
 
Abstract – As mobile computing platforms make 
dynamic collaborative environments more common, 
the need for access control becomes more imperative. 
Centralized access control determination fails to work 
in unstructured networks, as the information 
necessary for pre-configuration is not available. This 
situation is exacerbated by the dynamic nature of the 
environment’s membership, so that the time and 
resources expended in off-line management are 
largely wasted. This paper presents a decentralized 
access control system that implements sociological 
trust constructs in a quantitative system to evaluate 
potential associates for collaborative interaction. A 
distributed, node-centric approach to trust 
management processes behavior grades into a 
reputation that nodes use to determine 
trustworthiness their peers before establishing 
associations. The application of a reputation against 
a dynamic risk assessment gives a measure of 
expectation of a peer’s behavior, based on past 
performance and current the network environment. 
These safeguards work together to make a safer 
dynamic collaborative environment. 
 
 

1 Introduction 

The goal of this research was to create a 
decentralized trust-based access control system for a 
dynamic collaborative environment (DCE). DCEs 
assembled and changed membership as required to 
achieve the group’s goals. A characteristic of these 
environments was that there was no way of knowing 
who might join the group, no way of refusing anyone 
entry into group, and no way of determining how long 
members would remain in the group.  

DCEs formed to enable participants to share 
information while, at the same time, allow them to 
retain control over the resources that they brought with 
them to the coalition [1]. The trust management system 
(TMS) developed through this research effectively 
implemented a decentralized access and permission 

management scheme. User permissions were 
determined using a combination of behavior grading 
and risk assessment without the need for preconfigured 
centrally managed roles or permission sets. Because 
the TMS tracked a user’s behavior, using past behavior 
as an indication of future performance, no pre-
configuration of users or resources was required. 

The TMS also offered a unique ability to enforce 
multiple access levels without the burden of 
implementing and managing multiple cryptographic 
keys or hierarchies of roles. A node provided its peers 
customized views of its contents and services based on 
its trust profile and its individual assessment of the 
peer’s trustworthiness. As the node’s evaluation of a 
peer’s reputation changed, the peer’s access changed to 
safeguard the node’s resources, restricting access to 
those peers that have contributed to the node’s and the 
coalition’s goals. 

The contribution of this work lies in its node-
centric approach to trust-based access control that 
combines reputation and risk (representing two distinct 
types of trust) and a system memory to sustain them 
both. Creating a trust-based access control mechanism 
will enable coalitions to organize quickly so that the 
group can cooperate and work toward shared goals 
through the fusion of credential and reputation-based 
access control system research and applying their 
concepts to wireless ad-hoc networks.  

The rest of this paper is organized as follows. 
Section 2 defines the sociological concept of trust and 
differentiates the types of trust. We present some 
related work in Section 3. In Section 4, we describe the 
overall security architecture for the system, 
emphasizing the role of the TMS. Section 5 focuses on 
the design of the TMS that resides on each node. 
Subsections provide further information on the three 
critical modules of the TMS. Section 6 discusses the 
system testing. Section 7 concludes the paper and 
describes the future work that is planned for the TMS. 
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2 Defining trust 

Trust, and more importantly decisions on 
trustworthiness, are omnipresent in life [2]. Trust, is the 
basic underpinning of a cooperative environment. Trust 
is not an inherited trait but is learned as an individual 
interacts with others, basing the decision to trust on 
historical evidence that led them to predict another 
person or entities’ future behavior [3]. When this 
prediction is shown to be incorrect, the other person is 
trusted less, if at all as the agent takes steps to avoid 
being victimized by self-centered peers.  

McKnight and Chevrany [4] described a framework 
that provided a taxonomy of three types of trust (see 
Figure 1). From this taxonomy, they generalized the 
process an individual used to influence their behavior. 
Starting from the bottom of the figure, this model 
shows how the trust types combine with trust beliefs 
and are adjusted by trust intentions before becoming 
behavior; the expression of the trust decision. Section 5 
discusses the model’s implementation as the TMS. 

Literature often confused trust with reputation [5]. 
Trust is active; it is a node’s belief in the trust qualities 
of a peer. Trust is extended from a node to its peer. 
Reputation is passive; it is the perception that peers 
form about a node. Reputations are individual in the 
sense that peers can form different reputations about 
the same node, based on the fact that they can have 
different experiences or observe different behavior. 

