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Abstract

In this paper we continue the investigation of A.B. Kempe’s flawed proof of the Four Color
Theorem from a computational and historical point of view. Kempe’s “proof” gives rise to an
algorithmic method of coloring planar graphs that sometimes yields a proper vertex coloring
requiring four or fewer colors. We investigate a recursive version of Kempe’s method and a
modified version based on the work of I. Kittell. Then we empirically analyze the performance
of the implementations on a variety of historically-motivated benchmark graphs and explore the
usefulness of simple randomization in four-coloring small planar graphs. We end with a list of
open questions and future work.
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1 Introduction

The Four Color Theorem for Planar Graphs states that, given a planar graph G, the vertices of G

can be properly colored with at most four colors. While the Four Color Theorem was proven in
1977 through the use of a computer and irreducible sets [AH77, AH77a, AH77b, AHK77, RSST96,
RSST97], no proof has been found that can be verified by a human without the use of a computer.
Alfred Kempe seemingly came close to accomplishing this in 1879 when he presented a “proof” of the
Four Color Theorem in his paper “On the Geographical Problem of the Four Colours”; however,
his proof contained a flaw, published by P. J. Heawood in 1890 and discovered independently
by de la Vallée Poussin in 1896 [Wil02a]. Although Kempe was unable to repair the flaw, his
innovation of Kempe chains and Kempe chain switches remain useful to graph theorists, and it is
interesting to explore the boundaries of his technique [GS03]. In particular, we focus our attention
on the work of Errera, who was the first person to study the importance of the order in which
the vertices are labeled [Err21]. For a comprehensive history of the Four Color Theorem, see
[Wil02b, Wil02a, Ore67, FF98, BLW86].

Following [Err21, HW98, GS03, Wag], we implemented Kempe’s method of proof as a recursive
algorithm (Algorithm Kempe) on different vertex labelings for some well-known graphs of nine
vertices or more. For labelings resulting in the algorithm’s inability to properly four-color the
graphs, we identify vertices that cause irrevocable Kempe chain failures (the source of the flaw in
Kempe’s proof), and quantify the graphs’ failure rates. In acknowledgement that Algorithm Kempe
sometimes correctly four-colors the vertices of a planar graph, we explore some improvements to
Algorithm Kempe including random selection among all Kempe chain choices and using random
Kempe-Kittell chain switches to overcome irrevocable Kempe chain tangles, following [Kit35, HW98,
Wag02, Wag, AS86, MS91]. While there may be different flaws that also result in failure to four-
color a planar graph, our improvements focus solely on circumventing the flaw identified by Heawood
and Poussin, since that is the flaw addressed by our implementation of Kittell’s approach. Where
Kempe-Kittell chain switches allow Algorithm Kempe to continue, we correlate the identified vertex
with the number of Kempe-Kittell chain switches required to overcome the tangle.

2 Definitions and Algorithm

It is important to understand Kempe’s alleged proof and the flaw that led to our investigations.
For completeness and ease of reference, the following definitions and algorithm are taken directly
from [GS03]. In all of the following, Cx refers to color Cx from the set of four possible colors C1,
C2, C3, and C4.

Definition 2.1 (C1C2-Kempe Chain): Let G be a planar graph whose vertices have been
properly colored and suppose v ∈ V (G) is colored C1. Define the C1C2-Kempe chain

containing v to be the maximal connected component of G that

• contains v, and

• contains only vertices that are colored with elements from {C1, C2}.

Importantly, the maximality of the set of colored vertices in a C1C2-Kempe Chain guarantees
that interchanging all occurrences of C1 and C2 preserves the proper coloring of G. Thus, we define
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Definition 2.2 (C1C2-Kempe Chain Switch): Let KC be a C1C2-Kempe chain. A C1C2-

Kempe chain switch interchanges all values of C1 and C2 in KC.

Last, but hardly least, to illustrate the potential flaw in Kempe’s method, we will define the
notion of irrevocable Kempe chain tangle. To help visualize the set-up, see Figure 1.

Definition 2.3 (Irrevocable Kempe Chain Tangle): Let G be a plane graph, all of whose
vertices, with the exception of one, have been properly colored with four colors. De-
note the exceptional vertex by v. Suppose further that degree(v) = 5, and that the
five neighbors of v (denoted v1,v2,v3,v4,v5) are colored in cyclic counterclockwise order
(endowed by the planar embedding) by G1RG2BY respectively. Moreover, assume that
the RB-Kempe chain containing v2 also contains v4, and that the RY -Kempe chain
containing v2 also contains v5.

Denote the GB-Kempe chain containing v1 by KC1 and the GY -Kempe chain con-
taining v3 by KC2. We say that Algorithm Kempe causes an irrevocable Kempe chain

tangle on vertex v if either

• following a G1B-Kempe chain switch on KC1 by a G2Y -Kempe chain switch on
KC2 causes v5 to be re-colored Green, or else

• following a G2Y -Kempe chain switch on KC2 by a G1B-Kempe chain switch on
KC1 causes v4 to be re-colored Green.

v

v4:B v5:Y

v3:G2 v1:G1

v2:R
Red-Blue

Kempe Chain

Red-Yellow
Kempe Chain

Figure 1: Set-up for the faulty case in
Kempe’s proof.

