

Abstract – As mobile computing platforms make
dynamic collaborative environments more common,
the need for access control becomes more imperative.
Centralized access control determination fails to work
in unstructured networks, as the information
necessary for pre-configuration is not available. This
situation is exacerbated by the dynamic nature of the
environment’s membership, so that the time and
resources expended in off-line management are
largely wasted. This paper presents a decentralized
access control system that implements sociological
trust constructs in a quantitative system to evaluate
potential associates for collaborative interaction. A
distributed, node-centric approach to trust
management processes behavior grades into a
reputation that nodes use to determine
trustworthiness their peers before establishing
associations. The application of a reputation against
a dynamic risk assessment gives a measure of
expectation of a peer’s behavior, based on past
performance and current the network environment.
These safeguards work together to make a safer
dynamic collaborative environment.

1 Introduction

The goal of this research was to create a
decentralized trust-based access control system for a
dynamic collaborative environment (DCE). DCEs
assembled and changed membership as required to
achieve the group’s goals. A characteristic of these
environments was that there was no way of knowing
who might join the group, no way of refusing anyone
entry into group, and no way of determining how long
members would remain in the group.

DCEs formed to enable participants to share
information while, at the same time, allow them to
retain control over the resources that they brought with
them to the coalition [1]. The trust management system
(TMS) developed through this research effectively
implemented a decentralized access and permission

management scheme. User permissions were
determined using a combination of behavior grading
and risk assessment without the need for preconfigured
centrally managed roles or permission sets. Because
the TMS tracked a user’s behavior, using past behavior
as an indication of future performance, no pre-
configuration of users or resources was required.

The TMS also offered a unique ability to enforce
multiple access levels without the burden of
implementing and managing multiple cryptographic
keys or hierarchies of roles. A node provided its peers
customized views of its contents and services based on
its trust profile and its individual assessment of the
peer’s trustworthiness. As the node’s evaluation of a
peer’s reputation changed, the peer’s access changed to
safeguard the node’s resources, restricting access to
those peers that have contributed to the node’s and the
coalition’s goals.

The contribution of this work lies in its node-
centric approach to trust-based access control that
combines reputation and risk (representing two distinct
types of trust) and a system memory to sustain them
both. Creating a trust-based access control mechanism
will enable coalitions to organize quickly so that the
group can cooperate and work toward shared goals
through the fusion of credential and reputation-based
access control system research and applying their
concepts to wireless ad-hoc networks.

The rest of this paper is organized as follows.
Section 2 defines the sociological concept of trust and
differentiates the types of trust. We present some
related work in Section 3. In Section 4, we describe the
overall security architecture for the system,
emphasizing the role of the TMS. Section 5 focuses on
the design of the TMS that resides on each node.
Subsections provide further information on the three
critical modules of the TMS. Section 6 discusses the
system testing. Section 7 concludes the paper and
describes the future work that is planned for the TMS.

TMS: A Trust Management System for Access Control
 in Dynamic Collaborative Environments

William J. Adams,
Member, IEEE

Virginia Polytechnic Institute and State
University,

Blacksburg, VA 24060

and Nathaniel J. Davis, IV
 Senior Member, IEEE

Air Force Institute of Technology,
Wright Patterson AFB, Dayton OH 45433

2 Defining trust

Trust, and more importantly decisions on
trustworthiness, are omnipresent in life [2]. Trust, is the
basic underpinning of a cooperative environment. Trust
is not an inherited trait but is learned as an individual
interacts with others, basing the decision to trust on
historical evidence that led them to predict another
person or entities’ future behavior [3]. When this
prediction is shown to be incorrect, the other person is
trusted less, if at all as the agent takes steps to avoid
being victimized by self-centered peers.

McKnight and Chevrany [4] described a framework
that provided a taxonomy of three types of trust (see
Figure 1). From this taxonomy, they generalized the
process an individual used to influence their behavior.
Starting from the bottom of the figure, this model
shows how the trust types combine with trust beliefs
and are adjusted by trust intentions before becoming
behavior; the expression of the trust decision. Section 5
discusses the model’s implementation as the TMS.

