. If using depictive rules to specify the manipulation 

then the attention window specifies its parameters (see Appendix B.2). If the 

manipulation is of type mark, then the system records a relative-shape structure on the 

^retrieved.transform-vb structure (Figure C-11f). 



 

 184 

 
 

(a) Construct Command (b) Construct Result 

 

 

(c) Transform ObjectMap Command (d) Transform ObjectMap Result 

 

 

(e) Transform VisualBuffer Command (f) Transform VisualBuffer Result 

 
 

(h) Generate Command (i) Generate Result 

 
 

(j) Inspect Command (k) Inspect Result 

Figure C-11: Imagery Command and Result Working Memory Structures 

^imagery.result 

     ^retrieved.inspect 

          ^command-id <same-as-original> 

          ^visual-feature 

         ^visual-spatial 

  

           

 

           

 

^imagery.command.inspect 

     ^command-id <unique-symbol> 

     ^visual-object/vb-layer # visual-feature 

     ^visual-feature  

     ^visual-spatial 

^imagery.result 

     ^retrieved.generate 

          ^command-id <same-as-original> 

          ^vb-layer <generated-layer-num> 

           

 

           

 

^imagery.command.generate 

     ^command-id <unique-symbol> 

     ^visual-object-instances 

         ^add-visual-object  

         ^remove-visual-object 

^imagery.result 

     ^retrieved.transform-vb 

          ^command-id <same-as-original> 

          ^relative-shape # if mark rule 

           

 

           

 

^imagery.command.transform-vb 

     ^command-id <unique-symbol> 

     ^vb-layer <image-to-transform> 

     ^attention-window 

         ^width    <number-of-pixels> 

         ^height   <number-of-pixels> 

         ^shift-factor<between 0.0-1.0> 

         ^base-visual-object      # start location 

         ^relative-visual-object #stop location 

     ^transform  # image processing 

         ^rotate 

         ^scale 

      ^rules  #depictive manipulations 

           ^rule # See Appendix B.2      

 

^imagery.result 

     ^retrieved.transform-om 

          ^command-id <same-as-original> 

           

 

           

 

^imagery.command.transform-om 

     ^command-id <unique-symbol> 

     ^spatial <spatial-struct> 

     ^viewpoint 

          ^qualitative front/top/side 

          ^quantitative 

               ^location 

               ^direction 

               ^up      

 

^imagery.result 

     ^retrieved.compose/add 

          ^command-id <same-as-original> 

          ^relative-visual-object/shape   

          ^base-visual-object  # compose only  

           

 

 

^imagery.command.compose/add 

     ^command-id <unique-symbol> 

     ^spatial <spatial-struct> 
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An agent issues a generate command by augmenting the ^imagery.command 

with a generate attribute (Figure C-11h). The agent may create either one or more ^add-

visual-object or ^remove-visual-object attributes to specify the visual-objects it wants 

generated in the visual depictive representation. After generating the image, the system 

augments the ^result.retrieved.generate structure with the generated vb-layer number 

(Figure C-11i) to support further reasoning such as manipulation of the image or queries 

for visual features. 

Finally, the agent initiates the inspect command by creating the inspect structure 

as shown in (Figure C-11j). The ^visual-feature and ^visual-spatial structures are as 

illustrated in Figure C-11c-d. If the query is for a visual-feature, the agent must specify 

either the visual-object or vb-layer to inspect. SVI can determine a visual-object‘s 

associated vb-layer image from VS-STM (Figure 6-6). However, sometimes it is easier to 

specify the vb-layer if the agent just generated it and there are two or more visual-objects 

involved in the inspection (e.g. two lines).  

After processing the inspect command, the imagery system creates the result 

structure (Figure C-11k). In the case of spatial queries with only a single, relative-visual-

object specified in the original inspection command (e.g. what are all of the visual-

objects left-of the fork), the ^result.retrieved.inspect structure contains a ^spatial 

attribute for each pair of visual-objects satisfying the constraint. For binary or tertiary 

spatial queries (e.g. is the plate right-of the fork), the system creates a single ^spatial 

structure if the assertion is true; otherwise, the attribute will be missing. If the agent 

desires quantitative information, then in the original command it specifies the attributes it 

desires. For example, for the query ―What is the direction and distance between enemy-1 

and the key-terrain in the west,‖ the structure would look like the following: 

 

The result structure includes the values. Likewise, if the agent desires the answer in 

qualitative terms, it includes the qualitative attribute without a value, and the resulting 

structure will have the closest qualitative value.  

