
TACTICAL EVENT RESOLUTION USING SOFTWARE AGENTS,
CRISP RULES, AND A GENETIC ALGORITHM

John M. D. Hill, Michael S. Miller, John Yen, and Udo W. Pooch
Department of Computer Science

Texas A&M University
College Station, Texas 77843

{hillj | mmiller | yen | pooch}@cs.tamu.edu

KEYWORDS

Military, Decision Support Systems, Software Agents,
Genetic Algorithms, Crisp Rules

ABSTRACT

This paper discusses and identifies problems with tactical
event resolution, one of the sub-steps in the Course of Action
Analysis phase of the Army’s Military Decision Making Process.
Some related work is identified, a solution is proposed, and the
design of a system implementing the solution is presented.
Software agents representing biases of human planners develop
reasonable allocations of combat effects. These allocations are
examined through a genetic algorithm survival test based on a
simple combat-results mechanism and a crisp-rules-based system
to determine the “best” resolutions based on specific fitness
functions. Information about the best resolution is then presented
to the user. The paper concludes with a discussion of preliminary
results and an evaluation of the system.

INTRODUCTION

The United States Army uses the Military Decision Making
Process (MDMP) in the development of plans (Army 1997). One
of the phases within the MDMP is Course of Action Analysis.
Within this phase, tactical events involving portions of both the
friendly and enemy forces must be resolved.

Military Decision Making Process

Battle staffs in the United States Army use the Military
Decision Making Process (MDMP) to develop a plan that
synchronizes the efforts of subordinate units to accomplish a given
mission. In the Course of Action Development step the staff
prepares several candidate courses of action (COAs) based on the
mission and the commander's guidance. The Course of Action
(COA) Analysis step (commonly referred to as “war-gaming”)
helps the staff determine the outcome of the COA. Validity of
each proposed course of action is based on criteria including
suitability, feasibility, and acceptability. Results from the war-

gaming process are used in the Course of Action Comparison step
where the commander selects the “best” COA to be refined into an
Operations Order (OPORD).

Course of Action Analysis (War-Gaming)

In this step the candidate courses of action are analyzed
through a "war-gaming" process to determine if they are valid. In
the war-game a representative from each of the battlefield
functions (maneuver, fire support, etc) provides input about the
expected results as the friendly courses of action are played out
against the enemy courses of action. The results from each course
of action will be used later in the Course of Action Comparison
phase. The steps of the war-gaming process are:

1. Gather the tools.
2. List all friendly forces.
3. List assumptions.
4. List known critical events and decision points.
5. Determine evaluation criteria.
6. Select the war-game method.
7. Select a method to record and display results.
8. War-game the battle and assess the results.

Tactical Event Resolution

This project focuses on the eighth step, in which the critical
events identified in the fourth step are resolved and the results
determined. This is normally a manual, ad hoc, process where the
forces and combat effects on each side are tallied and the
Operations officer and the Intelligence officer determine the
outcome.

THE PROBLEM

Tactical event resolution in the manual Course of Action
Analysis phase suffers from several problems. These problems are
primarily related to constrained time and to difficulty in
communicating ideas between staff members. More specifically,
the problems can be stated as follows:

 (1) Time constraints of the manual process don’t allow for
more than a cursory examination of each tactical event.

(2) Communicating the tactical event resolution takes time,
and it is difficult to create, share, and maintain a common
understanding of how the event is resolved.

(3) Staff officers have different ideas about the methods that
should be used to resolve tactical events. These individual biases
and interpretations have to be explained and clarified, further
slowing the process.

(4) The resolution of an event involves the consumption of
available resources, such as direct fire strength, indirect fire
capability, expenditure of minefield-breaching assets, and fuel and
ammunition consumption. It is difficult for the staff to keep track
of all of these resource expenditures.

(5) Typically, the staff just lumps all of the enemy and
friendly capabilities together and decides the outcome, ignoring
any ordering of engagements within the tactical event which might
yield different results. The resolution of an event will involve the
placement and movement of forces, both of which require a
representation of space and time.