In particular, at least one of the original barriers
afforded by either the RB-Kempe chain containing v2

and v4, or the RY -Kempe chain containing v2 and v5

has been broken by two successive GX-Kempe chain
switches, where X ∈ {Y,B}. Moreover, the second GX-
Kempe chain contains two vertices in the neighborhood
of v, which reintroduces a vertex colored Green as a
neighbor of v; thus the procedure has not made Green

available for vertex v.
We use the adjective irrevocable in Definition 2.3

because under the initial hypotheses, a Kempe chain
tangle might occur: that is, one of either the RB-Kempe
chain or the RY -Kempe chain may be “broken” by the

two successive GX-Kempe chain switches, but the procedure need not force any of the neighbors
of v to be re-colored with Green . In that case, v will be properly colored with Green .

With these definitions, we now have the vocabulary to describe Algorithm Kempe.

3



2.1 Algorithm Kempe

INPUT:

• A connected plane graph G with n vertices, labeled (in some order) with distinct elements
from {1, . . . , n}.

• A set of four colors C = {C1, C2, C3, C4} with which to (attempt to) properly color the vertices
of G.

• For the purpose of recursion, let G0 := G

OUTPUT:

• Either a proper vertex coloring of G that uses at most four colors, or

• the message “Kempe’s algorithm has encountered an irrevocable Kempe chain tangle at vertex
V and hence has failed to properly 4-color G.”

Gadget Relabel (relabel the vertices):

• Search G0 for the first occurrence of a vertex of degree five or less; the existence of such a
vertex is guaranteed by Euler’s Formula. The first occurrence is dictated by the given ordering
of the vertices. Call this vertex v1.

• Find the first occurrence of a vertex of degree five or less in G1 := G \ v1 and label it v2.

• Find the first occurrence of a vertex of degree five or less in G2 := G1 \ v2 and label it v3.

•
. . .

• Find the first occurrence of a vertex of degree five or less in Gi := Gi−1 \ vi and label it vi+1.

• Continue this procedure until the n vertices of G have been labeled.

Gadget Greed (color greedily whenever possible):

• Color vn in Gn−1 with the available color of lowest index from C. In this case, since no colors
have been used, vn will be colored C1.

• Color vn−1 in Gn−2 with the available color of lowest index in C; if vn−1 is not adjacent to vn,
then vn−1 is colored C1. On the other hand, if vn−1 is adjacent to vn, color vn−1 is colored
C2.

• In general (if possible) color vi in Gi−1 with the available color of lowest index from C.
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viB R

G

Y

Figure 2: All four
colors are used on
the neighbors of vi.

Gadget 4 (perform Kempe chain switches on degree four vertices):

• We encounter a vertex vi of degree four that cannot be greedily colored.
That is, suppose degree(vi) = 4 and the neighbors are colored R,G,B,
and Y in counterclockwise order. See Figure 2.

• If there is a RB-Kempe chain containing both the Red and Blue neigh-
bors of vi, then there cannot be a Y G-Kempe chain that contains both

of the Yellow and Green neighbors of vi. In that case a Y G-Kempe
chain switch leaves a color available for vi.

• Otherwise, if there is no RB-Kempe chain containing both the Red and
Blue neighbors of vi, perform a RB-Kempe chain switch to make a color
available for vi.

Gadgets 51 and 52 (perform Kempe chain switches on degree five vertices):

• We encounter a vertex vi of degree five that cannot be greedily colored; a priori, one color
is used exactly twice and the other three are used exactly once on the five neighbors of vi.
Without loss of generality, suppose the twice-used color is Green . There are only two (up to
rotation and reflection) configurations in which this case can occur.

1. Either the two Green neighbors of vi are next to one another in the embedding, or

2. the two Green neighbors of vi are separated by one other neighbor of vi (see Figure 3).

G

G
Y

B
R

vi

I

Ga

R
Gb

B
Y

II

vi

Figure 3: Two Green neighbors of vi are either
next to each other (I) or separated by one other
neighbor (II).

Gadget 51 (degree(vi) = 5; two Green neigh-
bors next to each other):

• In Configuration 1, a gadget much like
Gadget 4 will succeed in coloring vi. In
particular, suppose the five neighbors of
vi are colored, in counterclockwise order,
by GGYBR (see Figure 3 I).

• If there is no YR-Kempe chain contain-
ing both Yellow and Red neighbors of vi,
then a YR-Kempe chain switch will leave
a color available for vi.

• Therefore, assume there is a YR-Kempe
chain containing both Yellow and Red

neighbors of vi. Thus a BG-Kempe chain
containing the Blue neighbor of vi con-
tains neither of the Green neighbors of vi.

• In that case a BG-Kempe chain switch
makes Blue available for vi.

