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ABSTRACT
This paper presents a knowledge approach to designing team
training systems using intelligent agents. We envision a
computer-based training system in which teams are trained by
putting them through scenarios, which allow them to practice
their team skills. There are two important roles that intelligent
agents can play; these are virtual team members, and tutors. To
carry out these functions, these agents must be equipped with an
understanding of the task domain, the team structure, the
selected decision-making process and their beliefs about other
team members’ mental states. Even though existing agent
teamwork models incorporate many of the elements listed
above, they have not focused on analyzing information needs of
team members to support proactive agent interactions.  To
encode the team knowledge, we have developed a representation
language, based on the BDI model, called MALLET. A Petri
Net model of an individual agent's plans and information needs
can be derived from the role description represented in
MALLET, and the IARG (Inter-Agent Rule Generator)
algorithm is introduced to detect information flow and generate
team interactions.

Keywords
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1. INTRODUCTION
Training is a multi-billion dollar/year industry critical to the
success of many industries. However, training is very expensive,
hence there is a great need to reduce costs through automation.
One aspect of training that has recently become important is
team training [2]. Teamwork is important in many disciplines,

from business management to sports to emergency response.

Our definition of a team is a group of entities (humans or
agents) that are working together to achieve a goal that could
not be accomplished as effectively (or at all) by any one of them
alone. Team members often play unique roles, which require
unique skills and resources.  Many teams are hierarchical, with a
chain-of-command and leadership or authority roles.  All teams
have to deal in one way or another with sharing information and
distributed decision-making (also called cooperation or
collaboration).  In team training, the focus is not on each
individual's skills (which are typically learned offline), but on
optimizing interactions, such as communications efficiency,
maintaining situational awareness, and the effectiveness of
group decision-making [14].

A great deal of research has been invested in developing
computer-based technologies for training, such as multimedia
and ITS (Intelligent Tutoring Systems) [15].  ITS systems
attempt to carry out user modeling to determine what the student
knows or doesn't know. They tend to fall into two categories.
The first is “error taxonomies”, in which the potential
deficiencies in knowledge are anticipated beforehand and are
directly looked for in the testing. The second is “overlay
approaches” [16], in which a cognitive model of the student's
understanding is constructed and compared to an expert's model
of the task to determine differences. Current ITS systems
typically focus only on individuals.

Intelligent agents can help extend these methods to build ITTS
(Intelligent Team-Training Systems).  We envision a computer-
based training system in which teams are trained by putting
them through scenarios (simulations) which allow them to
exercise and refine their team skills.  There are two important
roles that intelligent agents can play in such systems.  First, we
can have virtual agents that substitute for other team members.
This allows for partial team training, which could provide huge
cost savings, but relies on producing as realistic of behavior and
interactions as possible.  A second major role for agents to play
is the role of coaches, which relieves the load on human trainers.

To carry out these functions, the intelligent agents must be
equipped with an understanding of the task domain, the team
structure, and the selected decision-making process. An ITTS
agent must reason not only about its goals and capabilities, but
also about the goals of the team and other team members and



about shared responsibilities or commitments. This requires
what is known as belief reasoning.  This view is based on the
vast amount of literature that has been written about “shared
mental models” [17], which are thought to be essential to
effective teamwork.

In this paper, we introduce a new multi-agent architecture that
supports the type of belief reasoning that is required for building
ITTS.  Our approach has three components.

First, we will introduce the team-description language called
MALLET (Multi-Agent Logic Language for Encoding
Teamwork), which defines the syntax used for encoding
teamwork based on our team ontology. Our language will
provide relations such as “role”, “responsibility”, “stage”, etc.,
along with plans and operators, for describing the domain and
ideal team behavior.  Our ontology defines the semantics of
those predicates used in encoding teamwork. Although there are
other methods for automatically generating coordinated team-
behaviors (joint intentions [1,11]; contract nets [6], multi-agent
decision theory [13]), we take a more knowledge-based
approach because:

• We are interested in structured domains with well-defined
roles and well documented procedures,

• The virtual agents must be able to interact with human
trainees and communicate in realistic ways,

• The explicit representation of goal hierarchies and
intentions will be important for diagnosing problems with
team behavior and providing useful feedback.