(6) Similarly, changes in allocation of forces or effects
between engagements within the tactical event might yield
different results, but are ignored in the aggregated approach.

(7) At its basis, tactical event resolution requires a
fundamental combat results mechanism. Although many results
mechanisms are available, staffs often just “wing it” without
defining and enforcing a particular mechanism.

PROPOSED SOLUTION

Any system that is designed to make tactical event resolution
better must provide capabilities that address each of the problems
that have been identified. The entire process must be
accomplished faster than the current manual methods, determine
the best application of the available combat power effects, and
incorporate in a transparent fashion the different methods and
interpretations of the staff members. The solution lies in providing
the following capabilities:

(1) Overcome time constraints with automated support for
tactical event resolution. A great deal of the ad hoc manual
process can benefit from automation.

(2) Provide a graphical user interface for quick input,
common understanding, and visualization. This will help to ensure
every staff member has the same understanding of what’s going
on.

(3) Incorporate selectable rules or the ability to select biases.
This will allow different people’s ideas about how the event should
be resolved to be included in the system, and make them apparent
to everybody else.

(4) As the system considers various ways to conduct the
event it must be able to remember resource consumption and be
able to return to a previous level if necessary. The system should
use automation to keep track of everything, from resource
consumption through intermediate results to conclusion of the
tactical event. Ultimately, this system should provide the results to
a higher-level planning system.

(5) The system needs at least a minimal representation of
both space and time that allows the staff to consider the effects of
time and space on the outcome of the event. For instance, the staff
should be able to set up the event as one engagement, simultaneous
engagements, sequential engagements, or a combination of
sequential and simultaneous engagements.

(6) Provide a mechanism that examines the effect of different
allocations of combat effects that is integrated with the ordering
mechanism and can be guided by the rules or biases identified
above.

 (7) Segregate the fundamental results mechanism so that the
staff can choose the one they think is appropriate. This will ensure
that the same results mechanism is used consistently and uniformly
throughout tactical event resolution and that every member of the
staff can understand exactly how the results were determined.

RELATED WORK

There is a great deal of work being done in planning,
decision-making, and command and control operations. Most of it
is at much higher levels than the scope of this project. For
example, the Army Modeling and Simulation Office (AMSO) has
identified technology voids in the areas of automated decision aids,
COA tools, and tactical information aids. (Delaney 1999. Personal
communication.) This project could support, in a small way, all
three of the areas mentioned.

The Army Research Laboratory (ARL) is generally focusing
on developing the infrastructure to support command and control
decision-making (visualization, software agents, collaboration
tools, multi-modal interaction, etc.) (Emmerman 2000. Personal
communication). ARL is also funding a research program in
Intelligent Information Processing for Visualization (IDFL 2000).
One of the IDFL projects, FOX-GA, is a tool that uses course-
grained representations in order to provide timely COA generation
and assessment (Hayes and Schlabach 1998). Its relation to this
work lies in its use of a genetic algorithm for allocation of assets,
but at the higher brigade COA level (Schlabach et al. 1998). FOX-
GA will be transitioned to the Communications-Electronics
Command (CECOM) to be part of the Command Post XXI
Advanced Technology Demonstration (Slife 2000. Personal
communication) (DARPA 2000).

Army Major Robert H. Kewley, Jr., combines fuzzy
inference systems with genetic algorithms to form a fuzzy-genetic
decision optimization (FGDO) system that he applied to the
battalion-level tactical course of action (COA) development
problem (Kewley 1999). In his system a fairly sophisticated
tactical simulation module is used to evaluate the outcome of

proposed COAs. The performance of each COA is fed into a fuzzy
preference module. From this module an overall fitness for the
COA is fed back into a genetic algorithm module that continues to
produce modified COAs. Kewley’s approach differs from this
project in that he focuses at the higher (battalion) level course of
action and uses a sophisticated simulation. Naturally, it takes
much longer to solve such a complex problem. This project,
although it could be used at battalion level, is focused more at the
individual tank or platoon level and uses a simple combat results
mechanism. The similarity between the two projects lies in their
use of genetic algorithms to determine better outcomes. Also,
Kewley’s project recommends future work on biasing the initial
selections, which is a fundamental part of this project.