Humans developed a concept of reputation as an 
aggregation of trust information. They used this 
concept to predict the actions of others based on 
historical behavior information gained through 
personal interaction or the shared observations of peers 
[6]. Researchers pointed out that reputation could be 
utilized in a virtual society to make up for the lack of 
the physical, interpersonal clues that humans use to 
determine trustworthiness.  

3 Related work 

Previous work by the authors stressed the 
difference between authentication and authorization 
[7]. Briefly, authentication stresses the possession and 
verification of a cryptographic key. These 
characteristics, by themselves, give no indication of 
authorization or permission. In fact, uncertain 
communications links and unstructured networks work 
against users that seek to verify identity certificates and 
keys. Certificate authorities can be out of range or PKI 
certificate chains broken by users moving or 
conserving energy. Authentication systems still require 
authorization mechanisms to assign and enforce user 
permissions. 

Resnick [8] discussed the risks in exchanging 
valuable information with parties who are identified 
only through pseudonyms and self-descriptions in 
centralized systems. He elaborated on the concept of 
reputation systems, a means by which the behavior of 
the participants in information exchanges was tracked 
and each contributor gained an expectation of the 
others’ actions. The psychological concept that 
individuals would assist others in order to build and 
maintain a positive reputation helped instigate a line of 
research into the application of behavior grading and 
cooperation incentives in networked systems. 

In light of the difficulties borne of relying on 
communications links, researchers investigated more 
node-centric, behavior-based means of determining 
user permissions. Many studies used systems of social 
networks, implemented as directed graphs, to quantify 
reputation values [9, 10]. These studies assigned edge 
weights as a means of expressing the reputation the 
node at the origin of the edge had for the node at the 
destination. The reputation of two nodes was calculated 
by summing the edges between the nodes. These 
systems had the same deficiency as those that used 
certificate chains, in that the knowledge required to 
maintain an up to date set of edge weights was 
impractical, if not impossible, for a mobile user to 
acquire. 

A better example of trust-based access control in a 
wireless environment was offered by the SECURE 
project [11]. This project investigated the application 
of trust-based methods to enable short term, ad-hoc 
collaboration between handheld devices. Nodes joined 
the network by requesting access from a self-appointed 
group leader. The leader then queried the other group 
members and they voted on whether or not to admit the 
new node. SECURE did not attempt to implement a 
behavior history because nodes did not possess a 
verifiable, non-reputable identity and, therefore, any Figure 1 Implementation of Trust Constructs  



behavior history would be rendered suspect by the 
possibility of a Sybil attack [12]. Only after a node was 
admitted to the network could its peers track its 
behavior and then for only that session. The authors’ 
admit that their method was susceptible to the Sybil 
attack and did not implement trust thresholds due to the 
lack of a persistent behavior history. These deficiencies 
made the project’s results unsuitable for 
implementation in a situation where the TMS was 
expected to protect live data. 

4 System security architecture 

Our TMS was implemented as a central, data 
processing layer of the overall system security 
architecture, as shown in Figure 2. Our Key 
Management System (KMS) managed user identity 
certificates and established the rules for issuing, 
reissuing, and revoking certificates [13]. Because our 
target was to operate in a decentralized environment, 
the design goals were to decrease the system’s reliance 
on cryptographic validation and to provide the KMS 
with access control decisions based on the perceived 
trustworthiness of the perspective peer node.  

Our TMS provided our decentralized KMS with an 
abstract representation of the overall trustworthiness of 
nodes, based on the activity of the nodes in the 
network. As the central layer, the TMS resided on each 
node and helped determine whether to trust or distrust 
its peers based on its individual trust thresholds. The 
KMS then reported its access control decisions, called 
reports, to other KMS nodes. The reports are then 
treated as trusted information and used to evaluate a 
peer’s trustworthiness (see Section 5.1) or estimate the 
uncertainty in a network area (see Section 5.4). 

