
Validating a Trust-based Access Control System

William J. Adams1 and Nathaniel J. Davis, IV2

1Department of Electrical Engineering and Computer Science,
United States Military Academy, West Point, NY 10996

Joe.adams@usma.edu
2Department of Electrical and Computer Engineering, Air Force Institute of Technology,

Wright Patterson AFB, Dayton OH 45433 USA
Nathaniel.Davis@afit.edu

Abstract. Over the last few years researchers have recognized the need for
adaptive access control mechanisms for dynamic collaborative environments.
As a result, several mechanisms have been proposed and demonstrated in
academic literature. Although these mechanisms have been verified to perform
as advertised, few of them have been validated to work within an operational
environment. Using a decentralized trust-based access control system of their
own design, the authors validated their system using a narrative technique to
develop a realistic operational scenario. They tested the system within the
scenario and then applied a cost and a success metric to the results to determine
the efficiency of their mechanism. The results show how the authors’ narrative
approach and success metric combine to provide more efficient and effective
analysis of how an access control mechanisms will perform when used in an
operational environment.

Keywords: validation testing, access control, trust management

The views expressed are those of the authors and do not reflect the official
policy or position of the US Army, the US Air Force, the Department of Defense
or the US Government.

1. Introduction

During development, programmers typically verify a system’s output to ensure that
the system is performing as expected and producing credible results. To complete
testing, however, a system must be validated to ensure that it performs reliably in
situations that are present in its intended operational environment. In the case of a
trust-based access control (TBAC) system, these situations include misbehaving users
and temporary collaborations. This paper looks at the validation of a TBAC system

2 William J. Adams and Nathaniel J. Davis, IV

called the Trust Management System (TMS) and examines its performance in terms
of effectiveness and cost to make correct decisions.

TBAC validation required more than getting the TMS to produce reputation or risk
assessments. Our approach started by describing our system’s expected operational
environment and then deriving specific tasks that needed to be tested in that
environment. After executing the tests, we applied specific metrics to measure the
TMS’ performance in that environment.

Dynamic collaborative environments (DCEs) formed to enable participants to
share information while, at the same time, allow them to retain control over the
resources that they brought with them to the coalition [1]. The trust management
system (TMS) [2] developed through this research effectively implemented a
decentralized access and permission management scheme. User permissions were
determined using a combination of behavior grading and risk assessment without the
need for preconfigured centrally managed roles or permission sets. Because the TMS
tracked a user’s behavior, using past behavior as an indication of future performance,
no pre-configuration of users or resources was required.

The TMS also offered a unique ability to enforce multiple access levels without the
burden of implementing and managing multiple cryptographic keys or hierarchies of
roles. A user provided its peers customized views of its contents and services based
on its trust profile and its individual assessment of the peer’s trustworthiness. As the
user’s evaluation of a peer’s reputation changed, the peer’s access changed to
safeguard the user’s resources, restricting access to those peers that have contributed
to the user’s and the coalition’s goals.

The contribution of this paper lies in its application of contextually derived
objectives and requirements to validate a TBAC system. We use a narrative technique
that is based on a realistic operational scenario. The scenario not only defines the
operating environment but it also constrains testing so that results are pertinent and
justified by real requirements. Having defined out test environment, we developed a
success metric that assesses the TBAC system. Our results show that our TBAC
implementation is far more effective and efficient than other current systems.

The rest of this paper is organized as follows. The next section describes our TMS,
an implementation of a TBAC system, and then presents some related work in the
field of trust-based access control and access control validation. Section 4 describes
our validation test and the metrics used to gauge performance effectiveness. Finally,
we conclude the paper and describe the future work that is ongoing with the TMS.

2. System Description

The TMS was developed to provide a trust-based privilege management mechanism
in a fluid, collaborative environment. Users were initiated information sharing with a
new peer in the DCE through an introduction process. This process in an exchange of
lists of DCE members that can refer the user to strangers. Once introduced, the user
collected behavior observations collected behavior observations from its trusted peers
on members of the DCE called Feedback Items (FI). FI were weighted with the

Validating a Trust-based Access Control System 3

reputation of the observer and placed in a temporally-ordered queue called a
Reputation Indexing Window (RIW).