Genetic Algorithms (GAs) draw on the adaptive “survival of
the fittest” capabilities inherent in Darwinian evolution. One
fundamental aspect of a GA is an encoding that allows the
description of every possible state of a system, but which is also
amenable to rapid calculation. This encoding is typically referred
to as the “chromosome,” although the term “genome” may be
appropriate if the encoding contains distinguishable sub-sections.
Another fundamental piece is a “fitness function” which is used to
decide how good the outcome of the system is when a particular
chromosome is used. The algorithm creates an initial population
of the chromosomes, possibly using heuristics to ensure a pretty
good set. The fitness function is applied to each chromosome,
allowing them to be ranked. As the algorithm produces each new
generation, the more fit member of the previous generation have a
higher probability of reproducing. Children for the new generation
are produced by pairing two parents, and with some probability
crossing their genes. Also, with a small probability, the children
may experience a mutation in the elements of the chromosome. A
seminal discussion of genetic algorithms appears in DeJong’s
dissertation (DeJong 1975). Goldberg provides a thorough
presentation of GAs in his book (Goldberg 1989).

Software agents are notoriously difficult to define, since the
title can be applied in many ways. Russell and Norvig define an
agent as “anything that can be viewed as perceiving its
environment through sensors and acting upon that environment
through effectors” (Russell and Norvig 1995). Franklin and
Graesser provide a taxonomy of agent types, of which software
agents are one branch, and a description of agent properties.
Among these properties are reactivity, autonomy, goal-orientation
and temporal continuity (Franklin and Graesser 1997).

Rule-based systems allow knowledge to be represented as
actions to be taken when certain conditions are matched. These
heuristics, or "rules of thumb," are normally chosen by a domain
expert and encoded by the developer. These rules allow abstract,
symbolic approaches to be used in specifying knowledge based on
human logic. CLIPS is a forward chaining LISP-like rule-based
language that has inferencing and representation capabilities and is
used to build rule-based expert systems (Giarratano and Riley
1989). CLIPS processes the rules by using RETE, an algorithm
that solves the difficult many-to-many matching problem
encountered when matching rules with facts (Forgy 1982).

SYSTEM ARCHITECTURE

The system architecture can be broken down at the highest
level into three processes: event generation, analysis, and
visualization of the event resolution. Event generation takes inputs
from the user and converts them into an event description useable
by the analyzer. Analysis uses a genetic-algorithm-based analyzer
or a crisp-rules-based analyzer to resolve the event. Visualization
of results is where the resolution of the event, and any intermediate
information, is displayed to the user. A depiction of the major and
minor components of the system (which also shows the details for
the genetic-algorithm-based analyzer) is in Figure 1. The
following sections describe the three processes in detail.

Figure 1: System Architecture (GA Analysis)

Event Generation

The event generation process begins with inputs from the
user. The Graphical User Interface is a drag-and-drop display
mechanism that allows easy interactive creation and setup of the
events. The output of the process is an Event Description

Interactive Event Creation. The GUI allows the user to
define a static enemy (also known as the Red force) situation. In
order to accommodate time/space ordering, the enemy can be
broken down into any number of levels, where forces in the lowest
level must be dealt with first. Also, within levels the enemy forces
can be broken down into different forces. This is the mechanism
for allowing different allocations of friendly (also known as the
Blue force) effects against the enemy. The Blue force is created in
a similar fashion, but is not given any ordering or allocation
instructions – those will be performed in the analysis phase. The
end result of the interactive event creation process is an Event
Description.