Tambe’s work [1] focuses on establishing the joint intentions of
team members in trying to achieve a joint goal, but not on the
information needs of a team member in order to provide
information proactively. This is a focus of our approach.

Second, given a description of a team in MALLET, we will then
define an interpreter that converts this description into an
“executable” form.  General belief reasoning (i.e. via theorem
proving) can have high computational complexity [10].  The
actions and interactions of a team can easily be encoded in Petri
Nets, however, which is a natural representation for actions,
synchronization, parallelism, etc. Georgeff’s PRS system [3] is
designed for executing plans in a dynamic environment, but
does not incorporate any analysis about information needs for
the plan. However, we wish to find the information needs of
each team member through the analysis of the plan. To do this,
we use Petri Nets to explicitly capture plan knowledge as well as
information needs. We show how descriptions in our formal
language can be translated into Petri Nets for each agent in the
team.  There are some team situations that Petri Nets cannot
represent, but we feel that this is an adequate starting point.
This commitment is a choice on the spectrum of tradeoffs
between expressiveness and efficiency.

The third component is to provide a decision-making algorithm.
It is not enough for a virtual agent to make decisions based on
its own Petri Net.  As we have argued above, it is crucial to
consider the mental states of other team members.  This is where
the belief reasoning comes in: each agent tracks the state of the
other agents (virtual or human), and can then choose actions
based on their beliefs.  We define an Inter-Agent Rule Generator
(IARG), which is an algorithm that makes these decisions for an
agent in the context of the whole team. Hence the focus of our

approach is on collaborative execution of plans within a
dynamic environment, rather than planning or organizing.

Understanding the actions of an individual on a team is more
complicated because their decision-making explicitly involves
reasoning about the other members of the team (e.g. their
beliefs, roles, etc.), and their actions may be implicitly in
support of a team goal or another agent. Our approach is to
model team members as maintaining simplified models of the
mental states of all the other members on the team. To avoid
issues of computational complexity with belief reasoning (e.g.
via modal logics), we use Petri Nets as an approximate
representation of these mental states.  Then when a team
member needs to decide what to do, they can not only reason
about what actions would achieve their own goals, but they can
reason about the state and needs of others. In particular in this
paper, we focus on two effects: by making teamwork efficient
through anticipating the actions and expectations of others (e.g.
by knowing others roles, commitments, and capabilities), and by
information exchange (knowing who to ask for information, or
providing proactively just when it is needed by someone else to
accomplish their task).

2. MALLET: A Multi-Agent Language for
Encoding Teamwork
The ontology underlying our framework is based on the BDI
model (Belief represents the knowledge of the agent, Desire
represents the general goals of the agent and Intention represents
the selected plans of the agent [12]). The purpose of presenting
an ontology is to identify the general concepts and relationships
that occur in teamwork across multiple domains and give them
formal definitions that can be used as the basis of a team-
description language with primitive terms with well-specified
meanings. MALLET is a language based on predicate logic that
allows the encoding of teamwork. Being a logic-based language,
MALLET provides a number of pre-defined predicates that can
be used to express how a team is supposed to work in each
domain. Some basic predicates allow the declaration of the types
of terms being used, i.e. they are unary predicates that associate
symbols with specific classes of teamwork concepts. Other
predicates represent the relation between these terms.

2.1 Basic Object Type Predicates
Some concepts in the team domain need to be associated with a
specific class of objects.

• Team-member(x)

We need to have a way to define who is in the team. By using
the unary predicate Team-member(x), we define that x is a
member of the team. Virtual-agent(x) is used to define Team-
member(x) as a virtual agent and Human-trainee(x) is used to
define Team-member(x) as a human trainee.

• Role(x), Plays_role(x,y)

The team structure and process is described generically in the
terms of roles (rather than specific individuals as team
members). The unary predicate Role(x) defines x as a role. For
example, in a volleyball team, we might have Role(server),
Role(setter), Role(spiker), etc. It makes more sense to assign
responsibilities and relate capabilities to these generic roles.
Only if a member of a team plays a certain role, does he/she
become interesting to us in the team. Plays_role(x,y) defines the



relationship between a member x and the role y.  We have [∀x,y
Plays_role(x,y) =>Team-member(x) ∩Role(y)].