When a peer requested a resource, a user applied a quantitative method (called the
3Win method) to the RIW to compute a Reputation Index (RI) for that peer before
allowing access to any of his or her resources. Once the RI was computed, the TMS
stored the RIW in its trust store (TS). The RI was compared against the user’s trust
thresholds and the decision to extend or deny trust was made.

3. Related Work

Access control systems have been implemented to grant or deny the ability to use a
resource or perform an operation in almost all computer systems. Before fielding,
they have been verified to perform as expected given a wide range of statistically
valid input. Few access control systems have been validated, however, because of the
number and complexity of operating environments. One exception was dRBAC [3]
that proposed an operational environment and then used this setting to derive the
operational requirements for system testing.

TBAC systems used behavior grading to assess the trustworthiness of a prospective
associate. They allowed or denied access based on a comparison of a quantitative
reputation rating and a trust threshold. Previous work by the authors [2] discussed
how the TMS was designed and verified to operate correctly. Other TBAC projects,
such as SECURE [4] and Vigil [5] also verified the operation of their systems but
stopped short of validating them in any realistic operational environment.

Validation testing was considered crucial to the success of a fielded system, as it
provided the engineers and users some certainty that the system could withstand the
demands of the specific operational environment and still perform as expected. Lo
Presti [1] presented one method of using an operational scenario to derive user
requirements for testing. The application of this method formed the first part of the
validation process presented in this paper.

Once the requirements were derived, the system’s success at accomplishing the
tasks was measured quantitatively. Assessing the efficiency of an access control
system [6] involved examining a ratio of three parameters: the number of correct
decisions, the number of false positive decisions, and the number of false negative
decisions. Linked to the efficiency rating, the cost of making decisions was also
considered. This evaluation included the amount of memory and communications
required by the system to make trust decisions. These criteria are explained in more
detail in the next section.

4. Validation

Validation ensured that the system met the user requirements. In our case, validation
guaranteed that the modules of the TMS worked together to make access control
decisions correctly under a variety of network conditions. Validation differed from

4 William J. Adams and Nathaniel J. Davis, IV

verification testing in that the system was tested against operational requirements
instead of purely quantitative comparisons.

The requirements used in validation testing came from two sources. The first
source was verification testing. These requirements, derived in part from the analysis
presented in previous work [2], placed the system in a test environment that simulated
the target operational conditions. The points of failure identified in each module
during verification testing were added to the validation test profile to determine the
impact of a module’s limitations on the system as a whole. The goal was that the
system continued to operate or at least failed in a safe state when these points of
failure were reached. For an access control system, such as the TMS, failing in the
“closed to all” state was desirable, since it was better to deny access to everyone at the
expense of false positive responses than to fail in the “open” position and suffer false
negative responses, which were more costly.

The second source of validation requirements was an operational scenario. In our
case, the scenario needed to involve mobile, collaborating users asking each other to
share resources. Once the general conditions of the scenario were determined, we
applied a narrative technique to construct the test environment for the system [1].

4.1 Describing the Validation Test Objectives

First, the objectives that needed to be tested within the system were enumerated.
These objectives addressed operational issues within the broad topic areas, such as
mobility, network density, and general peer behavior. Objectives were expressed in

Task 1: A user should be able to enter the community.
Condition: A user enters a location with an established identity.
Standard: The user joins the community and can interact with altruistic users or the control

plane until he or she establishes a reputation with other users.

Task 2: A user should be able to meet another user through the introduction process.
Condition: A community member meets another community member and wants to establish

an association. Other members, known to one or both of the prospective associates as trusted
peers, are available to provide references.

Standard: The prospective associates request and receive information on each other from
their trusted peers. This information is processed to determine the reputation index of each
other.

Task 3: A user should be able to move between sites (i.e., geographically separate sub-

networks) and continue to operate.
Condition: A user enters a location with an established identity.
Standard: The user joins the community and can interact with established trusted peers,

members of their own organization, altruistic users, or the control plane until he or she
establishes a reputation with other users.

Fig. 1. Enumeration of Validation Testing Objectives

Validating a Trust-based Access Control System 5

the form of task-condition-standard in order to be evaluated. Figure 1 presents three
tasks that were included in the validation testing. The benefit of using the task-
condition-standard format was that the task’s context and the conditions for its
success were explicitly described. This format was also extensible, so that tasks that
could be performed in different contexts were identified, described, and evaluated
separately. By describing the context of each task, we also helped build the
operational scenario we used as the background to the test.