^imagery.command.inspect 

     ^command-id <unique-symbol> 

     ^visual-spatial 

          ^relative-visual-object <enemy-1-visual-object> 

          ^base-visual-object <key-terrain-west-visual-object> 

          ^direction.vector 

          ^distance.scalar 
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The imagery system uses Soar‘s subgoaling mechanism to implement spatial and 

visual imagery processing. When an agent augments the top-state imagery attribute with 

a command, the system proposes an imagery operator. If the operator is selected (it may 

not be selected because of current, more immediate task demands), then an operator no-

change impasse occurs and Soar creates an imagery state structure. Imagery processing 

commences in this state and remains active until either the corresponding result structure 

of the command is created or another operator is selected in a superstate (e.g. in the Scout 

domain an operator to attend to the teammate‘s report). 

The imagery subgoal includes operators to compose, add, transform-om, 

transform-vb, generate, inspect, and attend-to-input-link. With the exception of the 

transform-vb, each imagery command requires two decision cycles. The first decision 

cycle involves selecting the operator associated with the agent‘s imagery command and 

sending it to SVI by augmenting Soar‘s output-link. The second decision cycle attends to 

the results returned by SVI on Soar‘s input-link and creates ^vs-

wmem.imagery.result.retrieved structure in the top-state. For the compose and add 

commands, this second decision cycle (attend-to-input-link) creates the ^vs-

wmem.visual-object-instances.visual-object structures. The transform-vb operator may 

require additional decision cycles depending on the number of required attention-window 

shifts. In this case, the attend-to-input-link operator creates the appropriate output-link 

structures to affect the shift. 

The primary purpose of each operator is to translate the agent‘s command into its 

primitive elements, augment missing structures with default values, and communicate 

with SVI via Soar‘s output- and input-link (Figure C-12a-b). For example, the structures 

illustrated in Figure C-11 are similar to the substructures augmented on the output-link 

except rather than specifying the relative- or base-visual-object identifier symbols, the 

primitive visual-ids and instance-ids are used. If information is missing, the selected 

operator augments the outgoing structure with its default values (e.g. topology defaults to 

disconnected, distance to 1.0, orientation to zero degrees, etc.).  

After imagery finishes processing in SVI, the VisualLTMListener and 

ObjectMapListener augment the incoming ^what-link and ^where-link respectively. 

Both structures have a ^recognize and ^result attributes. The listeners automatically 
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update the two recognize attributes during each input phase. The ^what-link.recognize 

attribute has one ^visual-object structure for each salient object (either perceived or 

imagined) in the current scene. The ^where-link.recognize attribute has on ^spatial 

structure for each visual-object in the scene. The base-instance-id is the visual-object 

instance-id for the agent and the relative-instance-id is the salient object. Direction, 

distance, orientation, and relative size between the agent and perceived object are always 

provided on the incoming ^recognize.spatial attribute. So, for example, when the agent 

adds an imagined visual-object to the scene, the VLTMListener will automatically add its 

^what-link.recognize visual-object structure. The ObjectMapListener will add its ^where-

link.recognize spatial structure with the direction, distance, orientation, and size 

information specified relative to the agent. After each imagery operation, the listeners, at 

a minimum, augment each link‘s ^result attribute with the command-id. Other attributes 

include the vb-layer, shift, visual-feature, or spatial result similar to the top-state ^vs-

wmem.imagery.result.retrieved structure previously discussed.  

 

  

(a)  (b)  

 

 

(c)  (d)  

Figure C-12 Imagery Output-link and Input-link Working Memory Structure 

^input-link.where-link 

     ^recognize 

          ^spatial 

               ^relative-instance-id 

               ^base-instance-id 

               ^direction 

               ^distance 

               ^orientation 

               ^size 

     ^result 

          ^command-id 

         ^spatial # inspect command 

              ^emergent-id  

              ^shape 

                    

^input-link.what-link 

     ^recognize 

          ^visual-object 

               ^visual-id 

               ^instance-id 

     ^result 

         ^command-id 

        ^vb-layer      # after generate command 

        ^shift true false # during vb transforms 

         ^visual-feature # inspect command 

              ^emergent-id  

              ^shape 

              ^color 

                    

^input-link 

     ^what-link 

          ^recognize      # bottom-up,automatic 

          ^result             # imagery results 

          ^store/remove  # visual-ltm  

                                   # store/remove 

     ^where-link 

          ^recognize      # bottom-up,automatic 

          ^result            # imagery results 

^output-link 

     ^imagery.command 

          ^compose  

          ^add 

          ^transform-om 

          ^transform-vb 

          ^inspect 

# Note similar structure as in Figure C-11 

but using primitive values 
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