• In all cases vi can be properly colored.
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Gadget 52 (degree(vi) = 5; two Green neighbors are separated by another neighbor of vi):

• Configuration 2 is the case in which an irrevocable Kempe chain tangle might occur, causing
Algorithm Kempe to halt before completing a proper 4-coloring of the graph. Suppose the
neighbors of vi are colored in counterclockwise order by GaRGbBY (at this point, it is helpful
to distinguish between the two Green vertices). See Figure 3 II.

• If there is a RB-Kempe chain that does not contain both the Red and Blue neighbors of vi

then a RB-Kempe chain switch leaves a color available for vi.

• If there is a RY -Kempe chain that does not contain both Red and Yellow neighbors of vi then
a RY -Kempe chain switch makes a color available for vi.

• Otherwise, we must attempt both a GaB-Kempe chain switch followed by a GbY Kempe chain
switch (or vice versa).

• If no irrevocable Kempe chain tangle occurs, then we successfully color vi with Green and
move on to vertex vi−1.

• Otherwise, halt and return an error message that the offending vertex is vi.

BEGIN

Step 1: Use Gadget Relabel to label the vertices of G.
Step 2: for i=n downto 1 do

Attempt to color vi in graph Gi−1:

• (a) if vi can be greedily colored in graph Gi−1 by Gadget Greed then do so, else

• (b) if degree(vi) = 4 in Gi then color vi using Gadget 4 else

• (c) if degree(vi) = 5 in Gi−1 in configuration 1 then color vi using Gadget 51 else

• (d) if degree(vi) = 5 in Gi−1 in configuration 2 then try to color vi using Gadget 52 employing
two Kempe chain switches: try both orders if necessary

END

Thus, it is obvious that it is possible to color vertices of degree three or less with no more than
a fourth color, and it has been shown that it is always possible to color vertices of degree four
through the use of Kempe chain switches [Hea90]. Algorithm Kempe only encounters difficulties
upon vertices of degree five or more, but it has been shown that Algorithm Kempe will always
succeed in properly four-coloring any graph containing eight or fewer vertices (which may contain
vertices of degree five or more) [GS03]. In light of the fact that Kempe’s method of proof works
in some, but not all cases, we were interested in identifying patterns of when the algorithm halts
without producing a proper four-coloring on our benchmark graphs. In particular, we explore the
usefulness of simple randomization when used with Kempe-Kittell chain switches to improve its
success on small planar graphs.
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3 Results

3.1 Identification of Vertex Failures

We first implemented Algorithm Kempe and explored its success in properly four-coloring nine
well-known graphs: the Fritsch [FF98], Soifer [Soi97], Poussin [Wil02b], Errera [Err21, HW98,
Wag], Heawood [Hea90], Dodecahedral, Icosahedral, Octahedral, and Cubical graphs. The first five
are known counterexamples for Algorithm Kempe (on at least one labeling)[GS03]. Because the
Dodecahedral, Octahedral, and Cubical graphs all have vetices of degree less than or equal to four,
Algorithm Kempe is known to always successfully color them and they served as benchmarks for our
implementations. Further, although the Icosahedral graph is 5-regular, we did not expect Kempe’s
method to fail on any labeling of vertices, and thus that graph served as a benchmark graph as
well. See also problem 4 in Section 4.

Five groups worked independently of one another to implement Algorithm Kempe and test it
on these graphs. For the graphs containing nine vertices or fewer, each group explored Algorithm
Kempe’s results for all n! labelings. For the graphs containing more than nine vertices, each group
independently tested a random subset of at least 9! labelings.

While we expected different failure rates for the graphs with more than nine vertices due to the
use of different labeling subsets among the groups, we expected the failure rates for Fritsch, Soifer,
and the four benchmark graphs to be the same. Instead, while the benchmark graphs produced no
failures, as expected, failure rates did vary for Fritsch and Soifer due to differences in the individual
implementations or failure rate calculations. In the case of Group 2, when Gadget 52 is required the
implementation only tests one of the two possible Kempe chain switch orders, resulting in a higher
failure rate. This difference in implementation, however, gives us an idea of how many Kempe chain
tangles can be “fixed” by changing the order in which the switches are performed (Table 1).

Table 1: Kempe method failure rates by graph.
Group 1 Group 2 Group 3 Group 4 Group 5

Min Avg Max Min Avg Max Min Avg Max Min Avg Max Min Avg Max

Fritsch 13.947 13.947 13.947 14.031 14.083 14.131 3.598 3.599 3.600 13.687 13.687 13.687 13.630 13.635 13.637

Soifer 1.692 1.692 1.692 1.783 1.832 1.859 0.520 0.523 0.525 1.635 1.635 1.635 1.620 1.620 1.620

Octahedron 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

Cube 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

Icosahedron 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

Dodecahedron 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

Poussin 0.610 0.620 0.627 0.149 0.153 0.156 0.014 0.017 0.019 0.165 0.165 0.165 0.180 0.186 0.190

Errera 9.730 9.755 9.772 3.350 3.383 3.402 8.140 8.168 8.186 7.302 7.302 7.302 10.680 10.798 10.866

Heawood 7.089 7.124 7.153 0.372 0.382 0.390 1.089 1.097 1.111 0.387 0.387 0.387 3.199 3.203 3.210

We initially compared the vertices that caused irrevocable Kempe chain tangles for each imple-
mentation on all graphs. Because each group tested all 9! labelings for the two 9-vertex graphs
(Fritsch and Soifer), each implementation agreed on the vertices that caused failures for Fritsch
and Soifer, as expected. An interesting and unpredicted discovery, however, was that despite the
differences in the labeling subsets tested by each group for the graphs containing more than nine
vertices, there was considerable consensus among the groups on the vertices that cause failures.