• Stage(x)

Stages turn out to be very useful for describing teams in many
real world domains. For example, in flight control for the space
shuttle, there are a sequence of specific stages that the team must
go through, such as launch, orbit, and landing. The unary
predicate Stage(x) define x as a stage. Team goals and individual
responsibilities can change from stage to stage. We assume that
the stages are totally ordered, which can be represented in
Interval Logic as Before(x,y).

• Condition(x), Goal(G,<set-of-conditions>)

Condition (x) defines a subset of states of the world. In
MALLET, we treat goals as propositional conditions, although
some agent environments might involve more complex
constraints. We also allow goals to be specified as conjunctions
of conditions as well. Note that Goal (G, <set-of-conditions>) is
only used to associate the name G with a set of conditions, not
to specify who has it.

2.2 Actions and Plans
Actions are assumed to be primitive and cannot be interrupted.
Plans can be viewed as a hierarchical structure composed of
sub-plans, and the leaves of the hierarchy representing primitive
actions. In MALLET, an action can be defined as a 3-tuple,
similar to STRIPS operators: Action(Action-name, <Set-of-pre-
conditions>,<Set-of-post-conditions>), in which Action-name
is the name of the action, and Set-of-pre-conditions and Set-of-
post-conditions are two sets of conditions. Plans can serve
multiple goals, and for one goal, there could be multiple plans
for how to achieve it. In a manner similar to that introduced in
[3], we represent plans through a procedural language as
introduced in [9]. A plan can be defined by a 6-tuple in
MALLET as Plan(plan-name, <Set-of-pre-conditions>, <Set-
of-actions>, <Set-of-post-conditions>, <Set-of-causal-links>,
<Set-of-action-ordering-constraints>). We assume that for any
pre-condition of any action in the <Set-of-actions> of the plan,
if it is not a post-condition of any action in the <Set-of-action>
of the plan, then it should be a pre-condition in the <Set-of-pre-
conditions> of the plan. Similarly, we assume that for any post-
condition of any action in the <Set-of-actions> of the plan, if it
is not a pre-condition of any action in the <Set-of-action> of the
plan, then it should be a post-condition in the <Set-of-post-
conditions> of the plan. We define action-ordering and causal-
links constraints as: Before(A1,A2) which means action A1 must
occur sometime before action A2. According to [9], “A causal

link is written as Si 
c

→  Sj and read as ‘Si achieves c for Sj.’
Causal links serve to record the purpose(s) of steps in the plan:
here a purpose of Si is to achieve the precondition C of Sj.” In
MALLET, such a casual link is represented as Achieve(C, Si,
Sj). To relate goals with plans, we define Goal-to-
plans(goal,<set-of-plans>), which identifies the plans for
achieving the goal.

2.3 Responsibilities
The core of MALLET is based on several predicates that specify
relations among the basic classes of objects, which will be used
for the team interaction generation. We begin by defining

responsibilities. Responsibilities are relationships between a set
of roles, a goal, and a stage: Responsibility(<role-set>, <goal>,
<stage>), is used to mean that a set of roles share the
responsibility to reach goal <goal> in stage <stage>. The
semantics of these expressions is based on the work of Cohen
and Levesque [11], in that responsibilities map onto joint
intentions and have the same effect of committing agents to
actions. To further differentiate kinds of responsibilities, we
define:

• Redundant responsibilities

Consider responsibilities shared by multiple agents such that any
one of the agents can carry them out independently and if
multiple agents take actions towards them, there will not be any
damage in accomplishing them except for unnecessary effort.
We name this kind of responsibility redundant responsibility.
For example, in a battlefield, more than two agents in a team
take the responsibility of monitoring the movement of the enemy
and reporting to the commander. If both of them report the same
information to the commander, this causes no harm, except it
may waste some communication bandwidth. In MALLET, we
represent redundant responsibilities as Or-responsibility(<role-
set>, <goal>, <stage>).  When there is only one role in the
role-set, the responsibility becomes an individual responsibility.

• Shared competitive responsibility

Consider those responsibilities shared by multiple agents such
that any one of the agents can carry them out independently, but
if multiple agents take actions toward them, there will be some
risk of failure because of conflict; we name this kind of
responsibility shared competitive responsibility.  For example,
in the volleyball domain, all team members have the
responsibility to save the ball in the defense stage, but if more
than one of them takes action, they may collide with each other
and lose the point. In MALLET, we represent shared
competitive responsibilities as Xor-responsibility(<role-set>,
<goal>, <stage>).