Literature often confused trust with reputation [5].
Trust is active; it is a node’s belief in the trust qualities
of a peer. Trust is extended from a node to its peer.
Reputation is passive; it is the perception that peers
form about a node. Reputations are individual in the
sense that peers can form different reputations about
the same node, based on the fact that they can have
different experiences or observe different behavior.

Humans developed a concept of reputation as an
aggregation of trust information. They used this
concept to predict the actions of others based on
historical behavior information gained through
personal interaction or the shared observations of peers
[6]. Researchers pointed out that reputation could be
utilized in a virtual society to make up for the lack of
the physical, interpersonal clues that humans use to
determine trustworthiness.

3 Related work

Previous work by the authors stressed the
difference between authentication and authorization
[7]. Briefly, authentication stresses the possession and
verification of a cryptographic key. These
characteristics, by themselves, give no indication of
authorization or permission. In fact, uncertain
communications links and unstructured networks work
against users that seek to verify identity certificates and
keys. Certificate authorities can be out of range or PKI
certificate chains broken by users moving or
conserving energy. Authentication systems still require
authorization mechanisms to assign and enforce user
permissions.

Resnick [8] discussed the risks in exchanging
valuable information with parties who are identified
only through pseudonyms and self-descriptions in
centralized systems. He elaborated on the concept of
reputation systems, a means by which the behavior of
the participants in information exchanges was tracked
and each contributor gained an expectation of the
others’ actions. The psychological concept that
individuals would assist others in order to build and
maintain a positive reputation helped instigate a line of
research into the application of behavior grading and
cooperation incentives in networked systems.

In light of the difficulties borne of relying on
communications links, researchers investigated more
node-centric, behavior-based means of determining
user permissions. Many studies used systems of social
networks, implemented as directed graphs, to quantify
reputation values [9, 10]. These studies assigned edge
weights as a means of expressing the reputation the
node at the origin of the edge had for the node at the
destination. The reputation of two nodes was calculated
by summing the edges between the nodes. These
systems had the same deficiency as those that used
certificate chains, in that the knowledge required to
maintain an up to date set of edge weights was
impractical, if not impossible, for a mobile user to
acquire.

A better example of trust-based access control in a
wireless environment was offered by the SECURE
project [11]. This project investigated the application
of trust-based methods to enable short term, ad-hoc
collaboration between handheld devices. Nodes joined
the network by requesting access from a self-appointed
group leader. The leader then queried the other group
members and they voted on whether or not to admit the
new node. SECURE did not attempt to implement a
behavior history because nodes did not possess a
verifiable, non-reputable identity and, therefore, any Figure 1 Implementation of Trust Constructs

behavior history would be rendered suspect by the
possibility of a Sybil attack [12]. Only after a node was
admitted to the network could its peers track its
behavior and then for only that session. The authors’
admit that their method was susceptible to the Sybil
attack and did not implement trust thresholds due to the
lack of a persistent behavior history. These deficiencies
made the project’s results unsuitable for
implementation in a situation where the TMS was
expected to protect live data.

4 System security architecture

Our TMS was implemented as a central, data
processing layer of the overall system security
architecture, as shown in Figure 2. Our Key
Management System (KMS) managed user identity
certificates and established the rules for issuing,
reissuing, and revoking certificates [13]. Because our
target was to operate in a decentralized environment,
the design goals were to decrease the system’s reliance
on cryptographic validation and to provide the KMS
with access control decisions based on the perceived
trustworthiness of the perspective peer node.

Our TMS provided our decentralized KMS with an
abstract representation of the overall trustworthiness of
nodes, based on the activity of the nodes in the
network. As the central layer, the TMS resided on each
node and helped determine whether to trust or distrust
its peers based on its individual trust thresholds. The
KMS then reported its access control decisions, called
reports, to other KMS nodes. The reports are then
treated as trusted information and used to evaluate a
peer’s trustworthiness (see Section 5.1) or estimate the
uncertainty in a network area (see Section 5.4).