In Figure 4, vertices shown in red are those vertices that all groups found to result in an
irrevocable Kempe chain tangle for at least one labeling. Vertices shown in yellow are those vertices
that at least one group, but not all, found to fail. Vertices shown in white were not found by any
groups to cause a failure on the labelings tested. As one can see, the failure patterns of the vertices
are highly symmetrical for all graphs except the Poussin graph, which itself is a fairly asymmetrical
graph. For the Fritsch and Soifer graphs, since all n! labelings were tested, we know that the vertices
shown in white will never cause Kempe chain tangles for any labeling. For the remaining graphs,
we predict that the vertices shown in yellow would eventually become red as more labelings are
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explored. We cannot predict anything for the vertices shown in white of degree five or more - they
may eventually fail, or they may not. Nevertheless, these results lead us to ask the question: are
there commonalities among these vertices that can be exploited to improve Algorithm Kempe? We
leave this as an open question.

Fritsch

Soifer
Heawood

Poussin

Errera

Figure 4: Graph vertex failures.

The next step was to add
randomization, studied in [Kit35,
HW98, Wag02, Wag, AS86,
MS91], through the application
of Kempe-Kittell chain switches
[Kit35] and the use of random-
ization of the choice of Kempe
or Kempe-Kittell chain switches,
rather than heuristics, at vari-
ous stages of the algorithm. In
contrast to the study of ran-
domization for large graphs in
[AS86, MS91], we continue to
investigate small, historically-

significant benchmark graphs.

3.2 Randomization Implementation

In our recursive implementation of Kempe’s method, there are several decision points in the algo-
rithm where we must choose among multiple Kempe chains upon which to perform a switch. In
both Gadgets 4 and 51, in the case that the vertex cannot be greedily colored, there will be up to
four Kempe chains from which to choose; our implementation randomly chooses one that results in
a successful coloring. In Gadget 52, two Kempe chain switches must be performed, but the order
of the switches is not specified in the algorithm. Theorem 3.1 shows that the order in which the
switches are performed can influence the success of the operation. In light of this knowledge, we
randomize the choice of which Kempe chain switch to perform first and perform the alternative
order only if the first order fails.

Theorem 3.1 (Gadget 52 is Order Dependent) In Algorithm Kempe, Gadget 52 is sometimes

noncommutative. That is, the order in which one chooses to execute the Kempe Chain switches on

KC1 and KC2 may matter; in one order an irrevocable Kempe Chain Tangle could occur and in the

other order, no Kempe Chain Tangle occurs.

Proof It suffices to exhibit a plane graph G and a labeling of the vertices of G that cause Algorithm
Kempe to execute Gadget 52 in the following way: upon that execution, one of the two choices of
Kempe chain switch orders causes an irrevocable Kempe chain tangle while the other does not.
To this end, we call upon the Fritsch graph, which we denote by F . In Figure 5, the labeling of
the vertices in F (the uppermost graph) leads to a successful four-coloring with the exception of
vertex 1, whereupon Gadget 52 must be invoked. Following the arrows marked “A,” one choice of
Kempe chain switch order has been executed successfully, and vertex 1 is colored Green. Following
the arrows marked “B,” the other Kempe Chain switch order has been followed, leading to an
irrevocable Kempe chain tangle.

In the case that both orders fail, we encounter the previously defined irrevocable Kempe chain
tangle and turn to Kempe-Kittell chain switches in an attempt to solve the impasse. Kempe-Kittell
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chains present yet another opportunity for randomization of choices. To better understand these
choices, we first define the eight Kempe-Kittell chains identified by Kittell in [Kit35].

A. No Tangle B. Tangled

1
2

3

4

5

6

78

9

A

1
2

3

4

5

6

78

9

A

1
2

3

4

5

6

78

9

B

1
2

3

4

5

6

78

9

B

1
2

3

4

5

6

78

9

X

Figure 5: Gadget 52 in Algorithm
Kempe does not commute. The
thick purple lines highlight the cur-
rent Kempe chain switch.

We use exactly the notation and Kempe Chain
switches as suggested by Kittell in [Kit35]. The new gad-
get, called “Gadget Kittell,” is invoked only when Gadget
52 is called upon in Algorithm Kempe and fails. For ref-
erence, see Figure 1.