Event Description. The tactical event is described by the
static Red plan (described above), the Blue force, and the resources
available to each. The resources are direct-fire (DF) effects, such
as tanks or mechanized infantry, indirect-fire (IF) effects that
suppress direct-fire elements, minefield (MF) effects, and mine-
clearing (MC) effects. The static Red plan provides the
configuration of all of the Red resources, but the Blue resources
are initially not allocated. The Event Description is passed into the
Analyzer, which can be either genetic-algorithm-based or crisp-
rules-based.

Analyzer: Genetic-Algorithm-Based

The GA version of the Analyzer can evaluate a single
engagement, all engagements within a level (with allocation), and
multiple levels (with allocation). The GA Analyzer has two major
functions (Initial Allocation, Generation and Analysis of New
Allocations) and two data structures for passing information
between modules (allocation, force summary/result). The GA
analyzer was custom-built using the Java programming language.

Allocator. The Allocator receives the event description
from the GUI. It then extracts the available resources to determine
which types of biased agents to launch. These biased agents
represent staff member’s ideas about how battlefield functions
should impact initial allocations. The agents are used to propose
some user-specified number of initial allocations based on their
biases. One of the key reasons for this approach is to determine
“pretty good” initial allocations out of a very large space of
possible allocations.

Biased Agents. Biased agents represent the human ideas
used to allocate the tactical effects against the enemy plan. Some
common-sense ideas are built in, such as only applying MC against
MF and only applying IF against DF. To replicate the input of
staff members from some of the battlefield functions, the agents
launched by the Allocator are given some biases in creating the
initial allocations. For instance, a maneuver agent can be biased to
propose COAs that mass on the weakest point, bypassing some
enemy units, or to try to defeat all enemy units, without massing. A
fire support agent can be biased to mass artillery fires at critical
engagements, or to selectively apply artillery where it will make a
difference in the local outcome of more engagements. Finally, a
mobility agent could be set up to mass mine-clearers at one event,
freeing direct fire effects for other events, or to apportion mine-
clearers against the available minefields.

Allocations. These are the genomes of the genetic
algorithm. The genome is a matrix-like encoding that represents
the resolution of the event (see Table 1 for an example). The Reed
direct fire effects (M for mechanized infantry, T for tank) and
mine-field (MF) effects are first organized by level, then within
each level they are assigned to forces. In the example, level 0 has
one outpost force consisting of one mechanized infantry effect,

level 1 has three main defense forces with a mech effect and a
minefield effect each, and level 2 has one reserve force with a tank
effect. The available Blue effects (M for mech, T for tank, IF for
indirect fire, and MC for mine-clearing) are along the other axis.

The bits in the encoding of the genome represent whether
each Blue combat effect participates in the engagement against a
particular enemy force. The setting of the bits is subject to
constraints from the COA. For example, a direct fire unit can
participate in all events in a sequential chain (unless it has lost its
strength), but it can only participate in one of a set of simultaneous
events. In contrast, an artillery suppression mission can be used in
only one engagement of the event – a new suppression mission
must be used (if available) in a different engagement.

Survival Test. Generation and analysis of new allocations
occurs in the survival test. A user-specified number of allocations
(default of 16) form a generation. Within the generation, each
allocation is evaluated for fitness. The higher-fitness genomes have
a higher probability of reproducing new genomes for the next
generation. Generations are allowed to propagate in this manner
until the required number (specified by the user) of generations has
been reached. Each new allocation is passed through the Results
Interface to the Combat Results Mechanism for determination of
its outcome. The Fitness Monitor keeps track of the fitness of each
allocation for use in selecting the next generation of allocations.

Results Interface. While processing each allocation the
system should not destroy the original event description when
recording the results. Specifically, the system should not have to
manage the strengths of the tactical effects and then restore them
before each next analysis. On the other hand, the system should
not have to make a complete copy of all the objects in the event
description, either. This takes too much time, and it is exacerbated
by the nested nature of the process. There must also be a
mechanism for tracking the intermediate results of the
engagements (since a Blue direct-fire effect can be used against
more than one Red force). The solution to these problems lies in
the creation of a Force Summary for each engagement.