• Shared complementary responsibility

Consider those responsibilities that require multiple agents to
cooperate in carrying out those responsibilities. We name them
shared complementary responsibility. For example, two agents
share the responsibility of moving a heavy table together. In
MALLET, we define shared complementary responsibility as
And-responsibility(<role-set>, <goal>, <stage>), which
requires simultaneous action, and possible communication
among the roles to synchronize their actions.

We have the following three observations related to the concepts
of different kinds of responsibilities.

• If the team has Or-responsibility(R, G, s), ∀r1, r2 ∈R,
r1≠r2, r1 and r2 need to communicate to decide that at least
one of them should have the persistent goal G in stage s.

• If the team has Xor-responsibility(R, G, s), ∀r1, r2 ∈R,
r1≠r2, r1 and r2 need to communicate to decide that one of
them should have the persistent goal G and all the others
will not have the goal G in stage s.

• If the team has And-responsibility(R, G, s), then ∀r1, r2
∈R, r1≠r2, r1 and r2 need to communicate to build the
joint intention G in stage s and synchronize so that each
waits to act until the other is ready.



2.4 Capabilities
Capabilities are a relationship between roles and actions. In
contrast to responsibilities, capabilities specify what team
members can do, instead of should do. To play a certain role, an
agent should have the right kind of capability. Or to put it
another way, we can say that each role requires a certain set of
capabilities.  In MALLET, we define a capability as Capability
(<role-set>, <action>). Every role in the role-set has the
capability for that action. Similarly, to further distinguish the
different kinds of capabilities, we define:

• Backup capability

There are certain kinds of actions that can be taken by more than
one team member at the same time without interfering with each
other, we call them backup capabilities. In MALLET, we
represent it as Or-capability(<Role-set>, <action>). If the
capability is an individual capability with only one role in the
Role-set, it  can be represented as Capability(role, <action>).

• Shared conflicting capability

There are certain kinds of actions that can be taken by more than
one role independently, but if taking the action at the same time,
the action will turn out to be a failure due to conflict, we call
them shared conflicting capabilities. In MALLET, we represent
them as Xor-capability(<Role-set>, <action>).

• Shared cooperative capability

There are certain kinds of actions that can not be taken by one
role independently without the cooperation of other agents; we
define these as shared cooperative capabilities. In MALLET, we
represent them as And-capability(Role-set, <action>).

2.5 Beliefs
Beliefs are important for teamwork, for example to reason about
and anticipate the actions or needs of others.  Most of the
expressions in MALLET can be extended to incorporate beliefs
in a straightforward way. Beliefs about roles and responsibilities
can be asserted for specific team members via
Bel(agent1,Responsibility(agent2,goal,stage)), etc. For
simplicity, we make the Mutual Belief Assumption, which is
that, by default, agents are assumed to all share common
knowledge about the roles, capabilities and responsibilities that
they are involved in within the team, and they believe that all
other agents have the same beliefs.  This assumption might have
to be relaxed for human team members.  Facts or propositions
can also be represented in beliefs, but they are more dynamic
and agent-specific (e.g. Bel(agent1,valve-open)).  Finally, we
note that individual action operators should be converted to
belief statements.  For example, if P and Q are pre-conditions
for an agent A to take an action X, from another agent’s
perspective, what is really required for A to try to execute X
(besides motivation), is that agent A believes that P and Q are
true.  This has implications for collaboration, since A may elect
to achieve P himself, or ask another agent to help; either way, A
eventually comes to believe that P becomes true.  Simulating
this type of multi-agent belief reasoning presents a challenge,
since in general, reasoning about beliefs can be intractable [10].
Our Petri Net algorithms introduced below, address this
implicitly, at the cost of expressiveness and completeness; this
leads to an adequate and efficient tradeoff for approximating the
belief reasoning involved.

2.6 Communication
Communication is very important for teamwork and it is
communication that provides a way for team members to
coordinate and collaborate. Communication is more complicated
than Petri Nets can represent. As introduced by Barbuceanu and
Fox in [4] and Bradshaw, et. al. in [5], communication can be
represented as a 4-tuple Com (Purpose, Protocol, FSM, Intc), in
which Purpose is the invocation condition, Protocol is the way
to communicate, FSM is a Finite State Machine to describe the
communication process and Intc is the interrupt condition. If the
FSM ends in a successful state, the communication achieves its
purpose successfully, otherwise the communication fails.