At the lowest layer, an intrusion detection system
(IDS) or monitoring scheme [14, 15] provided periodic
performance observations to the network. These
observations were distributed throughout the system in
a modified epidemic routing algorithm, similar to the
selective dissemination scheme proposed in [16]. The
observations compared a node’s expectations against
the observed performance of its neighbors.
Observations were made on trusted peers (TPs) as well
as on neighboring nodes that were within “listening
range” but were not necessarily directly trusted. Nodes
observed performance in areas such as routing or file
access and periodically generated positive or negative
feedback. These Feedback Items (FIs) were passed
only to other TPs.

5 Trust management system

This research has developed a system where user
nodes cooperated to exchange behavior reports. Each
node used the TMS to establish a private record of each
peer node’s behavior history. This history, based on
evidence in the form of signed FIs, was expressed as a
reputation index (RI). The RI provided an expectation
of their partner’s behavior before choosing to extend
trust. Since each node kept its RIs private and shared
only the personally observed FIs, one node’s reputation
could differ between peers. By evaluating each other’s
trustworthiness, a node chose to interact with
contributing peers and avoided misbehaving nodes.

Figure 2 shows the TMS that is installed on each
node. In the following sections, this paper discusses
how the TMS implements each of McKnight and
Chervany’s [4] constructs (see Figure 1) to produce an
access control decision.

5.1 Implementing reputation scaling

Each node gathered and processed feedback to
calculate a usable RI for its peers. The TMS
implemented an Interpersonal Trust model [6] to
represent the reputations that were compiled by a node
on each of its peers. This trust type was node specific,
so that the trust of one node to another was direct and
not transitive.

Figure 2 Trust Management System
Architecture

The reputation value needed to give a conservative
approximation of the feedback input. We also wanted
to emphasize current behavior while aging older input
to diminish its impact on the reputation calculation. A
node maintained a reputation value for each TP. A
node entered the network with a reputation value of 0,
a level of trust indicating that the node was unknown.
Our expectation was that a node would desire a
positive reputation. A node with a reputation below a
certain threshold would be isolated as nodes refused to
interact with it [8].

The system denoted the reputation Alice
maintained of Bob as RIA(B). The RI is represented by
number values in the range [-1, 1]. This value
represented the trust Alice placed in Bob; the higher
the number, the more trust was imparted. Peers viewed
a user with a reputation of –1 as completely
untrustworthy. Peers viewed a user with a reputation of
+1 as completely trustworthy.

Our Reputation Scaling module applied different
levels of trust to reports and observations. Because
everyone in the network trusts the KMS implicitly,
nodes placed full trust in KMS reports (i.e., RIx(KMS =
1). On the other hand, periodic observations (obst) from
other peers and friends were weighted using the
reporting node’s reputation (RIx(Y)) before being
integrated into the reputation calculation, as shown in
equation 1. These weighted observations were called
Feedback Items (FIs).

FI = RIx(Y) * obst (1)

We developed the 3Win method to calculate the RI
for each peer node [17]. Modeled after a method of
removing transients using sub-samples [18], this
method divided a node’s history into three weighted
performance windows that revealed tendencies in a
node’s behavior, shown in Equation 2 [17]. These
windows were named Reputation Indexing Windows
(RIWs) and numbered one through three. RIW1
contained the newest FIs and RIW3 held the oldest. FIs
were “pushed” through the windows (i.e., from RIW1
to RIW2 to RIW3) as new FI arrived. When an FI was
pushed out of RIW3 it was discarded.

λ = 0.66; µ = 0.22; ν = 0.11
RI = (λ* RIW1) + (µ * RIW2) + (ν * RIW3) (2)

Pushing FIs through the RIW diminished the
impact of older items on the reputation calculation. The
resulting RI emphasized current performance and
provided a conservative approximation of the behavior
trend. The 3Win approach allowed a node to improve a
poor RI by demonstrating sustained “good” behavior.

Finally, 3Win provided the non-repudiation not
available in other RM systems by maintaining the FIs
that were used to derive a peer’s reputation. This
digitally signed evidence substantiated the given
reputation value and meant that nodes could note refute
behavior grades.

5.2 Implementing the trust store

Where Interpersonal trust was dependent upon peer
behavior trends and System trust was determined
through an evaluation of system behavior tendencies,
Situational trust was independent of the behavior of
other users altogether. This type of trust used the trust
store, representing the user’s memory of previous peers
and situations, to determine what action it would take.
A situational trust decision was predicated on
remembering a previous decision that had yielded a
positive outcome, regardless of the behavior of peers
that may or may not have been involved.