Fig. 2. Operational Scenario Map

4.2 Operational Scenario

The scenario provided a framework for user requirements within realistic vignettes for
the purpose of testing interaction. In this scenario, we detailed the composition and
deployment of a notional disaster response task force. Since the system was
specifically concerned with the access control of resources within a collaborative
environment, users were assigned as resource providers in specific locations.

Figure 2 illustrates how a coalition might deploy in response to the notional
emergency response situation. The operational scenario was developed using
Training Scenario 2: Slow Building River Flood – Natural Disaster [7]. This scenario
called for cooperation between a variety of government organizations and local
volunteers to evacuate the inhabitants of a small riverside town and secure the town’s
infrastructure against damage. The local Emergency Management Services (EMS)
office coordinated the efforts of law enforcement agencies, local fire department,
volunteer rescue squad, and county health facility to form the coalition. EMS directed

6 William J. Adams and Nathaniel J. Davis, IV

the evacuation of the town’s inhabitants to the higher ground behind the town, where
the Red Cross established a shelter. Medical units treated injured people and
evacuated a senior citizen home, assisted by the helicopters and rescue squads. An
Army National Guard (ARNG) engineer unit provided technical or specialist
assistance to contain contamination from the town’s two sewage disposal sites and to
reinforce the Balcony Falls Dam. The coalition formed using the Incident Command
System (ICS) [8] and established a public information cell (PIC) to provide media
services with information, in accordance with the ICS guidelines.

Fig. 3. Coalition Locations and Resources

Although this scenario included severe inclement weather, members of the

coalition and the outside populace were able to move about the scenario location.
Communications, although unreliable, were present between the coalition locations
and the unaffected “safe” areas.

Figure 3 provides an example of the resources that require access control. In terms
of information resources, the coalition represented a hastily formed DCE. Users

Validating a Trust-based Access Control System 7

possessed a variety of computing and communications platforms that utilized both
wired and wireless communications. This research focused on the ability for users to
access coalition resources and, similarly, for the resource owners to maintain control
and protect their resources for the use of contributing coalition members. Validation
testing analyzed the TMS from the role of the Tactical Operation Center’s (TOC) file
server to assess system performance.

Given the composition and deployment of the notional coalition, we distributed
resources for coalition use. For example, the coalition might leverage the
connectivity present at the police building to co-locate the TOC and coalition
Headquarters (HQ). The community fire department and clinic would provide a
location for the medical unit.

Finally, vignettes were written to frame the points within the scenario that tested
the objectives. The scenario not only provided a realistic approach to developing the
vignettes but also helped order the tests if need be. Lo Presti’s narrative technique [1]
mapped objectives to vignettes and this exercise is demonstrated in the next section.

Fig. 4. Mapping Tasks to Vignettes within the Scenario

4.3 Vignettes

A vignette described a scene within the scenario. Each vignette was developed to be
as realistic as possible. Individual experiences contributed background details such as
terrain, weather, and timing. Technical details were derived from more quantitative
sources, however, and are described in Section 4.4.

A vignette established context within the test scenario in terms of time, location
and actor participation. Most importantly, the vignette’s description specified which
task it was exercising for the purposes of the test. Figure 4 illustrates how three tasks
(described in Figure 1) were tested within the scenario. Because the mapping of
objectives to vignettes was done before the test started, the test ran through several
vignettes in sequence, collecting data that was analyzed using the metrics described in
the next section.

8 William J. Adams and Nathaniel J. Davis, IV

4.4 Simulation Testing

Testing the TMS involved simulating user interaction in a mobile, dynamic
environment. A four-step process was developed to create scripts that simulated
behavior reporting and resource requests from the user’s peers. These scripts were
used by both the TMS and the base system (described below) during the simulation.

The first step constructed a simulation area using parameters applicable to the
operational scenario. The resulting Cartesian representation of the simulation area is
shown in Figure 5. BonnMotion 1.3a [9] simulated node movement inside a 3,000 x
4,000 meter bounded area. Attraction points mimicked the effect of roads and
facilities on nodal movement. Each Attraction Point was given an (x,y) coordinate,
roughly corresponding to the map in Figure 2. The intensity value of the point
weighted the attraction points so that a point with an x intensity level attracted nodes
with a probability x times higher than an un-weighted point. Locations with higher
intensity values were predicted to have heavier traffic. Nodes would approach an

Fig. 5. Simulation Location Parameters

Location X Y Attrac-

tion

Std.

