
Session 2a5

Teaching Computer Architectlire in a PC Equipped Lab Using Turbo and Sun
Assembly Language

Bryan S. Goda, Daniel C. Gray, James R. Loy
United States Military Academy

Abstract

Cadets at the US Militaly Academy majoring in computer
science or computer engineering take an introductory com-
puter architecture course. In contrast to your i’raditional
architecture course, ours is taught in a PC equipped class-
room. Cadets leam the basic organization and intemal
functioning of an IBM PC by employing Turbo Assembler
Important teaching points can be emphasized by having
cadets step though an assembly language program while
observing the various changes in the register:; and sta-
tus flags. By studying the control flow of actual programs,
cadets gain a better appreciation of the data flow, timing
and control necessary to execute a program. The goal of
the course is to gain an understanding of the importance of
assembly language and its relationship to a computer’s ar-
chitecture, not to make cadets experts in assembly language
programming.

As the course progresses, cadets leam to program in
Sun assembler and observe their results using gdb. Having
already been exposed to assembly language programming,
the leaming curve associated with another is greatly dimin-
ished. A central theme throughout the cow-se is the differ-
ence between 2USC and CISC machines. By programming
both types, cadets see first-hand the difference between
CISC and RISC CPU’s. Cadets leam the different flow of
control required in the Sun architecture as they explore Sun
assembler The culmination of the leaming process occurs
as cadets come to fully appreciate the differences between a
CISC(IBM PC) anda HSC (Sun) architecture. ?%is hunds-
on approach to leaming, that employs multiple assembly
languages in a PC configured classroom, greatly enhances
the understanding of a computer’s architecture.

Introduction

Most college level computer engineering programs offer
some type of assembly language course in their curricu-
lum. By learning assembly language, future computer engi-

neers gain insight into the inner working of a computer’s
architecture and the link between a higher level language
and machine code. Cadets at the United States Military
Academy learn assembly language programming in the in-
troductory computer architecture course after completing
courses in digital logic and C programming. Cadets then
apply their newly acquired assembly language knowledge
in a designing with microprocessors course and a second
course in computer architecture using VHDL. Graduates
of the computer engineering program have an appreciation
of assembly language and its role throughout the computer
engineering program.

Teaching Computer Architecture

The IBkl PC was chosen as the first platform for study due
to its widespread use and availability. Each cadet buys a
PC upon entry into the Academy. The class that entered in
1994 purchased 486DX2-33’s with 8MB RAM, 200 MB
hard drives, and associated software. All lessons are taught
in a PC configured lab (Figure 1) that consists of a server,
instructor station, and 19 PC stations. Important teaching
points cm be emphasized through the use of standard over-
head slides or projecting examples on a 33” monitor. The
33” monitor replicates the display at the instructor’s sta-
tion, thereby allowing cadets to easily follow the classroom
examples. The Academy’s extensive network capabilities
permit cadets to communicate with their own computer to
save classroom examples and notes. Every PC is capable
of comniunicating with a Sun Workstation, allowing cadets
to run C: and Sun SPARC assembler from the classroom.
Additionally, the PC-equipped classrooms save time, al-
lows the: student to run examples, and gives the instructor
tremendous flexibility.

Most introductory computer architecture courses fo-
cus on one assembly language. What are the advantages
of teaching two different assembly languages? The payoff
comes when comparing RISC and CISC machine architec-
tures. Since the students have already learned PC assembly

I
E
E

1995; Frontiers in Education Conference
2a5.14 E

0-7803-3022-6 01995 IEEE ; o ~ ~ v ~ G , ~

%,,.

Figure 1. Physical Layout of PC Lab

language, the same concepts (with some new twists) still
apply. Take for example a simple add instruction:

PC Assembly SPARC Assembler
add ax,bx add %ol, %02, %oO

The PC instruction takes the contents of the ax register,
adds the contents of the bx register and stores the result
back into the ax register. The SPARC instruction takes the
contents of output register 1, adds it to output register 2,
and stores the result in output register 0. These 2 instruc-
tions serve as an excellent starting point of discussion of
the differences in design philosophies between the RISC
and CISC architectures. The SPARC instruction can store
the result in a different register, while the Pc instruction
requires a second instruction (mov) to achieve the same re-
sult. When other CISC and RISC instructions are compared
the students better understand the benefits of an orthogonal
instruction set.