The trust store contained the identity certificates
and the RIWs for each of a node’s TPs in structures
called Atomic Behavior Records (ABRs). Because the
KMS verified identity certificates, the TMS used the
ABR’s permanent section only as an anchor to
associate the reputation with. Our system allowed self-
issued certificates in addition to those issued by the
coalition or a foreign KMS. Each ABR consumed
approximately 2.2 kB, the bulk of this in FI.

ABRs of active associates were kept in the Trust
Store. When the Trust Store was full, the node
selectively eliminated or “forgot” associates to make
space for new objects [19]. While modern mobile
networking devices continue to expand in memory size
and processing capacity, we found that there is a
practical limit to how much information needed to be
stored. While more storage (“bigger is better”) might
seem to be a good idea, in practice storing more
information hindered a node by making it maintain that
information. If a node remembered old and inactive

Figure 3 Trust Store Size Tradeoffs

associates, it lost processing cycles and expended
energy sorting, accessing, and manipulating ABRs that
were not needed. By limiting the amount of stored
information, we increased the memory and processing
resources that could be made available to applications
and data.

Efficiency, in the case of the Trust Store
management problem, was defined as limiting the
number of “re-introductions” that a node required. Re-
introductions were cases where a node forgot a peer
that it once had security associations with and had to
go through the entire introduction process, as if the two
nodes had never dealt with each other before. Through
testing, we wanted to find the smallest trust store that
minimized the number of introductions the system had
to perform.

Sizing tests performed using a random waypoint
mobility simulation showed that the optimum size for a
trust store was 30% of the total number of users of the
network (N). This optimum was determined by
comparing the increasing amount of memory required
for the ABRs against the number of introductions
required in a network of a certain density. Sparse
networks (e.g., those with less than 100 members per
square kilometer) required a user to store a higher
percentage of associates’ credentials due to mobility.
Once a certain density was reached (i.e., 100 mobile
users in a 1000 x 1000 meter area), however, the
tradeoff point stayed at the 30% mark, as shown in
Figure 3. This means that if a user could know how
many nodes were in the network, he or she could size
their system memory to minimize reintroductions and
maintain only those credentials that it needs or will
need in the near future.

Since the ad-hoc nature of a MANET prevents
anyone from knowing the number of users in the
network at any time, we developed the concept of
network density sampling, shown in Equation (3).

D = (Nπr2)/A (3)

In this equation, a node entered a network and
listened. It knows r (the transmission radius) and
assumed A (the area of the mobility area) to be a
standard one square kilometer. As it listened, the node
counted N (the number of nodes it could hear). From
this equation we created three representative network
densities: sparse, medium and dense. Sparse networks
have a D of 1, medium networks a D of 5, and dense
networks a D of 10. From this density, the node set the
size of its Trust Store and began operating. If, at any
point, the node detected that it had to reintroduce itself

more than indicated by the density factor, it re-sampled
the nodes and reset the Trust Store size.

5.3 Implementing trust thresholds

A user established a trust threshold based on the
selected trust profile. Every user had two trust
thresholds, as shown in Figure 4. One was a trust
threshold (τT), above which a user extended trust. The
other was a distrust threshold (τD), below which a user
withdrew trust. A threshold was expressed as a value
between [-1,1].

A user evaluated the RIs of prospective peers
against these thresholds. If the peer’s reputation
exceeded the trust threshold, trust was allowed and
access might be granted. If, at a later time, the peer’s
reputation fell below the distrust threshold, a user
would withdraw its trust and might, based on its
individual security policy, report the access attempt to
the network’s control plane.

Peers viewed users that they have no information
about with a reputation value of 0. Liu and Issarny [5]
point out that this assignment made no attempt to
differentiate between newcomers, strangers, users that
had not participated (free-loaders), or users whose
reputations had been calculated to be 0. Zero was
considered a neutral value as it gave a new user a basic
reputation to start with while limiting the impact
strangers, free-loaders, and active users with low
reputations had to the network. Referring back to
Section 2, a RIx(Y) of 0 implied that the user needed
more information before making a decision, rather than
implying trust or distrust.