Force Summary (and Results). The Force Summary is a
much smaller data structure using only fundamental data types (no
new objects) that is appropriate for the Combat Results

Table 1: Genome Encoding for an Allocation

Red Elements Blue Elements
Level Force Effect M M M M M M T T T MC MC IF IF IF IF

0 Outpost M
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

MMain
One MF

0 1 0 1 0 0 1 0 0 1 1 1 1 1 0

MMain
Two MF

1 0 0 0 1 0 0 1 1 0 0 0 0 0 0

M

1

Main
Three MF

0 0 1 0 0 1 0 0 0 0 0 0 0 0 1

2 Reserve T
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

Mechanism. As the allocation is processed each engagement of
blue effects against a red force within a level is converted into a
force summary. The Force Summary is fed into the Results
Iinterface, and the modifications made on the summary by the
Combat Results Mechanism are provided back to the Generations
Agent as Results. For each allocation the Generations Agent
creates and maintains a Status data structure that parallels the
allocation. This Status structure holds the intermediate results.
The next time a Blue effect is used its initial strength is taken from
the Status structure, not the original allocation.

Combat Results Mechanism. The Combat Results
Mechanism receives a Force Summary of Blue and Red effects
involved in an engagement and determines the outcome by running
it through a results determination process. In this project, either a
simple combat results table or the crisp-rules system can be used.
However, this could be any sufficiently robust tactical simulation
that can provide “good enough” answers in “fast enough” time.
The Results of the combat are returned to the Generations Agent /
Fitness Monitor.

Generations Agent / Fitness Monitor. The Generations
Agent / Fitness Monitor keeps track of the best allocations and
determines which one to present to the user. When all of the
Results are returned for a particular allocation a fitness function is
applied. This fitness function is configurable, but currently only
through code changes. This fitness evaluation is the mechanism
for biasing the selection of the “best” allocations. An example
fitness function is to select allocations that reduce all Red forces by
the same percentage (which might cause lower Blue end strength.
Alternatively, the fitness function can select for lowest overall Red
end-strength, which might leave an enemy force completely
untouched. A simple example fitness function that provides
reasonable results is the maximization of Blue direct-fire end-
strength modified by the proportion of Red direct-fire strength that
survives. In other words, the more surviving Blue strength and the
less surviving Red strength, the better.

With probability related to their fitness, two allocations are
selected for reproduction. Each pair creates a new pair for the next
generation. As two allocations combine to produce two children
for the next generation there is a high probability (default of 0.70)
that bits of the parent genome will crossover to form the child
genome. This crossover is also subject to event constraints
mentioned above (indirect-fire can only be used once, etc.). After
each child allocation has been created, there is a very low
probability (default of 0.01) of mutation of any gene, again subject
to constraints from the event.

Most-Fit Allocation. The Survival Test identifies the "best"
outcome based on the utility function. Once the best outcome of
the event (Most-Fit Allocation) is determined it is passed back to
the GUI for display to the user.

Analyzer: Crisp-Rules-Based

The crisp-rules-based analyzer is very flexible. It can be
used at the lowest level as a fundamental results mechanism. It
can be used to evaluate all engagements within one level. It can

also be used to evaluate all engagements within different levels,
providing the complete result for the entire event. The crisp-rules-
based analyzer is based on the Java Expert System Shell (JESS), an
expert system shell and scripting language written in the Java
language (Friedman-Hill 1999). JESS is based on the CLIPS
rule-based system. JESS supports the development of rule-based
expert systems, and these rules can be tightly coupled to code
written in the Java language. Although CLIPS and JESS have a
capability for handling fuzzy concepts and reasoning, the rules
used in this project are crisp and do not have a probabilistic
component in determining which rule to fire.

The rules-based agent has a total of 22 rules and there are
three levels of salience. Salience allows a priority-based scheme to
be placed within the rules. In order of priority they are the default
level, the step change level, and the phase change level. The rules
are in a separate file and are loaded at run time. They can easily be
modified or updated without changing the program code.