The introductory course that we teach uses two text
books. The primary text is Structured Computer Organi-
zation by Andrew Tanenbaum. The second text is Sparc
Architecture, Assembly Language programming, & C by
Richard Paul. The only commercially purchased software
package is Borland’s Turbo Assembler for the Pc. Sun as-
sembly is included with the typical workstation.

Fundamentals of CPU design are taught from Tanen-
baum’s text during the first third of the course. During this
portion there is no use of assembly language programming.
Cadets develop some familiarity with assembly-like pro-
gramming using the “Debug” software included with DOS.

However, the primary emphasis is on learning “the basics”
of CPU organization and design.

The second third of the course introduces assembly
language programming of CISC computers. The learning
platform is the PC and the software package used is Turbo
Assembler from Borland. This section of the course culmi-
nates in a project in which cadets work in pairs to complete
an assembly languageprogram on thePC. Examples of past
projects include Palindrome detectors and simple quadratic
equation solvers. Final projects must includeinput from the
keyboard and output to the screen using assembly language
intenupt commands and ASCII conversion.

The ha l third of the course teaches assembly language
programming on a RISC machine. We use Sun 4 worksta-
tions, which the cadets may access over the network from
their personal Pc’s or those in the classroom. The software
used includes the m4 macro assembler, the gcc compiler,
and the gdb debugger. Subjects covered include use of the
stack, data structures, overlapping register windows, sub-
routines, input/output, and floating point operations. This
part of the course culminates in another cadet project which
must be done in SPARC assembler. Representative projects
in this part of the course involve two dimensional matrix
operations in assembly language.

Why do we teach CISC programming before RISC pro-
gramming? It seems intuitive that RISC assembly language
should be simpler to learn than CISC assembly language,
and consequently should be presented first. We have found
that the initial learning curve for assembly language pro-
gramming is steep regardless of the initial vehicle used. By
introducing the RISC programming language last, we can

I

E
E

,*: 1995 Frontiers in Education Conference E
2a5.15

emphasize the qualitative improvements made in computer
architecture as a result of the RISC philosophy.

One of the most useful teaching methods we have found
when teaching SPARC assembler in the classroom is to
show a simple C program on an overhead slide. while we
develop the assembly language equivalent on the instructor
PC, which is echoed on a 33” monitor in the front of the
room. Cadets replicate the examples at their deslktop PC’s.
In this way, cadets acquire first-hand experience program-
ming a machine with pipelines and branch delays. Also,
we can emphasize the lodstore memory access of a RISC
machine, as well as the use of multiple functional units (the
floating point processor and the integer processolr).

By the time cadets complete the course, they have a
strong understanding of basic computer architecture and
the differences between RISC and CISC machines. Fur-
thermore, they have a good understanding and breadth of
experience in assembly language programming.

Extending the Assembly Language
Foundation

The introductory course covering computer organization
provides a solid assembly language foundation. The subse-
quent computer engineering courses build upon this foun-
dation and capitalize on the assembly language experience.
Current computer engineering texts use Register Transfer
Language (RTL) as a means of focusing attention and struc-
turing the presentation of the arithmeticflogic unit (ALU).
A thorough understanding of assembly language: facilitates
this transition. With some minor modifications in syntax the
students are able to quickly describe ALU functioning using
RTL. Concurrency is the only change in thinking that must
be introduced. In assembly language, instructionis occur se-
quentially, whereas in RTL, multiple transitions may occur
in the same clock cycle, assuming independent resources
are needed.

As the advanced architecture course progresses, the
concept of microcode is introduced. Once again, a strong
facility with assembly language amplifies the learning that
takes place. Students are required to generate assembly lan-
guage programs to solve problems of moderate complexity,
then demonstrate how the assembly commands can be fur-
ther broken down into a sequence of microinstructions. This
concept is at the very heart of CISC processors, and really
brings to culmination the students study in this area.