Following is a list of protocols that can be used in a multi-agent
team: Non-intrusive broadcasting are ones that can be ignored
by a team member, intrusive broadcasting for announcements
that the team must respond to, intrusive multicasting for use in a
sub-team, and one-to-one communication.

The FSM itself is defined as a 5-tuple FSM(Q, Σ ,δ,q0, F), in
which Q is a set of states, Σ is a set of atom actions in
communication, such as propose, accept, reject, etc., δ is a
transition function, q0 is the initial state and F  is a set of final
states which defines the communication policies [5].

Communication is a very interesting topic and we hope to
incorporate these ideas into MALLET. However we will not
focus our discussion on communication in this paper.

3. An Example Team Domain
In order to illustrate our ontology and representation of teams in
MALLET, and to help present our algorithm for constructing
Petri Nets and generating team interactions, we introduce a real
world example of a team-training domain.

The NASA Mission Control Center consists of a team that is
arranged in a hierarchical manner with clearly delineated roles
for each team member. The Flight Director (FD) oversees 10
disciplines which each monitor functions on the Space Shuttle.
Each discipline is hierarchically organized with a discipline
leader and one or more sub-team specialists.

Propulsion Systems (PROP) is one of those disciplines.  The
Propulsion Systems Officer is responsible for the operation of
the Space Shuttle Orbital Maneuvering System (OMS) and
Reaction Control System (RCS). These secondary engines are
used for orbital corrections, docking operations, and the De-
orbit burn. The PROP is assisted by the OMS/RCS Engineering
Officer (OREO) and the Consumables Officer (CONS).

The PROP officer is in a vertical chain of command, but he/she
must also interface with other disciplines. The sub-team
members such as the OREO and CONS officers sit on consoles
in a separate room from the Flight Control Room (FCR) called
the Multipurpose Support Room (MPSR).

During the launch stage, the FD asks the PROP officer for a
status check to see if the discipline is ready for launch. The
PROP officer checks with his sub-team. Each sub-team member
checks his/her own console and reports to the PROP officer. The
PROP officer reports the status back to the FD that they are
ready for launch.

Let us take a look at the MALLET representation for the two
roles CONS and OREO. We have:



Role(CONS) and Role(OREO).

Goal(Report_launch_status).

And-responsibility({CONS, OREO},
Report_launch_status, Launch_stage).

Capability({OREO}, check_OREO_status)

Capability({CONS}, check_CONS_status)

Xor_capability({CONS, OREO},
report_own_status_to_PROP).

We assume that there is only one communication channel to
reach PROP by CONS and OREO. Thus they can not report to
PROP simultaneously, that is why we have
Xor_capability({CONS, OREO},report_own_status_to_PROP).

We assume virtual agents as shown in Figure 1 play CONS and
OREO. Based on the Mutual belief assumption, all the shared
responsibilities and capabilities are mutually understood by all
agents involved.

Figure 1. NASA MCC Team

OREO has the following plan:

Plan(
 Name: OREO-report-PROP-status,
Pre-condition{ OREO_monitor_system_normal},
Actions:{
Action(check_OREO,{OREO_monitor_system_normal},{O
REO_status_ready, OREO_monitor_system_normal })
Action(report_own_status_to_PROP,
{OREO_status_ready} ,{ OREO_finish_reporting_status})
},

Post-condition: {OREO_finish_reporting_status,  
OREO_monitor_system_normal},

Causal link: Achieve (OREO_status_ready, check_OREO,
report_own_status_to_PROP)
Action-ordering-constraints:  before(check_OREO, 
report_own_status_to_PROP)

)

CONS is similar to OREO.

4. Generating Petri Nets from Plans
Petri Nets have previously been suggested as an appropriate
implementation for both intelligent agents [8] and teamwork [7].
Petri Nets are particularly good at representing actions in a
symbolic/discrete framework. They can represent the
dependence of actions on pre-conditions in a very natural way,
i.e. via input places to a transition. The effects of the action
become simply output places. However we need to connect
these possible transitions to goals, which can be simulated as
extra input places that enable firing when a token is present. We
can use this mechanism in controlling the choices among
different plans. We can handle team stages in a similar way.
Petri Nets are also good for representing synchronization
requirements. Figure 2 is an example Petri Nets model of the
OREO’s plan OREO-report-PROP-status generated by our Petri
Nets constructing algorithm introduced below.