Dev.

Shelter 300 3200 1.5 20

Hospital 800 2800 2.0 20

TOC 600 2200 4.0 20

Helipad 1000 1900 2.0 10

Bridge 1800 1800 5.0 10

Dam 1600 1000 2.0 10

Table 1. Individual Mobility Simulation
Parameters

Duration 5000 secs.
Warmup 3600 secs.
Sim area 3000 x 4000 meters
Nodes 100
Speed Min = 0.5 m/s

Max = 10 m/s
Pause Time 60 sec. (Max.)

Table 2. Group Mobility Simulation
Parameters

Average Nodes
per Group

3 (Std. Dev. 2)

Group Change
Probability

0.01

Distance to
Group Center

2.5 meters

Validating a Trust-based Access Control System 9

attraction point to a location within the point’s standard deviation from a Gaussian
distribution with a mean of 0 in meters.

The second step of the process involved three mobility models. The first model
was static, meaning that the nodes (i.e., users) were homogeneously distributed over
the simulation area and did not move. The second mobility model was the Random
Walk (RW) model [10]. Simulations run using the RW model used the node speed
and pause time parameters indicated in Table 1.

The reference point group mobility model (RPG) was used to simulate group
mobility. In addition to the speed and pause parameters that it shared with the RW
simulations, RPG required settings to describe the group dynamics in the simulation.
These settings, shown in Table 2, show that the simulation had groups of one to five
people. These groups were stable, in that the chance of people changing groups was
low. Raising this probability skewed the RPG results toward those seen in individual
mobility models, such as RW. The groups moved in open order, as the group
members could be as far as 2.5 meters from each other. Each mobility model was
executed on the same area mentioned above with and without attraction points. By
executing the chosen parameters on the selected grid and mobility model,
BonnMotion created a movement trace file for all the nodes in the network.

The third step in creating the scenario script fed the movement trace into
BonnMotion’s companion program, LinkDump. This program read the movement
trace and applied a transmission range of 100 meters (selected to simulate 802.11b
traffic) to determine when pairs of nodes could interact. The interaction file that was
produced listed each node and its unidirectional communications link. Having each
interaction listed twice reflected the “one-way” nature of the link. For example, if
Alice could interact with Bob, two links were listed: “Alice to Bob” link was listed in
Alice’s part of the file and the “Bob to Alice” link was listed in Bob’s portion.
Having the links listed in this manner facilitated the next step, which was determining
who could provide performance observations on whom.

The fourth and final step of the script generation process was to generate behavior
and trust related network traffic. A reporting period was set and had each node
generate a behavior grade once every ten seconds. A bin in a linked list represented
each reporting period. Each bin was itself a linked list of behavior grades for that
time period. A C++ program called Builder read the interaction list and populated the
bins with observations and reports. These transactions placed associates in the TMS’s
Trust Store. Once an associate was known, the generated traffic represented the flow
of behavior observations and reports.

As Builder read each link from the interactivity list, it called on the behavior model
to determine a grade for the observed node for that reporting period. That grade was
then adjusted based on the observer’s behavior model. Once Builder had read the
entire interactivity list and filled all of the appropriate bins, the behavior grades were
written to a script file of network traffic formatted for the TMS.

Initializing the scenario required that the user (e.g., Joe) be introduced to someone
by the KMS. Once Joe had an initial trusted peer (TP), he could participate in the
scenario and make other TPs. This startup requirement was viewed as feasible; since
Joe would be introduced to the people he would be working with when he arrived at
the TOC, thus allowing Joe to start associating in the DCE.

10 William J. Adams and Nathaniel J. Davis, IV

Testing the TMS required a means of simulating service requests received by a
resource providing DCE member from associates. Our simulation assumed the
viewpoint of the server in the TOC and processed requests for files via a HyperText
Transfer Protocol (HTTP) user interface. Modeling requests typically made to the
resources illustrated in Figure 3, we examined the process of modeling a typical
wireless system [11]. Given a generic inter-arrival rate we determined the number
and period of resource requests in our notional scenario.