The rule-based system goes through a series of steps to
resolve a single event or battle. Forces are allocated, then combat
is resolved, and the results are evaluated for success. If not
successful then a new allocation will be tried until either all forces
are expended unsuccessfully or a force mix is found that is
successful. The rules follow the same combat model that the GA
analyzer uses in resolving combat effects.

Rules are also in place to allow the rule-based system to step
through the list of events that need to be achieved. Once all events
have either been successfully or unsuccessfully tried the rule-based
system tabulates the results and passes them back to the GUI for
display.

The rule-based agent tries to use a minimum of force to
achieve the objectives. This means that other options are currently
not tried. However, expanding on the rules present in the system
can modify additional biases.

The advantage of the rule-based system is that it can present
a view of its computations that is understandable by a human
operator. This is not as simple with the multiple generations of the
GA approach. The intermediate results are output as text messages
while the rule-based system moves through its rules in computing a
solution.

Visualization of the Event Resolution

The Most-fit allocation from the GA-based analyzer or the
results from the crisp-rules-based analyzer (including intermediate
results) are provided back to the GUI. The allocation of effects is
applied to the graphical entities and the user can “walk through”
the levels to see how the allocation occurred. Simultaneously, the
strength results are extracted from the Status structure and used to
modify the strength display for each entity. See Figure 2 for an
example of an event resolution on the system screen, and Table 1
for the corresponding allocation.

The Red outpost force in level 0, to the west, was subject to
the entire strength of the Blue elements, and has been destroyed

and over-run. The screen is displaying the results of the second
level, which represents a main defensive belt. The Red force to the
north consists of a mechanized infantry effect (M) with a minefield
effect (MF). It has been allocated two Blue mech effects, one tank
(T) effect, two mine-clearing (MC) effects, and three indirect fire
(IF) effects. The Red force in the center (one mech, one mine-
field) has been allocated two Blue mech effects and two tank
effects. The Red force to the south (one mech, one minefield) has
been allocated two Blue mech effects and one Blue indirect fire
effect.

At the end of the engagement, the strengths (represented by
status bars under the icons) of the three Blue DF effects in the
north are “green,” meaning fully combat effective. In the center,
all four Blue DF effects are high amber, meaning weakened but
effective (amber does not show well in black and white). In the
south, the two Blue DF effects are both red, meaning they will not
be effective in future engagements. All of the Red effects in this
level have been reduced to a status of red or black, meaning
completely ineffective. The Red reserve force, to the northeast,
will not be engaged until level 2, so it still has a green status.

This level demonstrates the influence of the biased agents.
The mobility/counter-mobility agent has applied all available MC
assets against a single enemy force, while the fire support agent
has chosen to mass indirect fires against the same force. In tactical
terms, both the mobility/counter-mobility and fire support agents
are supporting the maneuver agent’s choice of an economy-of-
force mission in the south, a block task in the center, and a
penetration of the enemy defensive belt in the north.

RESULTS

The entire system performed remarkably well, from the GUI
interface through the event descriptions into the analyzers and back
out to the GUI display. This allowed several tests to be conducted
with different parameters. In every test, the outcomes of the
analysis of each event seemed quite reasonable, and the evaluation
of the project was favorable; however, there are a few limitations
of the system that should be noted.

Figure 2: Example Visualization of Tactical Event Resolution – Second Level

Testing

The test protocol used an incremental approach to evaluate
and demonstrate the system. Initially, the tests were limited to
resolving a single event with direct-fire (DF) engagements with
only a few DF effects on each side, and satisfactory DF
engagement outcomes were demonstrated. Indirect fire (IF) and
minefield (MF) / mine-clearing (MC) effects were added, and also
yielded satisfactory results. From that point on, increasing levels
of complexity and numbers of effects were added, all of which
yielded good results. When parameters for the GA analyzer were
changed for complex scenarios, improvements were noted with
increased numbers of genomes over more generations. As the
situations became more complex the time consumed by Java object
creation was overcome by the development of the Force Summary,
after which the system ran an order of magnitude faster.