At the lowest layer, an intrusion detection system 
(IDS) or monitoring scheme [14, 15] provided periodic 
performance observations to the network. These 
observations were distributed throughout the system in 
a modified epidemic routing algorithm, similar to the 
selective dissemination scheme proposed in [16]. The 
observations compared a node’s expectations against 
the observed performance of its neighbors. 
Observations were made on trusted peers (TPs) as well 
as on neighboring nodes that were within “listening 
range” but were not necessarily directly trusted. Nodes 
observed performance in areas such as routing or file 
access and periodically generated positive or negative 
feedback. These Feedback Items (FIs) were passed 
only to other TPs. 

5 Trust management system 

This research has developed a system where user 
nodes cooperated to exchange behavior reports. Each 
node used the TMS to establish a private record of each 
peer node’s behavior history. This history, based on 
evidence in the form of signed FIs, was expressed as a 
reputation index (RI). The RI provided an expectation 
of their partner’s behavior before choosing to extend 
trust. Since each node kept its RIs private and shared 
only the personally observed FIs, one node’s reputation 
could differ between peers. By evaluating each other’s 
trustworthiness, a node chose to interact with 
contributing peers and avoided misbehaving nodes.  

Figure 2 shows the TMS that is installed on each 
node. In the following sections, this paper discusses 
how the TMS implements each of McKnight and 
Chervany’s [4] constructs (see Figure 1) to produce an 
access control decision.  

5.1 Implementing reputation scaling  

Each node gathered and processed feedback to 
calculate a usable RI for its peers. The TMS 
implemented an Interpersonal Trust model [6] to 
represent the reputations that were compiled by a node 
on each of its peers. This trust type was node specific, 
so that the trust of one node to another was direct and 
not transitive.  

 
Figure 2 Trust Management System 
Architecture 



The reputation value needed to give a conservative 
approximation of the feedback input. We also wanted 
to emphasize current behavior while aging older input 
to diminish its impact on the reputation calculation. A 
node maintained a reputation value for each TP. A 
node entered the network with a reputation value of 0, 
a level of trust indicating that the node was unknown. 
Our expectation was that a node would desire a 
positive reputation. A node with a reputation below a 
certain threshold would be isolated as nodes refused to 
interact with it [8].  

The system denoted the reputation Alice 
maintained of Bob as RIA(B). The RI is represented by 
number values in the range [-1, 1]. This value 
represented the trust Alice placed in Bob; the higher 
the number, the more trust was imparted. Peers viewed 
a user with a reputation of –1 as completely 
untrustworthy. Peers viewed a user with a reputation of 
+1 as completely trustworthy. 

Our Reputation Scaling module applied different 
levels of trust to reports and observations. Because 
everyone in the network trusts the KMS implicitly, 
nodes placed full trust in KMS reports (i.e., RIx(KMS = 
1). On the other hand, periodic observations (obst) from 
other peers and friends were weighted using the 
reporting node’s reputation (RIx(Y)) before being 
integrated into the reputation calculation, as shown in 
equation 1. These weighted observations were called 
Feedback Items (FIs). 

FI = RIx(Y) * obst   (1) 

We developed the 3Win method to calculate the RI 
for each peer node [17]. Modeled after a method of 
removing transients using sub-samples [18], this 
method divided a node’s history into three weighted 
performance windows that revealed tendencies in a 
node’s behavior, shown in Equation 2 [17]. These 
windows were named Reputation Indexing Windows 
(RIWs) and numbered one through three. RIW1 
contained the newest FIs and RIW3 held the oldest. FIs 
were “pushed” through the windows (i.e., from RIW1 
to RIW2 to RIW3) as new FI arrived. When an FI was 
pushed out of RIW3 it was discarded. 

λ = 0.66; µ = 0.22; ν = 0.11   
RI = (λ* RIW1) + (µ * RIW2) + (ν * RIW3) (2) 

Pushing FIs through the RIW diminished the 
impact of older items on the reputation calculation. The 
resulting RI emphasized current performance and 
provided a conservative approximation of the behavior 
trend. The 3Win approach allowed a node to improve a 
poor RI by demonstrating sustained “good” behavior. 

Finally, 3Win provided the non-repudiation not 
available in other RM systems by maintaining the FIs 
that were used to derive a peer’s reputation. This 
digitally signed evidence substantiated the given 
reputation value and meant that nodes could note refute 
behavior grades. 