Definition 3.2 (Gadget Kittell)

1. Chain α: Perform a RB-Kempe Chain switch be-
ginning either on v2 or v4.

2. Chain β: Perform a RY-Kempe Chain switch be-
ginning either on v2 or v5.

3. Chain γ: Perform a GY-Kempe Chain switch be-
ginning either on v1 or v5.

4. Chain δ: Perform a GB-Kempe Chain switch be-
ginning either on v3 or v4.

5. Chain ε: Perform a BY-Kempe Chain switch be-
ginning either on v4 or v5.

6. Chain ζ: Perform a GB-Kempe Chain switch be-
ginning either on v1 or v4.

7. Chain η: Perform a GY-Kempe Chain switch be-
ginning either on v3 or v5.

8. Chain θ:Perform a RG-Kempe Chain switch be-
ginning on any of v2 or v1.

Upon encountering an irrevocable Kempe chain tangle, we randomly choose one of the eight
Kempe-Kittell chains in Gadget Kittell and continue to randomly execute switches from that list
until we reach a coloration of the graph that allows us to successfully color the vertex causing the
impasse or until a fixed number of Kempe-Kittell chain switches have failed (we chose an upper
limit of 100 Kempe-Kittell chain switches).

Thus Algorithm Kempe is modified as follows to create Algorithm Kempe-Kittell:

BEGIN

Step 1: Use Gadget Relabel to label the vertices of G.
Step 2: for i=n downto 1 do

Attempt to color vi in graph Gi−1:

• (a) if vi can be greedily colored in graph Gi−1 by Gadget Greed then do so, else

• (b) if degree(vi) = 4 in Gi then color vi using Gadget 4 on a randomly selected viable Kempe
chain else

• (c) if degree(vi) = 5 in Gi−1 in configuration 1 then color vi using Gadget 51 on a randomly
selected viable Kempe chain else

• (d) if degree(vi) = 5 in Gi−1 in configuration 2 then try to color vi using Gadget 52 employing
two Kempe chain switches: randomly select an order in which to perform the switches; try
both orders if necessary
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• (e) if irrevocable Kempe chain tangle then select a random Kempe-Kittell chain using Gadget

Kittell until vi successfully colored or 100 attempts have failed

END

Figure 6: Kittell Graph.

The fixed limit on the number of failures is re-
quired because it is unknown if there is always a se-
ries of one or more Kempe-Kittell chain switches that
will result in successful resolution of the impasse.
The set of possible Kempe-Kittell chain switch com-
binations that can affect the five vertices adjacent to
vi, called the impasse group, is known to have a lower
bound of 120 [Kit35], but it is impractical to deter-
mine and check the upper bound for even a small
arbitrary graph. The use of heuristics to guide the
search of the impasse group has been studied for large
graphs [MS91], but our interest was in determining
algorithm performance when executing a purely ran-
dom sequence of Kempe-Kittell chain switches to color a small graph, as this could provide an easy
way to improve the performance of Algorithm Kempe for those cases.

Our randomized recursive implementation of Kempe’s method always succeeded in four-coloring
the graphs we tested. We ran the algorithm 500 times for each of the nine graphs tested in the
original implementation and, additionally, the Kittell Graph (Figure 6)[Kit35]. We kept track of
the number of times a Kempe-Kittell chain switch was required to solve an impasse (Table 2) and
the vertices causing the impasse (Appendix A).

Kempe-Kittell Max Failure
Switches (Max) Verticesa

Fritsch 9 i

Soifer 7 c

Octahedron 0

Cube 0

Icosahedron 0

Dodecahedron 0

Poussin 6 d

Errera 73 a

Heawood 6 a, b, l, t, u

Kittell 11 n, r

Table 2: Maximum number of Kempe-Kittell
chain switches required for any vertex.

aAppendix A

A

B

B

A

Figure 7: Errera map: planar representation
and coordinatized as a Fullerine C30 in R

3.

Our fixed upper limit of 100 for Kempe-Kittell chain switches was more than sufficient since,
for most impasses encountered in our tests, eleven or fewer randomly-chosen Kempe-Kittell chain
switches were sufficient to achieve a successful four-coloring. The exception to this was the Errera
graph, which contained two vertices that required over 70 randomly-chosen Kempe-Kittell chain
switches on the regions marked A and B in Figure 7 to achieve successful four-coloring. We observe
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that these two vertices are the only two vertices in the Errera graph that do not have any neighbors
of degree greater than five, and they are the polar regions of Errera’s 17-country counterexample
when described as a spherical map as shown in [HW98, Figure 2][Wag] and as a Fullerine C30 in
our Figure 7.

3.3 Comparison of Original and Randomized Implementations

We achieve proper four-coloring of all of our graphs on 100% of our runs through the inclusion of
randomly-selected Kempe-Kittell chain switches. In addition to this, the percentage of times that
Gadget Kittell was required in our algorithm indicates the percentage of irrevocable Kempe chain
tangles encountered by our randomized algorithm, which we can compare to the failure rates from
the original five groups’ implementations (Table 3 and Appendix A).