Requests were classified by the nature of information being sent or received.
There were two general types of information: simple files and composite files.
Simple files were single data type (text or graphics) files. Examples of these included
email, web page (without graphics), or text files that were exchanged through an
HTTP process. Composite files were multiple simple files linked together. Web
pages with graphics were the most common examples. Each file type could come in
one of three sizes. After determining the type and size of a request, the request
duration was determined by approximating the times depicted in a “slow Internet”
connection [12], again following Ost’s example.

The test system simulated resource requests in a three step process. First, the
system determined if there was a request being serviced. If the system was free, it
checked to see if there was a request. Requests were serviced on a first come, first
served basis, with no attempt being made to restore or save requests that might be lost
if a system was busy. When there was a request, the system determined the type. The
system was then flagged as busy for the duration specified for that type of request.
The probability and duration for each type of request is shown in Table 3.

In order to provide a frame of reference for the results gathered during testing, a
base system was constructed using the basic reputation aggregation equations and
principles developed by Buchegger [13] and through the SECURE project [4]. The
base system utilized an exponential weighted moving average equation for reputation
scaling. It had fixed trust thresholds and exchanged reputation index values during a
modified introduction process.

In addition to the work of the previously mentioned authors, the base system was
equipped with a trust store-like reputation storage to enable the system to weight
behavior grades upon receipt. During all tests, the same underlying interactivity
traces and behavior models were applied during the creation of the test scripts.
Although the simplicity of the base system appeared beneficial at first glance, testing

Table 3. Probability and Duration of Resource Requests in a Simulated Collaborative
Environment

Request Type Probability Duration
(secs)

Small Simple File 0.6 1
Medium Simple File 0.1 2
Large Simple File 0.05 8
Small Composite file 0.15 1
Medium Composite File 0.075 6
Large Composite File 0.025 27

Validating a Trust-based Access Control System 11

revealed serious deficiencies in its performance. The most notable deficiencies were
found in the investigation of the success metric.

4.5 Success Metric

The TMS was an access control system, so its efficiency was determined by
examining how often the system correctly allowed access. The cost of making the
decisions, in terms of communications and storage overhead, was also included in the
determination. While acknowledging that the success metric of an access control
system was comparative (i.e., one system performs better than another given a set of
circumstances), we also experimented with critical settings to determine a feasible
parameter range within which the system was effective.

In the most basic sense, the system was efficient when it correctly allowed access
more often than it made incorrect decisions. Incorrect decisions came in two forms.
False positive decisions occurred when a trustworthy user was incorrectly denied
access. False negative decisions occurred when untrustworthy users were incorrectly
allowed access [6].

We examined the ratio R of correct answers to false negative and false positive
answers, shown in Equation 1. D was the total number of trustworthiness decisions
the TMS was asked to make. P was the number of false positive answers and N was
the number of false negative answers.

R = (D – (P + ωN))/ D (1)

We differentiated between false positives and false negatives and applied a
weighting factor in recognition of the fact that the cost of a false positive was much
less than the cost of a false negative. The cost weight (ω) was a value selected to
represent this difference in cost and, in these experiments, was set to (ω = 1) to show
the basic effectiveness of the TMS.

Having examined the efficiency of the TMS, we evaluated the overhead required
by the system to render its decisions. The general intent of the overhead metric (C)
was to determine the cost of the level of efficiency. Two forms of overhead were
included in the calculation of C.

Communications Overhead (CC) was defined as the number of Feedback Items (FI)
that needed to be sent between trusted peers to gain enough information to determine
a trustworthiness decision on a specific peer. Equation 2 illustrates how the system
divided the number of Introduction transactions (I) by the size of the weighted queue
of I, which is called the RIW. This computation assumed that the user would, in the
worst case, attempt to fill their RIW before calculating a new associate’s Reputation
Index (RI). This assumption is not as far-fetched as it may seem, especially if the
number of reports was few.

CC = I * |RIW| (2)

Storage Overhead (CS) was defined as the number of FI each node stored to create
a decision. Equation 3 determined CS by multiplying the amount of memory
designated for the TMS (TS) by the amount of memory used to store reputations that
are being actively calculated (e.g., the size of the RIW).

12 William J. Adams and Nathaniel J. Davis, IV

CS = |TS| * |RIW| (3)

Adding the two costs together yielded the number of FIs maintained by the TMS
over a period of time. Equation 4 used this result, divided by the number of correct
access control decisions (D - (P+N)), to provide the total cost for each correct
decision.