Figure 4 Example of Trust Thresholds

5.4 Implementing risk assessment

The Risk Assessment module (RAM) implemented
System Trust. The RAM evaluated globally available
information, in the form of reports and complaints from
the KMS, and first hand observations to determine the
general uncertainty of the network as a situational
norm. Expressed as a Global Risk Index (GRI), the
RAM estimated how risky an action was likely to be,
given the current state of trust events in the network.
Simplistically, this trust state could be phrased as “if
other people are having success then I’m more likely to
give it a try.” The risk assessment was derived from the
information provided by the network control plane.

Risk evaluation was different from reputation
scaling because the risk assessment considered all of
the trust reports in the system, not just those of a
node’s TPs. Once determined, the risk assessment of
the network was applied to a node’s trust thresholds,
adjusting the threshold to protect the node. The
adjustment was temporary; as the node made a risk
assessment on a regular basis and never altered the
node’s trust profile or its trust thresholds.

Given TD as the default distrust threshold and τD as
the adjusted distrust threshold:

α= 0.65, β= 0.2, γ=0.1, δ=0.05 (4)
GRIt = (α * FI1) + (β * FI2) + (γ * FI3) + (δ * GRIt-1)

τD = TD + (GRIt * TD) (5)

The GRI equation works in as a filter to weight
current information against historical input [18]. As
behavior trends change, we compare the computed GRI
to the current distrust threshold and adjust it
accordingly. The trust threshold (τT) is adjusted by the
same amount to maintain the width of the “trust zone.”

6 System testing

Once all of the modules had been verified, they
were combined to create a prototype TMS. A testing
scenario was developed around Training Scenario 2:
Slow Building River Flood – Natural Disaster [20].
This scenario called for the cooperation between a
variety of government organizations, local volunteers,
and federal advisors to respond to a natural disaster.
These agencies form a dynamic collaborative
environment to evacuate civilians, stabilize or restore
infrastructure, and care for wounded. In technical
terms, this required a TMS user to traverse a dynamic
cooperative environment that consisted of different

density networks with a wide variety of behavior and
collusion scenarios.

We used Lo Presti’s narrative technique to
construct the test environment for the system [21].
First, the test objectives were enumerated. Then, a
detailed operational scenario was created. In this
scenario, this required the creation of a notional
disaster response task force, as described above. Since
the system is specifically concerned with the access
control of resources within a collaborative
environment, notional users were assigned as resource
providers. Finally, vignettes were written within the
framework of the scenario to test the objectives. Lo
Presti’s narrative technique included mapping
objectives to vignettes and this exercise is detailed in
other work by the authors [7].

The TMS was tested to ensure the correctness of its
access control decisions. Critical variables included the
reporting frequency required to correctly ascertain a
peer’s trustworthiness, the impact of network density
on the number of required introductions, and the
sensitivity of the Risk Assessment algorithm to
different risk environments. Testing used individual
mobility models to determine the interactivity between
nodes. Once the interactivity was determined, behavior
profiles were applied to each node to generate test
scripts. These scripts could be configured to model
increasing numbers of colluding, misbehaving peers in
a mixture of network environments. To date, the TMS
has performed consistently well in simulations
involving mobility and interaction in single and
multiple node density environments.

Testing the TMS involved simulating user
interaction in a mobile, dynamic environment. A three-
step process was developed to create scripts of
behavior reporting. These scripts simulated the activity
of the KMS and the IDS layers of the security
architecture and were read by the TMS during the
course of the simulation. The first step was to select a

Figure 5 Example of TMS scenario test results

mobility model and parameters applicable to the test
objectives. BonnMotion 1.3a [22] simulated random
waypoint node movement inside a bounded area 3,000
x 4,000 meters. Attraction points were used to mimic
the effect of roads and facilities on nodal movement.
Different density networks were created by
concatenating simulations, each containing different
numbers of nodes to represent the various user centers.
Second, the movement trace was fed into
BonnMotion’s companion program, LinkDump. This
program read the movement trace and applied a
transmission range of 100 meters (selected to simulate
802.11 traffic) to determine when pairs of nodes could
interact. The interaction file that was produced listed
each node and its unidirectional communications link.
Having each interaction listed twice reflected the “one-
way” nature of the link. The third step of the scripting
process was to generate behavior related network
traffic using a C++ program called Builder. As Builder
read each link from the interactivity list, it used a finite
state machine behavior model to determine a grade for
that reporting period. That grade was then adjusted
based on the observer’s behavior model.