Figure 2. Petri Nets model of OREO plan OREO-report-
PROP-status

However, Petri Nets are not able to represent beliefs in such a
straightforward way.  In order to incorporate agents' beliefs into
Petri Nets, we introduce a new type of node called a "belief
node" with a more suitable semantics.  Belief nodes can hold
two types of tokens: T representing that the proposition is
believed to be true, and F representing that it is believed to be
false. Absence of either type of token indicates lack of belief, or
uncertainty, which is an important aspect of many team
situations.  Hence this becomes a colored Petri Net.  Like
standard colored Petri Nets, we allow arcs between transitions
and belief nodes to be labeled with T or F to restrict the type of
token that can satisfy an input to a transition, or is deposited to
an output from a transition. However, belief nodes have three
unique characteristics:

• If multiple tokens are deposited into a single place, they are
either reduced (e.g. multiple T's to one T), or canceled (e.g.
if T's and F's occur together; canceling reverts the
interpretation back to uncertainty of belief).

• Places corresponding to the same proposition throughout
the network are merged.  This is important for maintaining
consistency.  For example, if one transition has an effect P,
then the belief that P is true should be propagated to any
other transition that depends on this belief.

PrA1

G A1

PoA1
PoA2

A2

G: OREO-report-PROP-status (goal place)
PrA1: OREO_monitor_system_normal
A1: check_OREO 
PoA1: OREO_status_ready
A2: report_own_status_to_PROP
PoA2: OREO_finish_reporting_status



• "Back-arcs," or connections, are added from the output of
each transition back to belief nodes that are its input places,
since by default, most actions do not undo pre-conditions
(persistence assumption), unless explicitly listed as effects.

Now we are ready to introduce our algorithm for generating
Petri Nets for each role on the team. For each role, the algorithm
ConstructPetriNet(Role) will recursively call the algorithm
ConstructPlanNet(Plan, Role) to generate a sub-net of the plan
passed as an argument and combine the sub-nets into one Petri
Net by merging the propositional nodes with the same names.
Here the relationship between Role and Plan is indirect. Role is
related to goal through responsibility and goal is related to plans
through the relation Goal-to-plans.   For each action in a plan,
the algorithm ConstructPlanNet(Plan, Role) will first translate
each pre-condition into an input place, each effect into an output
place, and link these to a new transition. After recursively
constructing a sub-net for each step in the plan, the algorithm
will merge the belief nodes corresponding to the same
propositions and connect the sub-nets based on causal links.

In the algorithm ConstructPlanNet, goal places serve as a
control to the Petri Nets. We know that in a Petri Net, if each
input place has a token, then a transition can fire. In our Petri
Net model of an agent, we need to have a way to choose which
plan to execute.  Whenever a goal becomes the agent’s current
intention, a token will be put into the goal place so that the
relevant plan can execute when all other pre-conditions hold. By
applying the algorithm, we constructed the Petri Nets of the
OREO’s plan OREO-report-PROP-status as shown in Figure 2.

ConstructPetriNet(Role)

SubNets =∅.

For each responsibility R such that Role is in its role-set.

Let G be the goal associated with responsibility.

Let P be the plan that can be used to solve goal G.

Append ConstructPlanNet(P,Role) to SubNets.

ConstructPlanNet(Plan, Role)

 //The following mentioned sets are all related to the Role.

Create a place labeled by the name of the plan(goal place).

Create input places for each pre-condition of the plan.

Create output places for each post-condition of the plan.

For each action in the set-of-actions, create sub-net P with

Create a transition labeled by the action,

input places for each pre-condition of the action,

And output places for each post-condition of the action.

For each causal link in the set-of-causal-links

merge the output place for the condition in the casual link (
a post-condition of the first action) with the input place for
the condition in the casual link (a  pre-condition of the
second action).

For each ordered constraint in the set-of-action-ordering
constraints. If there is no causal link between these two actions

Then add a place node between the two action transitions
based on their ordering constraints.