Just as assembly language leads into RTL, so too does
RTL lead into a hardware description language (HDL), with
only minor modifications in syntax. Our experience has
shown that HDLs, specifically VHDL, can provicle an excel-
lent medium for examining computer architecture. Instead
of spending an entire semester studying one architecture,
we can now do real time comparisons of architectures, and

perform itradeoff analysis between various options. This is
made poissible with an HDL. Clearly, the solid foundation
in assembly plays an enormous role in this overall pro-
cess; and the use of computers in the classroom contribute
immensely to the quality of this experience.

Finally, computer engineering students take a design-
ing with microprocessor course. Once again, their solid
grounding in assembly language pays big dividends. Course
projects iue centered around the SDK-86 Trainer (Figure 2).
Early prc,jects make use of theirpreviously acquired assem-
bly language skills to gain familiarization with the system.
Then, as project difficulty increases, the students migrate
to C/C++ in order to minimize the time spent coding, and
permit more time for hardware design. At this juncture the
contrasts between assembly and a higher level language
really become apparent. The size of the code required to
accompliish a given task grows considerably when a high
level language is used. Likewise, they discover that they
do indeed pay an efficiency penalty when they move away
from assembly language. Without the ability to conduct ac-
tual comparisons, student would have only discussions and
lectures on such phenomenon.

Conclusion

The study of assembly language is at the core of under-
standing a computer’s architecture. Knowledge of assem-
bly language allows a student to gain an appreciation of
timing, instruction flow, and the evolution of computer de-
sign. Ccimbining a PC equipped classroom with normal
lecture enhances learning and allow students to experi-
ence a “hands-on” approach. By teaching a student both
PC and SPARC assembly language, a better understand-
ing can be gained regarding the tradeoffs between RISC
and CISC. Additionally, assembly language programming
provides the ideal foundation for more advanced study in
computer architecture. It facilitates the transition to RTL
and subsequently to HDLs. Assembly language program-
ming clearly serves as a unifymg thread in our computer
engineering program. Together with the hands on approach,
facilitated directly by the use of computers in the classroom,
the computer engineering cumculum produces a very ca-
pable arid competent undergraduate level computer engi-
neer.

References

[l]

[2]

Tanenbaum, A., Structured Computer Organization, 1990.

Paul, R, SPMC Architecture, Assembly Language Pro-
gramming, & C, 1994.

Borland, Borland Turbo Assembler User’s Guide, 1994. [3]
, % G b * z

y~‘, 1995 Frontiers in Education Conference
%, 4,o ,d 2a5.16 E E

%.n d‘

I
E

Figure 2. SDK-86 Trainer

Bryan S. Goda

Bryan Goda is an active duty Army Major specializing in
mobile subscriber communications. He is a 1982 graduate
of the United States Military Academy (BS) and a 1993
graduate of the University of Colorado (MSEE). He is cur-
rently assigned to the Electrical Engineering and Computer
Science Faculty at the United States Military Academy. He
has previously served in Germany and Operation Desert
Storm. His research interests include parallel processing
and real-time hardware software design.

high speed RISC processors and Computer Aided Design
tool development. He is a member of IEEE, and currently
serving as Vice Chair of the Mid-Hudson Chapter of the
IEEE.

Daniel C. Gray

Daniel Gray is an active duty Army Captain. He received a
B.S.E.E. degree from the United States Military Academy
at West Point in 1985 and an M.S. in Electrical Engineering
from Duke University in 1994. He is currently assigned to
the Electrical Engineering and Computer Science Faculty
at the United States Military Academy. His research inter-
ests include parallel processing and digital design. He is a
member of the IEEE.

James R. Lay

LTC James Loy received the B.S. degree from the U.S.
Military Academy, West Point in 1974, and M.S., M.E.
and Ph. D. degrees in Computer Science and Computer
Engineering from Rensselaer Polytechnic Institute. He is
currently serving as a Permanent Associate Professor in the
Department of Electrical Engineering and Computer Sci-
ence at West Point. His research interests are in the area of

I

E
E

1995 Frontiers in Education Conference
2a5.17

E