When we make this comparison to the average failure rate of the original five implementations,
we see that our algorithm outperforms the average original algorithm’s performance on the two
graphs for which all n! labelings were tested (Fritsch and Soifer graphs). In fact, our randomized
implementation nearly matches the lowest failure rates observed among the original six implemen-
tations: 3.60% and 0.52% for Fritsch and Soifer, respectively (Table 1 and Table 3).

On the Errera and Heawood graphs, randomization results in a higher rate of irrevocable Kempe
chain tangles than the average rate of the original algorithm, but it is still within the range of the
minimum and maximum failure rates of the original implementations. On the asymmetrical Poussin
graph, our algorithm results in significantly more Kempe chain tangles than the average (Table 3),
but this is mitigated by the success of the Kempe-Kittell chain switches in coloring the graph. We
exclude the graphs of the platonic solids, as they cause no failures for either algorithm.

Original Algorithm Randomized Algorithm
Min % Failure Max % Failure Avg % Failure % Failure

Fritsch 3.598 14.131 11.790 3.60

Soifer 0.520 1.859 1.461 0.55

Poussin 0.014 0.627 0.228 1.18

Errera 3.350 10.866 7.881 9.28

Heawood 0.372 7.153 2.439 4.83

Table 3: Comparison of original Algorithm Kempe to randomized version with Kempe-Kittell
chains.

4 Conclusions

We evaluated the performance of the version of Algorithm Kempe in [GS03] and its performance
after the addition of Kempe-Kittell chain switches, which successfully overcame all irrevocable
Kempe chain tangles in our benchmark graphs. We have proven that the order in which Kempe
chain switches are performed affects the outcome of the algorithm and shown that the application
of randomization to the selection of Kempe and Kempe-Kittell chain switches in this algorithm is
a useful method for making the choice of which switch to perform first. In 500 test runs on each
of ten benchmark graphs, the use of randomized chain choices resulted in successful four-coloring
of the graphs with fewer than 12 random choices for any vertex most of the time. When compared
to the original algorithm, there appears to be a performance trade-off in that randomization causes
the use of Gadget Kittell in the Poussin graph more often than would have been required by the
non-randomized version. Finally, we discovered that some vertices appear to be more likely to cause
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irrevocable Kempe Chain tangles than others, and we identify those vertices in the hopes of being
able to characterize them.

The following are open questions and future work:

1. (a) Given a planar graph G with e edges and n vertices, what is the minumum value of e for
which Kempe’s method is provably guaranteed to succeed in properly coloring G?

(b) What percentage of all planar graphs on nine vertices serve as counterexamples to
Kempe’s method?

2. Do the vertices that cause irrevocable Kempe chain tangles or require high numbers of Kempe-
Kittell chain switches share properties which can be exploited to improve Algorithm Kempe-
Kittell?

3. Let G be a planar graph on n vertices. It follows from West [Wes01] (exercise 6.1.9) that, when
n ≤ 11, there is some labeling for which Algorithm Kempe succeeds in properly four-coloring
G. What is the smallest value of n > 11 for which Algorithm Kempe-Kittell is provably
guaranteed to succeed?

4. It is not difficult to show that the Icosahedral Graph will be properly 4-colored by Kempe’s
algorithm regardless of the labeling of the vertices (and this is confirmed by Table A in
the appendix). Characterize all planar graphs that will be properly 4-colored by Kempe’s
algorithm under all possible orderings of the vertices. Short of that potentially difficult goal,
find interesting families of planar graphs (with at least 11 vertices and whose average vertex
degree is at least 5) for which Kempe’s algorithm will always succeed.

5 Addendum

Stan Wagon reports the discovery that the planar graph corresponding to the contiguous 48 United
States plus Lake Michigan and the oceanic waters admits a labeling that leads to a Kempe impasse
at the great state of Illinois [Wag08]; for complete details, see [Wag].
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A Algorithm Kempe-Kittell Results

Node Label Kempe Kittell Chain Labelings / Trial Colored Nodes Kittell Colored Nodes Kittel Use %
Switches Required