For each input place and output place of any action.

Merge those input places and output places of an action
transition that are labeled with the same name.

5. Generating Interactions from Petri Nets
In addition to generating the Petri Nets for each agent, we need
to determine the interactions that will take place among the
agents.  In particular, we are concerned with both detecting
ambiguities that arise when multiple agents have responsibilities
for accomplishing a goal, and determining useful information
exchange among agents.  In this section, we present an
algorithm that accomplishes the following:

1. Detects ambiguities of responsibilities within the team
based on the shared knowledge of responsibilities that each
agent has, and initiates communication with other team
members to resolve the detected ambiguities.

2. Detects information needs of this agent and resolves these
needs through requests for information to other agents.

3. Detects the information needs of other agents and resolves
these needs by providing known information to other
agents that need it.

Figure 3. Team Interaction Generation

We accomplish these tasks with our IARG algorithm, which can
simulate information flow and generate team interactions. IARG
uses both offline and online components, as shown in Figure 3.
An agent analyzes the Petri Nets of all the other agents in order
to derive information flow and identify propositions that other
agents need to know. We define information flow as a 3-tuple:
<Proposition, Providers, Needers>. Proposition is a truth-
valued piece of information. Providers is the set of roles that can
provide the information (i.e. perhaps has the responsibility of
achieving and/or maintaining it). Needers is the set of roles that
need this information. An agent is said to need a piece of
information in the sense that the proposition maps onto an input
place of a transition of the Needer in the Petri Net corresponding
to an action that that agent can execute to carry out one of its
responsibilities.

After the Petri Net models are generated for all agents involved
in a team, we can determine the information flow. For each

IARG
(Online
part)

Responsibilities

Capabilities Team
Interaction

Communication
Protocol

Offline

Online

Plans  (Petri Nets)
for all roles

IARG
(Offline
Part)

Information
Flow



agent’s Petri Net model, let input-places(τ) be the set of all input
places of transition τ, and let output-places(τ) be the set of all
the output places of transition τ1.  Then we have the following
steps to generate the information flow offline.  The providers of
information are determined by agents that have a transition that
outputs tokens to a given belief node (proposition), and the
agents that need the information are those that have this
proposition as an input to a transition.

• For each agent A, let Provides(A) be the set of all belief-
node places that are outputs from a  transition but not
inputs to the same transition: Provides(A) = {π ∃τ s.t.
π∈output-places(τ), and π∉input-places(τ)), in the Petri
Net for A}

• For each agent A, let Needs(A) be the set of all belief-node
places  (places related to belief) that are inputs to a
transition of agent A but not in the set of Provides(A):
Needs(A) = {π ∃τ s.t. π∈input-places(τ) in the Petri Net
for A, and π∉Provides(A) }

• Providers(P) = {A P∈Provides(A)}, where P is a
proposition and A is an agent.

• Needers(P) = {A P∈Needs(A)}, where P is a proposition
and A is an agent.

These two sets give us the sets of flows called Information-flow:
{<P, Providers(P), Needers(P)>}. This is all done offline, as
illustrated in the top half of Figure 3. In the online part, based
on the plan, the agents’ knowledge of information flow, and
current beliefs, the IARG algorithm generates team interactions.
This is done by determining each agent’s current
responsibilities, identifying information they need via empty
input places to transitions for carrying out those responsibilities
– and cases of this in other agents’ Petri Nets - and then
exchanging the pertinent information via Ask and Tell operators
(performatives).  This algorithm only determines the set of
candidate team interactions (e.g. communications, which
supplement the set of actions the agent can take directly). It does
not resolve domain-dependent issues such as how specific
actions (both direct and communicative) are prioritized and
selected, or the choice of communication channels used within
the team.

The algorithm starts by identifying all active goals of the agent
in the current stage, and then either informing co-responsible
agents that the agent intends to accomplish the goal, or invoking
communication to resolve conflicts or synchronize, depending
on the type of responsibility. Then the agent finds all blocked
transitions within its own Petri Net to generate requests for
information. Finally, for any propositions that are effects of its
own actions, which it knows the truth-value of, the agent
communicates this information to other agents needing it (i.e.
those agents that have a goal-enabled transition that depends on
the proposition, but the corresponding place has no tokens or an
incorrect token in the Petri Net for that agent).