Limitations

There are several limitations to this first prototype system.
First, the system does not consider side effects and consequences
external to the event that could have an impact on the event. For
instance, using artillery in one engagement may cause the guns to
be targeted for counter-battery fire, reducing the availability of
indirect-fire effects in the next event. Second, the system allows
direct-fire forces to conduct unrealistic maneuvers, such as
attacking first in the south, then moving all the way up to the north
in the next level. Finally, the allocation mechanism in the GA-
based analyzer can suffer from a local maximum problem, wherein
much better allocations can’t be reached.

CONCLUSION

Perhaps the most important question to be asked in
evaluating this system is whether the desired capabilities were
achieved. This project was very successful in implementing the
desired capabilities. Automation of the tactical event resolution
process significantly reduced the amount of time required. The
GUI of the prototype system made input and ordering of an event
into a simple process and provided good visualization of the
results. Different ideas from human planners about event
resolution, including biases from battlefield functions such as
maneuver and fire support can be incorporated into the system
through the biased agents mechanism. As the system evaluates the
event it keeps track of resource status. The system provides the
planner with the ability to enforce an ordering on the resolution of
the event, providing the planner with more control. The system
has the ability to capture intermediate results and include them in
the visualization, helping the planner to understand the resolution
of the event. The genetic algorithm and the crisp rules proved to
be very effective techniques for examining and selecting
allocations. Finally, the combat results mechanism is a separate
entity, providing the capability to choose the mechanism providing
the appropriate mix of accuracy, speed, and computational
efficiency.

REFERENCES

Army, U. S. 1997. Field Manual 101-5, Staff Organization and
Operations, U.S. Government Printing Office, Washington, D.C.

DARPA. 2000. "Command Post of the Future (CPOF) Project."
Available at http://dtsn.darpa.mil/iso/. Last accessed on January
18th, 2000.

DeJong, K. A. 1975. “An Analysis of Behavior of a Class of
Genetic Adaptive Systems,” Ph.D. Dissertation, University of
Michigan.

Forgy, C. L. 1982. “RETE: A Fast Algorithm for the Many Pattern
/ Many Object Pattern Match Problem.” Artificial Intelligence,
19(1), 17-37.

Franklin, S., and A. Graesser. 1997. “Is it an Agent, or Just a
Program?: A Taxonomy for Autonomous Agents.” Published in
Intelligent Agents III: Proceedings of the Third International
Workshop on Agent Theories, Architectures, and Languages, J. P.
Muller, M. J. Wooldridge, and N. R. Jennings, eds., Springer-
Verlag, Berlin, 21-35.

Friedman-Hill, E. 1999. "Java Expert Systems Shell (JESS)."
Version 5.0. Available at http://herzberg.ca.sandia.gov/jess.

Giarratano, J., and G. Riley. 1989. Expert Systems Principles and
Programming, PWS-Kent Publishing Company, Boston.

Goldberg, D. E. 1989. Genetic Algorithms in Search, Optimization
and Machine Learning, Addison Wesley, Reading, Massachussets.

Hayes, C. C., and J. L. Schlabach. 1998. “FOX-GA: A Planning
Support Tool for assisting Military Planners in a Dynamic and
Uncertain Environment.” Technical Report WS-98-02, AAAI,
Madison, Wisconsin.

IDFL. 2000. "Interactive Displays Federated Laboratory."
Available at http://www.ifp.uiuc.edu/IDFL/. Last accessed on
January 19th, 2000.

Kewley, R. H. 1999. “Automated Tactical Course of Action
Development.” Operations Research Center, United States
Military Academy, West Point, New York.

Russell, S. J., and P. Norvig. 1995. Artificial Intelligence: A
Modern Approach, Prentice Hall, Upper Saddle River, New Jersey.

Schlabach, J. L., C. C. Hayes, and D. E. Goldberg. 1998. “FOX-
GA: A Genetic Algorithm for Generating and Analyzing
Battlefield Courses of Action.” Evolutionary Computation, 7(1),
45-68.