C = (CC + CS)/(D - (P+N)) (4)

When we executed the test scenarios, each scenario yielded independent values for
R and C, as shown in the following charts. We called these values R(S) and C(S),
where S was the scenario number that was used. In analyzing R(S), we wanted a
value as high as possible. The opposite was true of C(S), where we wanted the
smallest number possible.

Fig. 6. Components of the Success Metric

Fig. 7. Success Metric Components of the Base System Test

The a success metric, explained in Equation 1 expressed the number of correct

decisions the system made as a ratio against the number of false positive (P) and false
negative (N) decisions. Ideally, the column should be 100% correct (i.e., P+N = 0) to
represent that the system answered all of the requests correctly. Barring this situation,

Validating a Trust-based Access Control System 13

the goal was to minimize the number of false negative responses and then to eliminate
the number of false positive responses.

Figure 6 shows the three components of the success metric. These tests, performed
in a 100 node network with 30% misbehaving or non-contributing users, illustrated
how well the TMS responded to resource requests in three mobility cases. The graph
shows the proportional contribution of each response category to the over success
rate.

The TMS performed well in the static case, having 91% overall success in
responses, but had moderate numbers of false positive and false negative responses.
The overall success rate improved slightly in the RW case to 93% but the incidence of
false positives almost doubled as a proportion of the incorrect responses. These false
positive responses are of concern because they represent missed opportunities for
information exchange and the possibility for a trustworthy peer to submit negative
behavior reports on an otherwise “good” user. The RPG case was the most
worrisome. Although the overall success rate increased to 94% and there were no
false positive reports, the proportion of false negative reports doubled once again to
represent 6% of the total number of requests. This testing illustrated the importance
of examining the contributing components of the metric in addition to examining the
overall percentage of correct responses.

The ratios presented in the previous tests are put into a better frame of reference
when the TMS results are compared against those of the base trust system. Figure 7
shows how the base system performed. In addition to having a lower overall success
percentage, the base system exhibited an extraordinarily high percentage of false
negative responses. This high proportion was due to the lack of historical knowledge
maintained by the TMS for dynamic weighting of behavior grades [2].

Fig. 8. Comparison of Base and Trust Management System Success Rates

The comparison between the TMS and the base system clearly showed the benefits

of the 3Win method and the impact of dynamic grade weighting [2]. Figure 8 shows
the comparison of success of the TMS and the base system in different mobility
models. Tests using a general peer behavior condition of 30% misbehaving users, for
example, are entitled TMS30 and Base30, respectively. While it had been expected
that the base model performed would show less efficiency than the TMS, the poor
success percentage in the static and RW models was surprising considering the
general ratio of good users to bad was rather high. While the base system efficiency

14 William J. Adams and Nathaniel J. Davis, IV

increased slightly in the RW models with attraction points (RWa) and group mobility
(RPG), it never demonstrated better than 30% efficiency.

As the proportion of bad users increased, the TMS efficiency remained at or over
90%. The base system reached its highest performance level when there were 80%
bad users (see Figure 8, TMS80 and Base80, respectively). This case simulated a
situation where the TBAC system was effectively presented with fewer trustworthy
associates to select from.

4.6 Cost Metric

Using Equation 4, the communications and storage costs of each system were
combined to convey a sense of the behind the scenes requirements for making trust-
based access control decisions. The TMS incurred a fixed cost of having to store and
exchange all of the FI in its RIW while the base system only maintained an RI, so the
general expectation was that the TMS would be at a disadvantage in this comparison.

What tests determined, however, was that the TMS cost was far lower than the cost
incurred by the base system under the same test conditions, as shown in Figure 9.
This phenomenon occurred because, while the amount of data exchanged by the base
case during introductions was much smaller than used by the TMS, the number of
introductions was an order of magnitude higher. In most cases, the difference
between the base system and the TMS was 3:1 but, under RW mobility tests, the
difference grew to four or five to one bias against the base system.

When success and cost were combined and displayed, the overwhelming efficiency
of the TMS was reinforced. The TMS costs were several times less than those of the
base system, while providing much higher efficiency. As discussed above, the
combination of maintaining historical behavior grades, dynamic weighting of
feedback items at every reputation calculation, and adjusting trust thresholds based on
current levels of uncertainty have resulted in a much more robust trust system.