Min Max Avg

Fritsch a 3 8 4.52 362880 181440000 1088000 0.599647

Fritsch b 3 8 4.46 362880 181440000 1088000 0.599647

Fritsch c 3 8 4.44 362880 181440000 1088000 0.599647

Fritsch d 0 0 0.00 362880 181440000 0 0.0

Fritsch e 0 0 0.00 362880 181440000 0 0.0

Fritsch f 3 8 4.46 362880 181440000 1088000 0.599647

Fritsch g 3 7 4.49 362880 181440000 1088000 0.599647

Fritsch h 0 0 0.00 362880 181440000 0 0.0

Fritsch i 3 9 4.50 362880 181440000 1088000 0.599647

Soifer a 0 0 0.00 362880 181440000 0 0.0

Soifer b 0 0 0.00 362880 181440000 0 0.0

Soifer c 3 7 4.45 362880 181440000 988089 0.544582

Soifer d 0 0 0.00 362880 181440000 0 0.0

Soifer e 0 0 0.00 362880 181440000 0 0.0

Soifer f 0 0 0.00 362880 181440000 0 0.0

Soifer g 0 0 0.00 362880 181440000 0 0.0

Soifer h 0 0 0.00 362880 181440000 0 0.0

Soifer i 0 0 0.00 362880 181440000 0 0.0

Octahedron a 0 0 0.00 720 360000 0 0.0

Octahedron b 0 0 0.00 720 360000 0 0.0

Octahedron c 0 0 0.00 720 360000 0 0.0

Octahedron d 0 0 0.00 720 360000 0 0.0

Octahedron e 0 0 0.00 720 360000 0 0.0

Octahedron f 0 0 0.00 720 360000 0 0.0

Cube a 0 0 0.00 40320 20160000 0 0.0

Cube b 0 0 0.00 40320 20160000 0 0.0

Cube c 0 0 0.00 40320 20160000 0 0.0

Cube d 0 0 0.00 40320 20160000 0 0.0

Cube e 0 0 0.00 40320 20160000 0 0.0
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Node Label Kempe Kittell Chain Labelings / Trial Colored Nodes Kittell Colored Nodes Kittel Use %
Switches Required

Min Max Avg

Cube f 0 0 0.00 40320 20160000 0 0.0

Cube g 0 0 0.00 40320 20160000 0 0.0

Cube h 0 0 0.00 40320 20160000 0 0.0

Icosahedron a 0 0 0.00 362880 181440000 0 0.0

Icosahedron b 0 0 0.00 362880 181440000 0 0.0

Icosahedron c 0 0 0.00 362880 181440000 0 0.0

Icosahedron d 0 0 0.00 362880 181440000 0 0.0

Icosahedron e 0 0 0.00 362880 181440000 0 0.0

Icosahedron f 0 0 0.00 362880 181440000 0 0.0

Icosahedron g 0 0 0.00 362880 181440000 0 0.0

Icosahedron h 0 0 0.00 362880 181440000 0 0.0

Icosahedron i 0 0 0.00 362880 181440000 0 0.0

Icosahedron j 0 0 0.00 362880 181440000 0 0.0

Icosahedron k 0 0 0.00 362880 181440000 0 0.0

Icosahedron l 0 0 0.00 362880 181440000 0 0.0

Dodecahedron a 0 0 0.00 362880 181440000 0 0.0

Dodecahedron b 0 0 0.00 362880 181440000 0 0.0

Dodecahedron c 0 0 0.00 362880 181440000 0 0.0

Dodecahedron d 0 0 0.00 362880 181440000 0 0.0

Dodecahedron e 0 0 0.00 362880 181440000 0 0.0

Dodecahedron f 0 0 0.00 362880 181440000 0 0.0

Dodecahedron g 0 0 0.00 362880 181440000 0 0.0

Dodecahedron h 0 0 0.00 362880 181440000 0 0.0

Dodecahedron i 0 0 0.00 362880 181440000 0 0.0

Dodecahedron j 0 0 0.00 362880 181440000 0 0.0

Dodecahedron k 0 0 0.00 362880 181440000 0 0.0

Dodecahedron l 0 0 0.00 362880 181440000 0 0.0

Dodecahedron m 0 0 0.00 362880 181440000 0 0.0

Dodecahedron n 0 0 0.00 362880 181440000 0 0.0

Dodecahedron o 0 0 0.00 362880 181440000 0 0.0

Dodecahedron p 0 0 0.00 362880 181440000 0 0.0
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Node Label Kempe Kittell Chain Labelings / Trial Colored Nodes Kittell Colored Nodes Kittel Use %
Switches Required