Figure 5 illustrates a portion of a test scenario. This
figure shows one individual’s view of his peers in the
network as he executed his duties. This individual (e.g.,
Joe) entered the network in the Tactical Operations
Center, a medium dense network of mostly “good”
users. Bootstrapping the scenario required that the user
(e.g., Joe) be introduced to someone by the KMS. Once
Joe had a TP, he could roam around and make other
friends. This bootstrap was viewed as feasible; since
Joe would be introduced to the people he would be
working with when he arrived at the TOC. In more
fluid situations, this initial introduction would need to
have taken place when the KMS issued Joe his identity
certificate. In either case, the availability of the KMS
allows a high probability of being introduced to an
associate by a DCA, thus allowing Joe to start
associating in the DCE.

One peer, Ken, exhibited selfish behavior
symptoms, either by not responding to requests for
referrals or not requesting resources properly. Ken’s
behavior resulted in Joe adjusting his trust thresholds to
account for the increased risk in the network. Joe’s
duties then took him to a local dam for a site survey.
This location was a sparse network and Joe met an
associate named Natasha. She cooperated with Joe and
they left the dam to attend the daily briefing at the
operation’s Public Information Center (PIC). The PIC
was a dense, high risk environment due to the high
percentage of non-coalition peers. Despite the risky
environment, Joe encountered Ed and extended his
trust based on a credential exchange. At the same time,

Natasha’s behavior has become less desirable. When
she attempted to introduce her collaborator Boris, the
combination of Boris’ poor behavior and her declining
reputation resulted in both Boris and Natasha being
distrusted and isolated. This example showed the
consistency and correctness of the TMS to provide
accurate access control decisions in different density
networks in the face of different risk conditions.

7 Conclusion and future work

Trust management made access control decisions in
mobile ad-hoc collaborative environments without the
need for pre-configuration or centralized management.
By linking a node’s identity to observations on its
performance, its peers calculated its reputation and
evaluated its trustworthiness. Through a combination
of credential exchange (introduction) and behavior
grading, nodes shared performance observations and
were able to calculate reputations of newly encountered
nodes in a peer-to-peer manner.

In this paper we showed that a node-based TMS
could implement three types of trust, apply risk and
reputation calculations, and present the application
layer security system with an access control decision.
The TMS provided a unique ability to enforce multiple
access levels dynamically, based on behavior
information. A node provided its peers customized
views of its resources based on its individual trust
profile and the peer’s trustworthiness. As reputations
changed, the amount of access changed to preserve a
node’s resources for those peers that have
demonstrated positive contributions to achieving the
coalition’s goals.

This work contributed an alternative access control
systems that was more suitable to ad-hoc environments
than traditional centralized security methods. Using the
trust constructs of McKnight and Chervany, we have
realized a complete trust management-based access
control system. The TMS has proven its ability to
calculate nodal reputations, apply risk assessment, and
react appropriately to requests for access. The system
has been tested against a set of operational scenarios
[20]. Portions of these results of these tests have been
documented in our previous research [7, 17, 23].

8 Acknowledgements

The authors would like to recognize the
contribution made by Ryan W. Thomas to the Trust
Store evaluation and, in particular, the development of
the network density estimation shown in equation 3.

REFERENCES

[1] N. Li and J. C. Mitchell, "RT: a Role-based

Trust-management framework," Proc. of the
DARPA Information Survivability
Conference and Exposition, 2003.

[2] S. Marsh, "Formalising Trust as a
Computational Concept," University of
Stirling, 1994, pp. 163.

[3] K. Aberer and Z. Despotovic, "Managing trust
in a peer-2-peer information system," Proc. of
the tenth international conference on
Information and knowledge management,
Atlanta, GA, 2001.

[4] D. McKnight and N. Chervany, "The
Meanings of Trust," Carlson School of
Management, University of Minnesota,
Technical Report TR 94-04, 1996.