Fig. 9. Comparison of Cost Factors between TMS and Base System

Validating a Trust-based Access Control System 15

Fig. 10. Comparison of TMS Success Rate to Base Case System

Figure 10 illustrates this point using the RW mobility model and a network of 30%

misbehaving users. The TMS displays low cost and high efficiency while the base
system provided less success and more cost. Although changes to the base system
might compensate for some of the deficiencies, the use of a memory-less computation
method like the exponential weighted moving average puts and keeps the base system
at a disadvantage. Furthermore, the implementation of adjustable thresholds and
dynamic weighting in the TMS make it more flexible and able to adapt to a wider
range of network conditions.

5. Conclusion and Future Work

Validation ensured that the system was ready for the intended operational
environment. Using narrative techniques, we derived realistic requirements and
assessed the TMS’s efficiency and cost in meeting the demands of a TBAC system.
The key to appreciating the impact of these results was that the findings would have
less meaning were they not framed within a realistic operational scenario. While both
TMS and the base system were verified to produce expected results, validation testing
demonstrated that the TMS outperformed the base system in the expected operational
setting. This conclusion could not have been determined without establishing the
tasks to be accomplished, the conditions under which the task would be called for,
and the standard to which the task would be accomplished successfully.

Throughout its development, the TMS was applied to inter-personal access control
situations in mobile, often ad-hoc, networks. Currently, the TMS is being investigated
for use as an inter-organizational access control mechanism. In this new incarnation,
security policies and best business practices are applied to generate verifiable
behavior observations. Studies are ongoing to create a framework for evaluating
observed practices.

16 William J. Adams and Nathaniel J. Davis, IV

References

[1] Lo Presti, S., M. Butler, et al.: A Trust Analysis Methodology for Pervasive Computing
Systems. Trusting Agents for trusting Electronic Societies. R. Falcone, S. Barber, J. Sabater
and M. Singh, Springer (2005) 129 - 143

[2] W. J. Adams. Decentralized Trust-Based Access Control for Dynamic Collaborative
Environments, Ph.D. Dissertation, Department of Electrical and Computer Engineering,
Virginia Polytechnic Institute and State University, Blacksburg, VA (2006)

[3] Freudenthal, E., T. Pesin, et al.: dRBAC: distributed role-based access control for dynamic
coalition environments. Proceedings of the 22nd International Conference on Distributed
Computing Systems (ICDCS 2002). Vienna, AU, 2 - 5 July 2002, (2002) 411-420.

[4] Cahill, V., Shand, B., Gray, E., Bryce, C., Dimmock, N.: Using trust for secure
collaboration in uncertain environments. IEEE Pervasive Computing 2 (2003) 52—61

[5] Kagal, L., T. Finin, et al.: A framework for distributed trust management. Proceedings of
International Joint Conference on Artificial Intelligence (IJCAI-01), Workshop on
Autonomy, Delegation and Control, 2001, Seattle, WA (2001) 73-80.

[6] Bryce, C., N. Dimmock, et al.: Towards an Evaluation Methodology for Computational
Trust Systems. Proceedings of the Third International Conference in Trust Management
(iTrust 2005), Paris, FR (2005) 289-304.

[7] FEMA: Scenario and Incident Action Plan Catalog. Retrieved from
http://www.nwcg.gov/pms/forms/compan/iap.pdf (1994)

[8] FEMA: Incident Command System. Retrieved from
http://training.fema.gov/EMIWeb/IS/is195.asp (2004)

[9] de Waal, C. and M. Gerharz: BonnMotion. Retrieved from
http://web.informatik.uni-bonn.de/IV/Mitarbeiter/dewaal/BonnMotion/ (2005)

[10] Camp, T., J. Boleng, et al.: A Survey of Mobility Models for Ad Hoc Network Research.
Wireless Communication & Mobile Computing (WCMC): Special issue on Mobile Ad Hoc
Networking: Research, Trends and Applications 2(5) (2002) 483 - 502.

[11] Ost, A.: Performance of communication systems: a model based evaluation with matrix
geometric methods. New York, Springer (2001)

[12] Heidemann, J., K. Obraczka, et al.: Modeling the performance of HTTP over several
transport protocols. Networking, IEEE/ACM Transactions on 5(5) (1997) 616-630.

[13] Buchegger, S. and J.-Y. Le Boudec: A Robust Reputation System for Mobile Ad-Hoc
Networks. Lausanne, Switzerland, Ecole Polytechnic Federal de Lausanne (2003)