5.2 Implementing the trust store 

Where Interpersonal trust was dependent upon peer 
behavior trends and System trust was determined 
through an evaluation of system behavior tendencies, 
Situational trust was independent of the behavior of 
other users altogether. This type of trust used the trust 
store, representing the user’s memory of previous peers 
and situations, to determine what action it would take. 
A situational trust decision was predicated on 
remembering a previous decision that had yielded a 
positive outcome, regardless of the behavior of peers 
that may or may not have been involved. 

The trust store contained the identity certificates 
and the RIWs for each of a node’s TPs in structures 
called Atomic Behavior Records (ABRs). Because the 
KMS verified identity certificates, the TMS used the 
ABR’s permanent section only as an anchor to 
associate the reputation with. Our system allowed self-
issued certificates in addition to those issued by the 
coalition or a foreign KMS. Each ABR consumed 
approximately 2.2 kB, the bulk of this in FI. 

ABRs of active associates were kept in the Trust 
Store. When the Trust Store was full, the node 
selectively eliminated or “forgot” associates to make 
space for new objects [19]. While modern mobile 
networking devices continue to expand in memory size 
and processing capacity, we found that there is a 
practical limit to how much information needed to be 
stored. While more storage (“bigger is better”) might 
seem to be a good idea, in practice storing more 
information hindered a node by making it maintain that 
information. If a node remembered old and inactive 
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associates, it lost processing cycles and expended 
energy sorting, accessing, and manipulating ABRs that 
were not needed. By limiting the amount of stored 
information, we increased the memory and processing 
resources that could be made available to applications 
and data. 

Efficiency, in the case of the Trust Store 
management problem, was defined as limiting the 
number of “re-introductions” that a node required. Re-
introductions were cases where a node forgot a peer 
that it once had security associations with and had to 
go through the entire introduction process, as if the two 
nodes had never dealt with each other before. Through 
testing, we wanted to find the smallest trust store that 
minimized the number of introductions the system had 
to perform.  

Sizing tests performed using a random waypoint 
mobility simulation showed that the optimum size for a 
trust store was 30% of the total number of users of the 
network (N). This optimum was determined by 
comparing the increasing amount of memory required 
for the ABRs against the number of introductions 
required in a network of a certain density. Sparse 
networks (e.g., those with less than 100 members per 
square kilometer) required a user to store a higher 
percentage of associates’ credentials due to mobility. 
Once a certain density was reached (i.e., 100 mobile 
users in a 1000 x 1000 meter area), however, the 
tradeoff point stayed at the 30% mark, as shown in 
Figure 3. This means that if a user could know how 
many nodes were in the network, he or she could size 
their system memory to minimize reintroductions and 
maintain only those credentials that it needs or will 
need in the near future. 

Since the ad-hoc nature of a MANET prevents 
anyone from knowing the number of users in the 
network at any time, we developed the concept of 
network density sampling, shown in Equation (3). 

D = (Nπr2)/A   (3) 

In this equation, a node entered a network and 
listened. It knows r (the transmission radius) and 
assumed A (the area of the mobility area) to be a 
standard one square kilometer. As it listened, the node 
counted N (the number of nodes it could hear). From 
this equation we created three representative network 
densities: sparse, medium and dense.  Sparse networks 
have a D of 1, medium networks a D of 5, and dense 
networks a D of 10. From this density, the node set the 
size of its Trust Store and began operating. If, at any 
point, the node detected that it had to reintroduce itself 

more than indicated by the density factor, it re-sampled 
the nodes and reset the Trust Store size. 

5.3 Implementing trust thresholds 

A user established a trust threshold based on the 
selected trust profile. Every user had two trust 
thresholds, as shown in Figure 4. One was a trust 
threshold (τT), above which a user extended trust. The 
other was a distrust threshold (τD), below which a user 
withdrew trust. A threshold was expressed as a value 
between [-1,1].  

A user evaluated the RIs of prospective peers 
against these thresholds. If the peer’s reputation 
exceeded the trust threshold, trust was allowed and 
access might be granted. If, at a later time, the peer’s 
reputation fell below the distrust threshold, a user 
would withdraw its trust and might, based on its 
individual security policy, report the access attempt to 
the network’s control plane. 