Generate-team-interactions(Role R, Goal G, Information-flow
IF)

                                                                
1 We can specify a particular Petri Net as an argument to input-

places() and output-places(), if it is unclear from context.

PossibleActions=∅

For all goals G that are responsibilities of role R

• If Or-responsibility({R,R1,R2,…}, G, stage), then for
all Ri (i=1,2,…), append “Tell(Ri,intend(R,G))” to
PossibleActions

• If And-responsibility({R,R1,R2,…}, G, stage), then
append “Synchronize2({R,R1,R2,…},G)” to
PossibleActions

• If Xor-responsibility({R,R1,R2,…}, G, stage), then for
all Ri (i=1,2,…), append “Select-Among1(R,Ri)” to
PossibleActions

∀τ such that τ is a transition in the Petri Net for R, and ∃γ such
that γ∈input-places(τ), and γ∈GoalNodes and tokens(γ)≠∅, then

• ∀π ≠ γ such that π∈input-places(τ) and tokens(π)=∅,

If <π,Providers,Needers>∈IF and R∈Needers, then
∀Ai∈Providers append “Ask(Ai,π)” to
PossibleActions

∀τ such that τ is a transition in the Petri Net for R,  and ∀π such
that π∈output-places(τ) and tokens(π)≠∅,

If <π,Providers,Needers>∈IF and R∈Providers then

∀Ai∈Needers if:

∃ω such the ω is a transition in the Petri Net for
Ai with an input goal node with a token in it, and
π∈input-places(ω), and tokens(π,PetriNet(Ai)) ≠
tokens(π,PetriNet(R))

then append “Tell(Ai,π,token(π))” to PossibleActions

return PossibleActions

6. Example
To illustrate this process, we can go back to the shuttle
controller team example. First the OREO receives the command
from PROP to resolve the goal Report_launch_status, he/she
checks his/her responsibilities and finds it is an And-
responsibility involving both him/herself and OREO. Second
he/she communicates with OREO to setup a joint intention. In
Figure 2 we assume now a joint intention has been built. The
OREO puts a token in his goal place. Third, OREO will check
all the input places of the current transition A1 and finds all the
input places that have a T token. Fourth, OREO then fires the
transition, deleting all tokens from its input places and adding
tokens to its output places. In this case, since PrA1 is a belief
that is not changed by A1 so a token is looped back to reset it.
Fifth, OREO checks and finds all the input places for the current

                                                                
2 We look at communications from a high-level perspective. For

example communication could occur through observation,
actions, speech, or networks. Thus Synchronize means to us
that agents agree upon a certain time by which each agent can
perform its actions in order to achieve an And-responsibility.
Select-Among is a weaker form of Synchronize in that one
agent is selected from a team of agents to achieve a Xor-
responsibility. Other protocols such as Tell and Ask can be
referred to [5].



transition A2 that each needs a token. Sixth, OREO fires the
transition A2 to report to the PROP officer of his/her status and
reaches the goal state and stops the execution of the plan.

7. Conclusion and future work
In this paper, we have presented the team-description language
MALLET based on our ontology of teamwork, which specifies
the semantics of roles, responsibilities, and capabilities of a team
as well as goals, actions and plans of the team. It also enables
the representation of a team member’s belief about other
member’s mental states. Based on this knowledge, a goal-
directed agent can be designed to behave as a virtual team
member in training. A unique feature of our approach is that it
dynamically generates proactive team interactions by analyzing
the information flow between agents using the IARG algorithm.
The agent-based teamwork model can not only be used to
implement virtual team members in an intelligent team training
system, it can also serve as the “expert teamwork model” for a
coaching agent to assess the process and the performance of a
team being trained. In order to do coaching, the agent has to
build an appropriate model of the user that explains his actions,
which centrally depend on interacting with, and relying on
others, in a team context. Our Petri Nets can serve as the user
model, and errors can be identified as structural differences (e.g.
missing links) compared to an expert model. Such an intelligent
team training system can reduce the time and overall cost of
training a team staff for domains such as battlespace
management, mission control centers, and other team-oriented
applications. Future work will focus on doing plan recognition
by inferring probable token markings of Petri Nets based on
observed actions of agents so as to model their behavior and
diagnose problems with cooperation and information flow.
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