Min Max Avg

Dodecahedron q 0 0 0.00 362880 181440000 0 0.0

Dodecahedron r 0 0 0.00 362880 181440000 0 0.0

Dodecahedron s 0 0 0.00 362880 181440000 0 0.0

Dodecahedron t 0 0 0.00 362880 181440000 0 0.0

Poussin a 0 0 0.00 362880 181440000 0 0.0

Poussin b 0 0 0.00 362880 181440000 0 0.0

Poussin c 1 4 2.26 362880 181440000 526486 0.290171

Poussin d 2 6 2.58 362880 181440000 399678 0.220281

Poussin e 2 5 2.69 362880 181440000 323390 0.178235

Poussin f 2 5 2.82 362880 181440000 339534 0.187133

Poussin g 0 0 0.00 362880 181440000 0 0.0

Poussin h 2 5 2.81 362880 181440000 474890 0.261734

Poussin i 0 0 0.00 362880 181440000 0 0.0

Poussin j 0 0 0.00 362880 181440000 0 0.0

Poussin k 0 0 0.00 362880 181440000 0 0.0

Poussin l 0 0 0.00 362880 181440000 0 0.0

Poussin m 0 0 0.00 362880 181440000 0 0.0

Poussin n 0 0 0.00 362880 181440000 0 0.0

Poussin o 0 0 0.00 362880 181440000 0 0.0

Errera a 35 73 47.01 362880 181440000 4937929 2.721522

Errera b 3 8 4.14 362880 181440000 463228 0.255306

Errera c 3 7 4.11 362880 181440000 463000 0.255181

Errera d 3 7 4.05 362880 181440000 463086 0.255228

Errera e 3 7 4.03 362880 181440000 464390 0.255947

Errera f 2 5 2.83 362880 181440000 440437 0.242745

Errera g 2 5 2.82 362880 181440000 440226 0.242629

Errera h 2 5 2.80 362880 181440000 440679 0.242879

Errera i 3 6 4.05 362880 181440000 464517 0.256017

Errera j 2 6 2.85 362880 181440000 439756 0.24237

Errera k 2 5 2.84 362880 181440000 440513 0.242787

Errera l 3 7 4.07 362880 181440000 462705 0.255018
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Node Label Kempe Kittell Chain Labelings / Trial Colored Nodes Kittell Colored Nodes Kittel Use %
Switches Required

Min Max Avg

Errera m 3 7 4.07 362880 181440000 462517 0.254915

Errera n 3 7 4.10 362880 181440000 463978 0.25572

Errera o 35 71 46.29 362880 181440000 4938719 2.721957

Errera p 3 7 4.07 362880 181440000 463436 0.255421

Errera q 3 8 4.06 362880 181440000 461792 0.254515

Heawood a 2 6 3.22 362880 181440000 775216 0.427257

Heawood b 2 6 3.29 362880 181440000 1217733 0.671149

Heawood c 2 5 3.13 362880 181440000 847294 0.466983

Heawood d 0 0 0.00 362880 181440000 0 0.0

Heawood e 0 0 0.00 362880 181440000 0 0.0

Heawood f 0 0 0.00 362880 181440000 0 0.0

Heawood g 2 5 2.78 362880 181440000 690371 0.380495

Heawood h 0 0 0.00 362880 181440000 0 0.0

Heawood i 0 0 0.00 362880 181440000 0 0.0

Heawood j 1 1 1.00 362880 181440000 6058 0.003339

Heawood k 1 2 1.56 362880 181440000 6037 0.003327

Heawood l 2 6 3.36 362880 181440000 907479 0.500154

Heawood m 3 8 4.60 362880 181440000 1405876 0.774843

Heawood n 3 7 3.75 362880 181440000 828677 0.456722

Heawood o 2 5 3.15 362880 181440000 813156 0.448168

Heawood p 2 5 3.19 362880 181440000 1032339 0.56897

Heawood q 0 0 0.00 362880 181440000 0 0.0

Heawood r 0 0 0.00 362880 181440000 0 0.0

Heawood s 0 0 0.00 362880 181440000 0 0.0

Heawood t 2 6 3.29 362880 181440000 92157 0.050792

Heawood u 2 6 3.27 362880 181440000 91564 0.050465

Heawood v 0 0 0.00 362880 181440000 0 0.0

Heawood w 0 0 0.00 362880 181440000 0 0.0

Heawood x 0 0 0.00 362880 181440000 0 0.0

Heawood y 0 0 0.00 362880 181440000 0 0.0

Kittell a 2 4 2.79 362880 181440000 636989 0.351074
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Node Label Kempe Kittell Chain Labelings / Trial Colored Nodes Kittell Colored Nodes Kittel Use %
Switches Required

Min Max Avg

Kittell b 2 5 2.75 362880 181440000 478186 0.26355

Kittell c 0 0 0.00 362880 181440000 0 0.0

Kittell d 2 6 3.33 362880 181440000 675394 0.372241

Kittell e 3 8 4.76 362880 181440000 475928 0.262306

Kittell f 5 9 6.57 362880 181440000 792681 0.436883

Kittell g 0 0 0.00 362880 181440000 0 0.0

Kittell h 2 6 3.25 362880 181440000 82375 0.045401

Kittell i 5 9 6.32 362880 181440000 782074 0.431037

Kittell j 2 5 2.95 362880 181440000 457668 0.252242

Kittell k 4 7 4.92 362880 181440000 400408 0.220683

Kittell l 2 5 2.84 362880 181440000 473726 0.261092

Kittell m 3 6 3.99 362880 181440000 386798 0.213182

Kittell n 5 11 6.48 362880 181440000 537869 0.296445

Kittell o 5 8 5.93 362880 181440000 496916 0.273873

Kittell p 5 9 6.35 362880 181440000 691822 0.381295

Kittell q 0 1 0.98 362880 181440000 1676 0.000924

Kittell r 5 11 6.44 362880 181440000 667972 0.36815

Kittell s 2 6 3.16 362880 181440000 660014 0.363764

Kittell t 2 5 2.83 362880 181440000 489486 0.269778

Kittell u 2 6 3.51 362880 181440000 209896 0.115683

Kittell v 2 5 2.81 362880 181440000 551059 0.303714

Kittell w 0 1 0.98 362880 181440000 1966 0.001084
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