Peers viewed users that they have no information 
about with a reputation value of 0. Liu and Issarny [5] 
point out that this assignment made no attempt to 
differentiate between newcomers, strangers, users that 
had not participated (free-loaders), or users whose 
reputations had been calculated to be 0. Zero was 
considered a neutral value as it gave a new user a basic 
reputation to start with while limiting the impact 
strangers, free-loaders, and active users with low 
reputations had to the network. Referring back to 
Section 2, a RIx(Y) of 0 implied that the user needed 
more information before making a decision, rather than 
implying trust or distrust. 

 
Figure 4 Example of Trust Thresholds 



5.4 Implementing risk assessment  

The Risk Assessment module (RAM) implemented 
System Trust. The RAM evaluated globally available 
information, in the form of reports and complaints from 
the KMS, and first hand observations to determine the 
general uncertainty of the network as a situational 
norm. Expressed as a Global Risk Index (GRI), the 
RAM estimated how risky an action was likely to be, 
given the current state of trust events in the network. 
Simplistically, this trust state could be phrased as “if 
other people are having success then I’m more likely to 
give it a try.” The risk assessment was derived from the 
information provided by the network control plane. 

Risk evaluation was different from reputation 
scaling because the risk assessment considered all of 
the trust reports in the system, not just those of a 
node’s TPs. Once determined, the risk assessment of 
the network was applied to a node’s trust thresholds, 
adjusting the threshold to protect the node. The 
adjustment was temporary; as the node made a risk 
assessment on a regular basis and never altered the 
node’s trust profile or its trust thresholds. 

Given TD as the default distrust threshold and τD as 
the adjusted distrust threshold:  

α= 0.65, β= 0.2, γ=0.1, δ=0.05  (4) 
GRIt = (α * FI1) + (β * FI2) + (γ * FI3) + (δ * GRIt-1)  

 
τD = TD + (GRIt * TD)   (5) 

The GRI equation works in as a filter to weight 
current information against historical input [18]. As 
behavior trends change, we compare the computed GRI 
to the current distrust threshold and adjust it 
accordingly. The trust threshold (τT) is adjusted by the 
same amount to maintain the width of the “trust zone.” 

6 System testing 

Once all of the modules had been verified, they 
were combined to create a prototype TMS. A testing 
scenario was developed around Training Scenario 2: 
Slow Building River Flood – Natural Disaster [20]. 
This scenario called for the cooperation between a 
variety of government organizations, local volunteers, 
and federal advisors to respond to a natural disaster. 
These agencies form a dynamic collaborative 
environment to evacuate civilians, stabilize or restore 
infrastructure, and care for wounded. In technical 
terms, this required a TMS user to traverse a dynamic 
cooperative environment that consisted of different 

density networks with a wide variety of behavior and 
collusion scenarios. 

We used Lo Presti’s narrative technique to 
construct the test environment for the system [21]. 
First, the test objectives were enumerated. Then, a 
detailed operational scenario was created. In this 
scenario, this required the creation of a notional 
disaster response task force, as described above. Since 
the system is specifically concerned with the access 
control of resources within a collaborative 
environment, notional users were assigned as resource 
providers. Finally, vignettes were written within the 
framework of the scenario to test the objectives. Lo 
Presti’s narrative technique included mapping 
objectives to vignettes and this exercise is detailed in 
other work by the authors [7]. 

The TMS was tested to ensure the correctness of its 
access control decisions. Critical variables included the 
reporting frequency required to correctly ascertain a 
peer’s trustworthiness, the impact of network density 
on the number of required introductions, and the 
sensitivity of the Risk Assessment algorithm to 
different risk environments. Testing used individual 
mobility models to determine the interactivity between 
nodes. Once the interactivity was determined, behavior 
profiles were applied to each node to generate test 
scripts. These scripts could be configured to model 
increasing numbers of colluding, misbehaving peers in 
a mixture of network environments. To date, the TMS 
has performed consistently well in simulations 
involving mobility and interaction in single and 
multiple node density environments.  