[5] J. Liu and V. Issarny, "Enhanced Reputation
Mechanism for Mobile Ad Hoc Networks,"
Proc. of 2d International Conference of Trust
Management (iTrust 2004), Oxford, UK,
2004.

[6] A. Abdul-Rahman and S. Hailes, "Supporting
trust in virtual communities," Proc. of the
33rd Annual Hawaii International Conference
on System Sciences, 2000.

[7] W. J. Adams, "A Decentralized Trust-based
Access Control System for Dynamic
Collaborative Environments," Virginia
Polytechnic Institute and State University,
2006, pp. 150.

[8] P. Resnick, K. Kuwabara, R. Zeckhauser, and
E. Friedman, "Reputation Systems,"
Communications of the ACM, vol. 43, pp. 45 -
48, 2000.

[9] B. Yu, M. P. Singh, and K. Sycara,
"Developing trust in large-scale peer-to-peer
systems," Multi-Agent Security and
Survivability, 2004 IEEE First Symposium
on, 2004.

[10] L. Mui, "Computational Models of Trust and
Reputation: Agents, Evolutionary Games, and
Social Networks," Massachusetts Institute of
Technology, 2003, pp. 138.

[11] E. Gray, P. O'Connell, C. Jensen, S. Weber,
J.-M. Seigneur, and C. Yong, "Towards a
Framework for Assessing Trust-Based
Admission Control in Collaborative Ad Hoc
Applications," Department of Computer
Science, Trinity College Dublin, Dublin, IE,
Technical Report TD-2002-66, 2002 2002.

[12] J. Douceur, "The sybil attack," IPTPS02
Workshop, Cambridge, MA, 2002.

[13] G. C. Hadjichristofi, W. J. Adams, and N. J.
Davis, "A Framework for Key Management in
a Mobile Ad-Hoc Network," Proc. of the
International Conference on Information
Technology Coding and Computing (ITCC
05), Las Vegas, NV, 2005.

[14] S. Buchegger and J.-Y. Le Boudec, "Nodes
bearing grudges: towards routing security,
fairness, and robustness in mobile ad hoc
networks," Proc. of the 10th Euromicro
Workshop on Parallel, Distributed and
Network-based Processing, 2002.

[15] P. Michiardi and R. Molva, "CORE: A
Collaborative Reputation Mechanism to
enforce node cooperation in Mobile Ad-hoc
Networks," IFIP TC6/TC11 Sixth Joint
Working Conference on Communications and
Multimedia Security: Advanced
Communications and Multimedia Security,
2002.

[16] A. Datta, S. Quarteroni, and K. Aberer,
"Autonomous Gossiping: A self-organizing
epidemic algorithm for selective information
dissemination in mobile ad-hoc networks.,"
Ecole Polytechnique Federale de Lausanne
2004.

[17] W. J. Adams, G. C. Hadjichristofi, and N. J.
Davis, "Calculating a Node's Reputation in a
Mobile Ad-Hoc Network," Proc. of the 24th
IEEE International Performance Computing
and Communications Conference (IPCCC
2005), Phoenix, AZ, 2005.

[18] R. Jain, The Art of Computer Systems
Performance Analysis. New York, NY: John
Wiley & Sons, 1991.

[19] E. Gray, J.-M. Seigneur, Y. Chen, and C.
Jensen, "Trust propagation in small worlds,"
Proc. of the First International Conference on
Trust Management (iTrust2003), 2003.

[20] FEMA, Scenario and Incident Action Plan
Catalog, 1994.

[21] S. Lo Presti, M. Butler, M. Leuschel, and C.
Booth, "A Trust Analysis Methodology for
Pervasive Computing Systems," in Trusting
Agents for trusting Electronic Societies, R.
Falcone, S. Barber, J. Sabater, and M. Singh,
Eds.: Springer, 2005.

[22] C. de Waal and M. Gerharz, "BonnMotion."
Bonn, GE, 2005.

[23] W. J. Adams, R. Thomas, and N. J. Davis,
"Sizing the Credential Cache in a Trust-based
Access Control System," IEEE Global
Telecommunications Conference
(GLOBECOM 2005), St. Louis, MO, 2005.