Testing the TMS involved simulating user 
interaction in a mobile, dynamic environment. A three-
step process was developed to create scripts of 
behavior reporting. These scripts simulated the activity 
of the KMS and the IDS layers of the security 
architecture and were read by the TMS during the 
course of the simulation. The first step was to select a 
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mobility model and parameters applicable to the test 
objectives. BonnMotion 1.3a [22] simulated random 
waypoint node movement inside a bounded area 3,000 
x 4,000 meters. Attraction points were used to mimic 
the effect of roads and facilities on nodal movement. 
Different density networks were created by 
concatenating simulations, each containing different 
numbers of nodes to represent the various user centers. 
Second, the movement trace was fed into 
BonnMotion’s companion program, LinkDump. This 
program read the movement trace and applied a 
transmission range of 100 meters (selected to simulate 
802.11 traffic) to determine when pairs of nodes could 
interact. The interaction file that was produced listed 
each node and its unidirectional communications link. 
Having each interaction listed twice reflected the “one-
way” nature of the link. The third step of the scripting 
process was to generate behavior related network 
traffic using a C++ program called Builder. As Builder 
read each link from the interactivity list, it used a finite 
state machine behavior model to determine a grade for 
that reporting period. That grade was then adjusted 
based on the observer’s behavior model. 

Figure 5 illustrates a portion of a test scenario. This 
figure shows one individual’s view of his peers in the 
network as he executed his duties. This individual (e.g., 
Joe) entered the network in the Tactical Operations 
Center, a medium dense network of mostly “good” 
users. Bootstrapping the scenario required that the user 
(e.g., Joe) be introduced to someone by the KMS. Once 
Joe had a TP, he could roam around and make other 
friends. This bootstrap was viewed as feasible; since 
Joe would be introduced to the people he would be 
working with when he arrived at the TOC. In more 
fluid situations, this initial introduction would need to 
have taken place when the KMS issued Joe his identity 
certificate. In either case, the availability of the KMS 
allows a high probability of being introduced to an 
associate by a DCA, thus allowing Joe to start 
associating in the DCE. 

One peer, Ken, exhibited selfish behavior 
symptoms, either by not responding to requests for 
referrals or not requesting resources properly. Ken’s 
behavior resulted in Joe adjusting his trust thresholds to 
account for the increased risk in the network. Joe’s 
duties then took him to a local dam for a site survey. 
This location was a sparse network and Joe met an 
associate named Natasha. She cooperated with Joe and 
they left the dam to attend the daily briefing at the 
operation’s Public Information Center (PIC). The PIC 
was a dense, high risk environment due to the high 
percentage of non-coalition peers. Despite the risky 
environment, Joe encountered Ed and extended his 
trust based on a credential exchange. At the same time, 

Natasha’s behavior has become less desirable. When 
she attempted to introduce her collaborator Boris, the 
combination of Boris’ poor behavior and her declining 
reputation resulted in both Boris and Natasha being 
distrusted and isolated. This example showed the 
consistency and correctness of the TMS to provide 
accurate access control decisions in different density 
networks in the face of different risk conditions. 

7 Conclusion and future work 

Trust management made access control decisions in 
mobile ad-hoc collaborative environments without the 
need for pre-configuration or centralized management. 
By linking a node’s identity to observations on its 
performance, its peers calculated its reputation and 
evaluated its trustworthiness. Through a combination 
of credential exchange (introduction) and behavior 
grading, nodes shared performance observations and 
were able to calculate reputations of newly encountered 
nodes in a peer-to-peer manner. 

In this paper we showed that a node-based TMS 
could implement three types of trust, apply risk and 
reputation calculations, and present the application 
layer security system with an access control decision. 
The TMS provided a unique ability to enforce multiple 
access levels dynamically, based on behavior 
information. A node provided its peers customized 
views of its resources based on its individual trust 
profile and the peer’s trustworthiness. As reputations 
changed, the amount of access changed to preserve a 
node’s resources for those peers that have 
demonstrated positive contributions to achieving the 
coalition’s goals. 

This work contributed an alternative access control 
systems that was more suitable to ad-hoc environments 
than traditional centralized security methods. Using the 
trust constructs of McKnight and Chervany, we have 
realized a complete trust management-based access 
control system. The TMS has proven its ability to 
calculate nodal reputations, apply risk assessment, and 
react appropriately to requests for access. The system 
has been tested against a set of operational scenarios 
[20]. Portions of these results of these tests have been 
documented in our previous research [7, 17, 23].  
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